
Chapter 1

Graphs and Laplacian Matrices

We introduce basic elements of directed graphs, including nodes, edges, subgraphs, neighbors,
and degrees. Then graph connectivity concepts key for multi-agent cooperative control problems
are introduced; these concepts include strongly connectedness, strong components, spanning trees,
and spanning multiple trees. We then introduce relevant matrices of directed graphs, including
adjacency matrices, degree matrices, and Laplacian matrices. In particular, we define three types
of Laplacian matrices and analyze their algebraic properties (eigenstructures and ranks). Key
relations between these algebraic properties of graph matrices and graph connectivity conditions
are established.

1.1 Directed graphs

A directed graph (or simply digraph) G = (V , E) consists of a non-empty finite set V of elements
called nodes, and a finite set E of ordered pairs of nodes called edges. Thus E ⊆ V×V (the Cartesian
product of V and itself). The set V is called the node set and E the edge set of digraph G.

Three examples of digraphs are displayed in Fig. 1.1:

G1 = ({v1, v2, v3, v4}, {(v1, v2), (v1, v3), (v2, v4), (v3, v2), (v3, v4), (v4, v1), (v4, v2)})

G2 = ({v1, v2, v3}, {(v1, v2), (v1, v3), (v3, v2)})

G3 = ({v1, v2, v3}, {(v1, v1), (v1, v2), (v1, v3), (v3, v2)}).

For an edge (u, v) the first node u is its tail and the second node v is its head. The edge (u, v)

is said to leave u and enter v. The head and tail of an edge are its end-nodes. A loop is an edge
whose end-nodes are the same node. An edge is multiple if there is another edge with the same
end-nodes. A digraph is simple if it has no loops or multiple edges.1

1In this book, unless otherwise specified, only simple digraphs are considered.

15

16 Chapter 1. Graphs and Laplacian Matrices

v1

v2 v3

v4

G1

v1

v2

v3

G2

v1

v2

v3

G3

Figure 1.1: Directed graphs (digraphs)

For example, consider the digraphs in Fig. 1.1. Here, digraph G1 is simple; digraph G2 has
multiple edges, namely (v1, v2); and digraph G3 has a loop, namely (v1, v1).

In the special case where for every edge (u, v) ∈ E , the edge (v, u) of the opposite direction is
also an edge, i.e. (v, u) ∈ E , G = (V, E) is called an undirected graph.

Two examples of undirected graphs are given in Fig. 1.2:

G1 = ({v1, v2, v3, v4}, {(v1, v2), (v2, v1), (v2, v3), (v3, v2), (v3, v4), (v4, v3), (v4, v1), (v1, v4)})

G2 = ({v1, v2, v3}, {(v1, v2), (v2, v1), (v1, v3), (v3, v1)}).

For undirected graphs, their edges are commonly drawn without arrows as in Fig. 1.2.

v1

v2 v3

v4

G1

v1

v2

v3

G2

Figure 1.2: Undirected graphs

1.1. Directed graphs 17

Subdigraphs

Let G = (V, E) be a digraph. We say that G′ = (V ′, E ′) is a subdigraph of G if V ′ ⊆ V and
E ′ ⊆ E . If moreover V ′ = V, then G′ is a spanning subdigraph of G. For a digraph G = (V, E) and
a nonempty subset V ′ ⊆ V , the induced subdigraph by V ′ is G′ = (V ′, E ′), with E ′ = E ∩ (V ′ × V ′).

For example, consider the digraphs displayed in Fig. 1.3. Here G11, G12, and G13 are subdi-
graphs of G1 = (V, E) in Fig. 1.1. Only G12 is a spanning subdigraph, while only G13 is the
induced subdigraph by V ′ = {v1, v2, v4} ⊆ V. Note that G11 is not the induced subdigraph
by V ′ = {v1, v2, v4} because edge (v4, v2) is absent and E ′ ! E ∩ (V ′ × V ′).

v1

v2

v4

G11

v1

v2 v3

v4

G12

v1

v2

v4

G13

Figure 1.3: Subdigraphs

Neighbors and degrees

The local structure of a digraph is described by the neighbors and the degrees of its nodes. For
a digraph G = (V, E) and a node v ∈ V , the (in-)neighbor set of v is Nv := {u ∈ V | (u, v) ∈ E},
while the out-neighbor set of v is N o

v := {u ∈ V | (v, u) ∈ E}. Thus Nv is a set of nodes that are
connected to v with an edge (v being the head), whereas N o

v is a set of nodes to which v is connected
with an edge (v being the tail). The nodes in Nv and N o

v are respectively the (in-)neighbors and
out-neighbors of v.

The (in-)degree, dv, of a node v is the cardinality of the neighbor set Nv, written dv = |Nv|.
Similarly, the out-degree, dov, of a node v is the cardinality of the out-neighbor set N o

v , i.e. dov = |N o
v |.

A node v with dv = dov is called balanced. A digraph G is balanced if every node is balanced.
Every undirected graph is balanced.

As an illustration, consider the digraph G1 displayed in Fig. 1.1. For node v1, its neighbor
set is Nv1 = {v4} and out-neighbor set N o

v1 = {v2, v3}; hence its degree is dv1 = 1 and

18 Chapter 1. Graphs and Laplacian Matrices

out-degree dov1 = 2. As a result, v1 is not balanced. Next consider the digraph G11 in
Fig. 1.3. Observe that every node has degree 1 and out-degree 1, so every node is balanced
and digraph G11 is balanced.

1.2 Connectivity of digraphs
A (directed) path in a digraph G = (V, E) is a sequence of nodes

v1v2 · · · vk (k ≥ 1)

such that (vi, vi+1) ∈ E for every i = 1, 2, . . . , k−1. The path is said to be from v1 to vk. If v1 = vk,
the path is called a cycle. The length of a path is the number of the consisting edges. Hence the
path above has length k − 1. It is allowed that k = 1, in which case the path is of length 0. Also
note that a loop (vi, vi) is a cycle of length 1.

Let u, v ∈ V be two nodes of G. We say that v is reachable from u if there is a path from u to v;
written u → v. If v is not reachable from u, we write u (→ v. Every node v is reachable from itself,
i.e. v → v, by the (trivial) path v of length 0. For any node v, the set of nodes reachable from v is

V(v→) = {v′ ∈ V | v → v′}

while the set of nodes from which v is reachable is

V(→v) = {v′ ∈ V | v′ → v}.

We call V(v→) the reachable set of v, and V(→v) the backward reachable set of v. Both V(v→) and
V(→v) are nonempty, because v belongs to both.

A digraph G = (V, E) is strongly connected if

(∀u, v ∈ V)u → v

namely every node is reachable from every other node. In this case, V(v→) = V(→v) = V for every
node v ∈ V .

For example, consider digraph G1 in Fig. 1.4. Although for i = 1, 2, 3 there holds V(v→i) =

V(→vi) = V, for i = 4, 5 only V(v→i) = {v4, v5} ! V. The latter means that nodes v4, v5

cannot reach v1, v2, v3. Hence G1 is not strongly connected. By contrast, G2 is strongly
connected: V(v→i) = V(→vi) = V for all i = 1, 2, 3.

1.2. Connectivity of digraphs 19

v3

v2 v4

v5

G1

v1

v2

v3

G2

v1

Figure 1.4: Reachability and strongly connected digraphs

A strongly connected digraph G contains at least one cycle. Given a strongly connected digraph
G containing m(≥ 1) cycles, let l1, . . . , lm be the lengths of these cycles and denote by p their
greatest common divisor, i.e.

p := g.c.d.{l1, . . . , lm}.

If p > 1, we say that G is periodic with period p. Otherwise (p = 1), we say that G is aperiodic.
Note that a strongly connected digraph with a loop is aperiodic (as in this case the loop is a cycle
of length 1 and this renders the greatest common divisor p = 1).

In a digraph G = (V, E), a node r ∈ V is called a root if

(∀v ∈ V)r → v

that is, every node is reachable from r (equivalently V(r→) = V). Note that in a strongly connected
digraph G, every node is a root.

Let r be a root of digraph G = (V, E). A spanning subdigraph G′ = (V, E ′) is called a spanning
tree (with root r) if

• r has no neighbor, i.e. Nr = ∅;

• every node v ∈ V \ {r} has exactly one neighbor, i.e. dv = 1.

Definition 1.1 Let G = (V, E) be a digraph. We say that G contains a spanning tree if there
exists a spanning subdigraph of G that is a spanning tree.

Note that by definition, G contains a spanning tree if and only if there exists a root in G.

20 Chapter 1. Graphs and Laplacian Matrices

v1

v2 v3

v4

G1

v1

v2 v3

v4

G2

v1

v2 v3

v4

G3

v1

v2 v3

v4

G4

Figure 1.5: Strongly connected digraphs and spanning trees

Consider the digraphs displayed in Fig. 1.5. Digraph G1 is a spanning tree with root v3.
G2 is strongly connected, and (so) it contains a spanning tree (say G1). G3 is not strongly
connected, but contains a spanning tree (G1). Finally G4 is neither strongly connected nor
contains a spanning tree.

Note that if G is strongly connected, then G contains a spanning tree; but the reverse need not
hold. Nevertheless whether or not G contains a spanning tree may be verified by inspecting its
strongly connected subdigraphs.

Strong components

Let G′ = (V ′, E ′) be a subdigraph of G = (V, E), where ∅ (= V ′ ⊆ V and E ′ = E ∩ (V ′ × V ′).
Namely G′ is an induced subdigraph of G by V ′. We say that G′ is a strong component of G if G′

is strongly connected and for every other induced subdigraph G′′ = (V ′′, E ′′) with V ′ ⊆ V ′′ and
E ′ ⊆ E ′′, G′′ is not strongly connected. In other words, G′ is a maximal strongly connected induced

1.2. Connectivity of digraphs 21

subdigraph of G (which need not be unique). Let G1 = (V1, E1) and G2 = (V2, E2) be two strong
components of G = (V, E). Then they are either identical (i.e. V1 = V2, E1 = E2) or disjoint (i.e.
V1 ∩ V2 = ∅, E1 ∩ E2 = ∅).

A strong component G′ = (V ′, E ′) is said to be closed if

(∀u ∈ V ′)(∀v ∈ V \ V ′)v (→ u

namely no edge enters any node in V ′. In this case, V ′ = V(→u) ⊆ V(u→) for every node u ∈ V ′.

Fig. 1.6 provides examples of induced subdigraphs, G1, G2, and G3, of the first digraph G,
where G1 is not a strong component, G2 is a closed strong component, and G3 is a strong
component but not closed.

v1 v2 v3 v4G

v2 v3 v4

v1 v2

v3 v4

G2

G1

G3

Figure 1.6: Strong components and closed strong components

Theorem 1.1 Let G = (V, E) be a digraph. The following statements are equivalent:

(i) G contains a spanning tree;

(ii) G contains a unique closed strong component.

Proof. (i) ⇒ (ii). Suppose that G = (V, E) contains a spanning tree. Let Vr be the subset of
all roots, i.e.

Vr := {r ∈ V | V(r→) = V}.

Thus Vr (= ∅. Let Gr be the induced subdigraph by Vr. It will be shown that Gr is the unique

22 Chapter 1. Graphs and Laplacian Matrices

closed strong component of G.
If Vr = V, namely every node is a root, then Gr = G is strongly connected; thus maximality,

closedness, and uniqueness follow trivially.
If Vr ! V (i.e. Vr is a strict subset of V), first note that Gr is closed. To see this, suppose on

the contrary that there exist r ∈ Vr and v ∈ V \ Vr such that v → r. Since r is a root, v is also a
root, but this contradicts v /∈ Vr. Next, note that Gr is strongly connected. This follows from the
fact that every node in Vr is a root and Gr is closed. Moreover, no node in V \ Vr (i.e. non-root)
can be added to Vr while preserving strongly connectedness, so Gr is a closed strong component of
G. Finally, we prove that Gr is unique. Let G′

r = (V ′
r, E ′

r) be another closed strong component of G.
Then either V ′

r ∩Vr = ∅ or V ′
r = Vr. Since all nodes in Vr are roots, they can reach all nodes in V ′

r,
but this contradicts closedness of G′

r. Hence, it is only possible that V ′
r = Vr, and G′

r = Gr after all.
This establishes that Gr is the unique closed strong component of G.

(ii) ⇒ (i). Suppose that G contains a unique closed strong component Gr = (Vr, Er). We will
prove that G contains a spanning tree by showing that every node in Vr is a root.

Let r ∈ Vr and suppose on the contrary that r is not a root. Then V(r→) ! V. Let U :=

V \ V(r→); thus U (= ∅. Note that no node in V(r→) can reach any node in U , because otherwise r

could also reach some node in U . Hence the induced subdigraph Gu by U is closed. In the following,
it will be shown that Gu contains at least one closed strong component.

Select an arbitrary node u1 ∈ U , and check if V(→u1) ⊆ V(u→
1). If so, it follows that the

induced subdigraph G1 by V(→u1) is a closed strong component of Gu. If the condition fails, then
select another arbitrary node u2 ∈ V \ V(→u1), and check if V(→u2) ⊆ V(u→

2). Note that here
V(→u2) ⊆ V \V(→u1) necessarily holds, for otherwise u1 could be reached from u2. If the condition
holds, then the induced subdigraph G2 by V(→u2) is a closed strong component of Gu. If not, repeat
the above procedure. Since the node set U is finite, in the worst case after (say) k repetitions and
check failures, the subset V(→uk+1) ⊆ V \ V(→u1) \ · · · \ V(→uk) contains a singleton node uk+1.
Since V(→uk+1) ⊆ V(u→

k+1) holds trivially, the induced subdigraph Gk+1 by V(→uk+1) is a closed
strong component of Gu.

We have thus proved that Gu contains a closed strong component, say G′
u. Since Gu is closed in

G, G′
u is also a closed strong component of G. But G′

u is different from Gr, which is a contradiction
to the assumed uniqueness of the strong component Gr. Therefore, every node r ∈ Vr is a root and
G contains at least one spanning tree. !

To illustrate Theorem 1.1, consider the digraphs in Fig. 1.4. G1 contains two strong com-
ponents, but only the one induced by {v1, v2, v3} is closed. Hence G1 has a unique closed
strong component, and therefore G1 contains a spanning tree with root (say) v1. G2 contains
only one strong component, namely itself, which is (trivially) closed. So again G2 contains
a spanning tree with root (say) v3. On the other hand, consider digraph G4 in Fig. 1.5. We

1.2. Connectivity of digraphs 23

have identified that G4 does not contain a spanning tree. Indeed, this digraph contains 4

strong components, two of which are closed: one induced by {v1} and the other by {v3}.
Namely G4 fails to have a unique closed strong component.

Spanning multiple trees

Let us now generalize the concept of spanning trees to allow multiple roots.
Consider a digraph G = (V, E). Let R ⊆ V be a subset of nodes, and k := |R|. Consider k ≥ 2,

i.e. R contains at least two nodes. Let v ∈ V \ R. We say that v is k-reachable from R if there
is a path from a node in R to v after removing arbitrary k − 1 nodes except for v itself; written
R →k v. More formally, R →k v if

(∀U ⊆ V \ {v})|U| = k − 1 ⇒ (∃r ∈ R ∩ (V \ U))r → v in G′ induced by V \ U .

If v is not k-reachable from R, we write R (→k v.
The subset R of k(≥ 2) nodes is called a k-root subset if

(∀v ∈ V \ R)R →k v

that is, every node (not in R) is k-reachable from R. Note that in G = (V, E), if R is a k-root
subset, then for every r ∈ R, R\{r} is a (k−1)-root subset in the induced subgraph by V \{r}. In
the special case k = 2, i.e. R = {r1, r2}, r1 (resp. r2) is a root of the induced subgraph by V \ {r2}
(resp. by V \ {r1}).

Consider the digraphs in Fig. 1.7. In G1, v1 is 2-reachable from {v2, v3}, and {v2, v3} is a
2-root set. By contrast, in G2, v1 is not 2-reachable from {v2, v3}, because after removing v2,
v1 is no longer reachable from v3. Similarly, in G3, v1 is 3-reachable from {v2, v3, v4}, and
{v2, v3, v4} is a 3-root set. But in G4, v1 is not 3-reachable, because after removing v2 and v3,
v1 is not reachable from v4. Finally, removing v2 in G1, v3 is a root of the induced subgraph
by {v1, v3}; also removing v4 in G3, {v2, v3} is a 2-root subset of the induced subgraph by
{v1, v2, v3}.

Let R be a k-root subset of G = (V, E). A spanning subdigraph G′ = (V, E ′) is called a spanning
k-tree (with k-root subset R) if

• every root r ∈ R has no neighbor, i.e. Nr = ∅;

• every node v ∈ V \ R has exactly k neighbors, i.e. dv = k.

24 Chapter 1. Graphs and Laplacian Matrices

v2

v1

v3

G1 G2

v2

v1 v3

v4

G3

v2

v1 v3

v4

G4

v2

v1

v3

Figure 1.7: k-reachability

Definition 1.2 Let G = (V, E) be a digraph and k ≥ 2. We say that G contains a spanning
k-tree if there exists a spanning subdigraph of G that is a spanning k-tree.

By this definition, G contains a spanning k-tree if and only if there exists a k-root subset in G.

As an illustration, G1 in Fig. 1.7 contains a spanning 2-tree G′
1, which is displayed in Fig. 1.8.

For another example, G3 in Fig. 1.7 contains a spanning 3-tree G′
2 in Fig. 1.8.

A counterpart of Theorem 1.1 is the following, which establishes the relation between G con-
taining a spanning k-tree and the number of closed strong components.

Theorem 1.2 Let G = (V, E) be a digraph and k ≥ 2. If G contains a spanning k-tree, then
G contains l ∈ [1, k] closed strong components.

1.3. Matrices of digraphs 25

v2

v1

v3

G ′

1 G ′

2

v2

v1 v3

v4

Figure 1.8: Spanning k-tree

Proof. Suppose on the contrary that G contains k+1 closed strong components: G1, . . . ,Gk,Gk+1.
It will be shown that there cannot exist a k-root subset, and consequently G does not contain a
spanning k-tree.

Consider an arbitrary subset V ′ of k nodes in G. Since there are k+1 closed strong components,
there exists at least one closed strong component Gi = (Vi, Ei) (i ∈ [1, k+1]) such that V ′ ∩Vi = ∅.
Namely Gi does not contain any node in V ′. Now choose a node vi in Gi, so vi ∈ Vi and vi /∈ V ′.
Then remove k − 1 nodes from the other k closed strong components (Gi excluded). Since Gi is
closed, the chosen node vi cannot be reached from the subset V ′. This by definition means that V ′

is not a k-root subset. Since V ′ is arbitrary, we conclude that there cannot exist a k-root subset in
G. This completes the proof. !

To illustrate Theorem 1.2, first consider k = 2. Both G1 in Fig. 1.7 and G′
1 in Fig. 1.8

contain a spanning 2-tree. While G1 contains 1 closed strong component (induced by {v3}),
G′
1 contains 2 closed strong components (induced respectively by {v2} and {v3}). Next

consider k = 3. The digraphs in Fig. 1.9 contain a spanning 3-tree. G′
3 has 1 closed strong

component (induced by {v2, v3, v4}), while G′
4 has 2 closed strong components (induced

respectively by {v2, v4} and {v3}). In addition, the spanning 3-tree G′
2 in Fig. 1.8 has 3

closed strong components (induced respectively by {v2}, {v3}, and {v4}).

1.3 Matrices of digraphs
Given a digraph G = (V, E) with V = {v1, . . . , vn}, we may assign to each edge (vj , vi) ∈ E a weight
aij . If a pair (vj , vi) is not an edge, i.e. (vj , vi) /∈ E , then aij = 0. The weight aij may be a positive

26 Chapter 1. Graphs and Laplacian Matrices

v2

v1 v3

v4

G ′

3

v2

v1 v3

v4

G ′

4

Figure 1.9: Number of closed strong components in digraphs containing a spanning multiple tree

real number, or any real number, or even a complex number. We note that even if (vj , vi) ∈ E ,
the corresponding weight aij can still be 0, i.e. an edge can have zero weight. In this case, it is
equivalent to treat such a zero-weight edge as nonexisting in the digraph. With weights assigned
to edges, the digraph G is called a weighted digraph.

The adjacency matrix of a weighted digraph G is an n × n matrix A = (aij). Depending on
the field where aij belongs, A may be a nonnegative matrix (entry-wise nonnegative) if aij > 0, an
arbitrary real matrix if aij ∈ R, or a complex matrix if aij ∈ C. In the case that the adjacency
matrix A is nonnegative, aij > 0 if and only if (vj , vi) ∈ E .

Conversely for a given n× n matrix A = (aij), we may construct a weighted digraph G(A) of n
nodes such that an edge (vj , vi) exists with weight aij if and only if aij (= 0.

Illustration of adjacency matrices is provided in Fig. 1.10. Given a weighted digraph G of
five nodes, its adjacency matrix A is a 5× 5 matrix with each entry aij the weight on edge
(vj , vi). Conversely for a given 4 × 4 matrix A′, its corresponding digraph G(A′) has four
nodes, and an edge (vj , vi) with weight aij exists whenever aij (= 0. Note that the two loops
in G(A′) are due to the nonzero diagonal entries a11 and a44.

We write A ≥ 0 if A is a nonnegative matrix, and A > 0 if A is a positive matrix (entry-
wise positive). The same notation is used for nonnegative and positive vectors (which are special
one-column matrices).

When the adjacency matrix A is a nonnegative matrix (i.e. A ≥ 0), there are several important
properties concerning its spectrum (i.e. set of eigenvalues) that we shall introduce in the sequel (the
Perron-Frobenius Theorem in Theorem 1.5). To this end, we introduce two types of nonnegative
matrices in order: irreducible matrices and primitive matrices.

1.3. Matrices of digraphs 27

G

v1

v2 v3

v4

v5
A =

0 a12 0 0 0
a21 0 0 0 0
a31 a32 0 0 a35

a41 0 a43 0 a45

0 a52 0 a54 0

a21a12

a41

a32

a31

a52

a43

a35

a45

A′ =

2 0 0 −1
1 0 0 0

−0.5 3 0 0
0 0 1 −1

v2

v1 v4

v3

1

3

−1

1

2 −1

−0.5G(A′)

Figure 1.10: Adjacency matrices

Irreducible matrices

A square matrix P is a permutation matrix if for each row and each column, there is exactly one
entry equal to 1. That is, the columns of a permutation matrix are a reordering of the standard
basis vectors. Indeed, if P is a permutation matrix and M an arbitrary matrix, then the operation
M -→ PM amounts to reordering the rows of M ; further PM -→ PMP# amounts to doing the
same reordering of the columns of PM . A permutation matrix P is orthogonal: P#P = PP# = I.

Let A ∈ Rn×n be a nonnegative matrix, i.e. A ≥ 0. We say that A is reducible if either (i) n = 1

and A = 0, or (ii) there exists a permutation matrix P such that PAP# is block upper triangular
as follows:

[
B C

0 D

]

where B and D are square matrices. Otherwise A is irreducible.

28 Chapter 1. Graphs and Laplacian Matrices

For example, consider two nonnegative matrices

A1 =

0 0 0 1

2 0 3 0

0 0 0 0

0 4 5 0

, A2 =

0 0 0 1

2 0 0 0

0 3 0 0

0 4 5 0

.

A1 is reducible because there exists the following permutation matrix

P =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

such that PA1P

=

0 0 1 0

2 0 0 3

0 4 0 5

0 0 0 0

.

On the other hand, A2 is irreducible: no permutation matrix P can render PA2P# in a
block upper triangular form.

Irreducibility of matrices is elegantly characterized by connectivity of digraphs.

Theorem 1.3 Let G be a weighted digraph with n nodes and A ≥ 0 the corresponding
nonnegative adjacency matrix. Then A is irreducible if and only if G is strongly connected.

For the example A1, A2 above, they are respectively the nonnegative adjacency matrices of
digraphs G1 and G2 in Fig. 1.11. A1 is reducible and digraph G1 is not strongly connected;
whereas A2 is irreducible and digraph G2 is strongly connected.

v1

v2 v3

v4

G1

v1

v2 v3

v4

G2

1

2

3

4 5

1

2

3

4 5

Figure 1.11: Irreducibility of nonnegative matrices characterized by graph connectivity

1.3. Matrices of digraphs 29

To prove Theorem 1.3, the following lemma is useful, which establishes a link between positivity
of entries in powers of an adjacency matrix and reachability of the corresponding nodes. For an
arbitrary positive integer k ≥ 1, denote by akij the (i, j)-entry of the matrix Ak.

Lemma 1.1 Let G be a weighted digraph with n nodes and A ≥ 0 the corresponding non-
negative adjacency matrix. Then for every i, j ∈ {1, . . . , n} and every positive integer k ≥ 1,
akij > 0 if and only if there exists a path of length k from node vj to node vi.

Proof. The proof is by induction on k ≥ 1. For the base case where k = 1, the assertion holds
by the definition of nonnegative adjacency matrix A. Namely, aij > 0 if and only if there is an edge
(vj , vi) ∈ E (i.e. path of length 1 from vj to vi).

For the induction step, suppose that the assertion holds for k− 1. Note from Ak = Ak−1A that

akij =
n∑

m=1

ak−1
im amj .

Thus akij > 0 if and only if there is m ∈ {1, . . . , n} such that ak−1
im > 0 and amj > 0. That is, there

exist a path of length k − 1 from node vm to vi and a path of length 1 from vj to vm. These two
paths constitute a path of length k from vj to vi. This finishes the induction step, and thereby
establishes the assertion for any positive integer k ≥ 1. !

Proof of Theorem 1.3. (If) Suppose on the contrary that A is reducible. By definition, there
is a permutation matrix P such that

PAP# =

[
B C

0 D

]
=: Ã.

Then the matrix I + Ã is also block upper triangular, and so is its n − 1 powers (I + Ã)n−1.
Consequently (I + Ã)n−1 is not a positive matrix. Note that

(I + Ã)n−1 = P (I +A)n−1P#

so neither is (I +A)n−1 positive. Since in general

(I +A)n−1 = I + c1A+ c2A
2 + · · ·+ cn−1A

n−1

and the combinatorial coefficients c1, . . . , cn−1 are all positive, there exist i, j ∈ {1, . . . , n} (i (= j)
such that for every k ∈ {1, . . . , n − 1} it holds that akij = 0. But this means (by Lemma 1.1) that
there is no path of any length k ∈ {1, . . . , n− 1} from node vj to node vi. Namely vj (→ vi; hence

30 Chapter 1. Graphs and Laplacian Matrices

digraph G is not strongly connected.
(Only if) Suppose on the contrary that G is not strongly connected. By definition, there exist

two nodes vi, vj such that vj (→ vi. Thus the set of nodes that cannot reach vi is nonempty, i.e.
V \ V(→vi) (= ∅. In fact, there does not exist any path from any node in V \ V(→vi) to any node in
V(→vi). To see this, suppose that there exist vl ∈ V \ V(→vi) and vm ∈ V(→vi) such that vl → vm.
Since vm → vi, we have vl → vi, but this contradicts vl /∈ V(→vi). By this fact, we reorder the
nodes according to the partition of the node set: {V \V(→vi),V(→vi)}. The reordering amounts to
a permutation of the indices of nodes, and correspondingly there is a permutation matrix P such
that

PAP# =

[
B C

0 D

]

But this means that A is reducible. !

Primitive matrices

Next we introduce primitive matrices. Let A ∈ Rn×n be a nonnegative matrix, i.e. A ≥ 0. We
say that A is primitive if

(∃k ≥ 1)Ak > 0.

A primitive matrix is irreducible, but the converse need not hold. This is evident from the fol-
lowing graphical characterization of primitive matrices, as compared to that of irreducible matrices
in Theorem 1.3.

Theorem 1.4 An n × n nonnegative matrix A is primitive if and only if G(A) is strongly
connected and aperiodic.

Consider again the matrix A2 which is the adjacency matrix of digraph G2 in Fig. 1.11. We
have analyzed that A2 is irreducible, as G2 is strongly connected. Moreover G2 is aperiodic:
there are two cycles in G2 of length 3 and 4, respectively; hence p = g.c.d.{3, 4} = 1. By
Theorem 1.4, A2 is primitive. Indeed, it is checked that A10

2 is a positive matrix.
Let us consider two more matrices

A3 =

0 0 0 1

2 0 0 0

0 3 0 0

0 0 5 0

, A4 =

4 0 0 1

2 0 0 0

0 3 0 0

0 0 5 0

.

1.3. Matrices of digraphs 31

First, A3 is not primitive because digraph G(A3) in Fig. 1.12 is not aperiodic. Indeed G(A3)

is a strongly connected digraph of period 4. Hence A3 is irreducible but not primitive. On
the other hand, A4 is the same as A3 except for the positive (1, 1) entry. This diagonal
entry is crucial, however, since digraph G(A4) in Fig. 1.12 is aperiodic due to the loop at v1.
Therefore A4 is primitive (in fact A6

4 > 0).

v1

v2 v3

v4

G(A3)

v1

v2 v3

v4

G(A4)

1

2

3

5

1

2

3

4

5

Figure 1.12: Primitivity of nonnegative matrices characterized by graph connectivity

The proof of Theorem 1.4 requires the following lemmas.

Lemma 1.2 Let m1,m2 ≥ 1 be two positive integers. If g.c.d.{m1,m2} = 1, then there is
an integer k̄ ≥ 0 such that for any integer k ≥ k̄,

k = αm1 + βm2

for some nonnegative integers α,β.

Proof. Since
g.c.d.{m1,m2} = 1,

1 is an integer combination of m1 and m2, i.e.

1 = α1m1 − β1m2

for some nonnegative integers α1,β1. Let k̄ := β1m2
2. Thus k̄ ≥ 0 and for all k ≥ k̄,

k = β1m
2
2 + im2 + j

32 Chapter 1. Graphs and Laplacian Matrices

for some integers i, j satisfying i ≥ 0 and 0 ≤ j < m2. Substituting 1 = α1m1 − β1m2 into the
above equation yields

k = β1m
2
2 + im2 + j(α1m1 − β1m2)

= (jα1)m1 + (β1(m2 − j) + i)m2.

Let
α := jα1 and β := β1(m2 − j) + i.

Then α,β are nonnegative integers due to j < m2. Therefore, the conclusion follows. !
The next result shows the relationship between the period of a strongly connected digraph and

the period of each node in the digraph. For an arbitrary node v in a strongly connected digraph
G, let lv,1, . . . , lv,m be the lengths of all m(≥ 1) cycles from v to v. Denote by pv their greatest
common divisor, i.e.

pv := g.c.d.{lv,1, . . . , lv,m}

and we say that pv is the period of node v.

Lemma 1.3 Consider a strongly connected digraph G. Let p be the period of a digraph G
and pi be the period of node vi, i ∈ {1, . . . , n}. Then p = p1 = · · · = pn.

Proof. Let i ∈ {1, . . . , n}. We will establish p = pi by showing that p divides pi and pi divides p.
First let L := {l1, . . . , lk} be the set of all the lengths of all k(≥ 1) cycles in digraph G. Then

by definition, p is the greatest common divisor of the elements in L. Note that for every path from
vi to vi, it is either a (simple) cycle or consists of a number of cycles. So the length lvi of any path
from vi to vi is an integer combination of lj , j ∈ {1, . . . , k}, with nonnegative integer coefficients.
This means that every lj ∈ L divides lvi . Therefore p divides lvi , which further implies p divides
pi.

On the other hand, consider an arbitrary cycle in digraph G, and let its length be lj ∈ L. If the
cycle goes through vi, then pi divides lj . If not, then the cycle necessarily goes through some other
node, say vm. Since G is strongly connected, there must exist a cycle going through vi and vm.
Denote by li,m the length of this cycle. Thus pi divides li,m. Note that these two cycles constitute
a path of length li,m + lj from vi to vi. So pi divides li,m + lj and therefore pi divides lj . Hence, pi
divides any lj in L. This means that pi divides p.

Based on the above established two facts that pi divides p and p divides pi, we conclude that
p = pi for every i ∈ {1, . . . , n}. !

1.3. Matrices of digraphs 33

Lemma 1.4 Let A be an n × n nonnegative matrix. If G(A) is strongly connected and
p-periodic, then akii = 0 for any i ∈ {1, . . . , n} and for any k that is not a multiple of p.

Proof. Let pi, i ∈ {1, . . . , n}, be the period of the node vi in G(A). Thus by Lemma 1.3

p = p1 = · · · = pn

since G(A) is strongly connected. Hence the length of any path from vi to vi is a multiple of p.
Namely there is no path from vi to vi with length k that is not a multiple of p. So it follows from
Lemma 1.1 that akii = 0 for every i ∈ {1, . . . , n} and any k that is not a multiple of p. !

With the three lemmas above, we present the proof of Theorem 1.4.
Proof of Theorem 1.4. (If) Since G(A) is strongly connected and aperiodic, by Lemma 1.3 the
period of G(A) and the period of each node vi are equal to 1. For any node vi, let l1vi , l

2
vi (l

1
vi (= l2vi)

be the lengths of two paths from vi to vi. By Lemma 1.2 there is sufficiently large k̄i such that for
any k ≥ k̄i, k may be expressed by a nonnegative integer combination of l1vi and l2vi , which means
that there is a path of length k from vi to vi. Let vj be another node. Since G(A) is strongly
connected, there is a path from vi to vj ; let its length be lij . Thus for any k ≥ qij := k̄i + lij there
is a path of length k from vi to vj . It follows from Lemma 1.1 that akij > 0 for all k ≥ qij . Let

q := max{qij | i, j = 1, . . . , n}.

Then we have akij > 0 for all i, j = 1, . . . , n and k ≥ q. Therefore by definition, A is a primitive
matrix.

(Only if) Suppose on the contrary that G(A) is not strongly connected, or that it is strongly
connected but not aperiodic. For the first case that G(A) is not strongly connected, there is a pair
of nodes vi and vj such that vj is not reachable from vi. So by Lemma 1.1, akij = 0 for all k > 0.
Hence there is no positive integer k such that Ak is positive and consequently A is not primitive.

For the second case, G(A) is strongly connected but not aperiodic, that is, it is p-periodic where
p > 1. It follows from Lemma 1.4 that ak

′

ii = 0 for any positive integer k′ that is not a multiple of
p. Hence there is no positive integer k such that Ak is positive, as otherwise if there were a positive
integer k∗ such that Ak∗ is positive, then Ak is positive for any k ≥ k∗, which contradicts ak

′

ii = 0

for any positive integer k′ that is not a multiple of p. Therefore, A is not primitive. !

Perron-Frobenius Theorem

We are now ready to introduce the Perron-Frobenius Theorem. Denote by σ(A) the spectrum of
matrix A, i.e. the set of all eigenvalues of A, and ρ(A) the spectral radius of A, i.e. the maximum
magnitude of the eigenvalues of A.

34 Chapter 1. Graphs and Laplacian Matrices

Theorem 1.5 (Perron-Frobenius Theorem) Consider a nonnegative matrix A. If A is
irreducible, then

• ρ(A) > 0;

• ρ(A) is a simple eigenvalue of A;

• ρ(A) has a positive eigenvector and a positive left-eigenvector.a

Moreover, if A is primitive, then all eigenvalues except for ρ(A) have absolute values smaller
than ρ(A):

• (∀λ ∈ σ(A))λ (= ρ(A) ⇒ |λ| < ρ(A).

aLeft-eigenvector w corresponding to an eigenvalue λ of A satisfies w!A = w!λ.

Of particular interest is specialization of the Perron-Frobenius Theorem to a special class of
nonnegative matrices: stochastic matrices. A nonnegative matrix A is called row-stochastic (resp.
column-stochastic) if every row (resp. every column) of A sums up to one; if A is both row-stochastic
and column-stochastic, it is called doubly-stochastic.

Lemma 1.5 If A is a row-stochastic (column-stochastic, doubly-stochastic) matrix, then
ρ(A) = 1.

Proof. We prove the statement for row-stochastic matrices; the proofs for column-stochastic and
doubly-stochastic matrices are similar.

Since A is row-stochastic, we have A1 = 1. This means that 1 is an eigenvalue of A. Hence
ρ(A) ≥ 1. On the other hand,

ρ(A) = max{|λ| | λ is an eigenvalue of A}

= max{‖λx‖∞ | λ is an eigenvalue of A, x is a corresponding eigenvector, ‖x‖∞ = 1}

= max{‖Ax‖∞ | x is an eigenvector of A, ‖x‖∞ = 1}

≤ max{‖Ax‖∞ | ‖x‖∞ = 1}

= ‖A‖∞

= max
i

∑

j

|aij | = 1.

The last equality follows from the fact that every row of A sums to one. Therefore ρ(A) = 1. !

1.3. Matrices of digraphs 35

Theorem 1.6 (Perron-Frobenius Theorem for Stochastic Matrices) Consider
a row-stochastic (column-stochastic, doubly-stochastic) matrix A. If A is irreducible,
then ρ(A) = 1 is a simple eigenvalue of A, with a positive eigenvector and a positive
left-eigenvector. Specifically:

• if A is row-stochastic, then eigenvalue 1 has a positive eigenvector 1 (A1 = 1) and a
positive left eigenvector πl (π#

l A = π#
l);

• if A is column-stochastic, then eigenvalue 1 has a positive eigenvector πr (Aπr = πr)
and a positive left eigenvector 1 (1#A = 1#);

• if A is doubly-stochastic, then eigenvalue 1 has a positive eigenvector 1 (A1 = 1) and
a positive left eigenvector 1 (1#A = 1#).

Moreover, if A is primitive, then all eigenvalues except for 1 have absolute values smaller
than 1:

• (∀λ ∈ σ(A))λ (= 1 ⇒ |λ| < 1.

Laplacian matrices

For a weighted digraph G, the weighted (in-)degree di of a node i is the sum of the weights of
all edges entering i, i.e. di =

∑n
j=1 aij . Similarly, the weighted out-degree doi of a node i is the

sum of the weights of all edges leaving i, i.e. doi =
∑n

j=1 aji. A node i with di = doi is called
weight-balanced. A digraph G is weight-balanced if every node is weight-balanced.

The degree matrix of a weighted digraph G is D := diag(d1, . . . , dn). Let A be the adjacent
matrix of G; then D = diag(A1) (where 1 is the vector of all ones).

The Laplacian matrix of a weighted digraph G is L := D − A. By definition L1 = 0; namely
each row of L sums to zero. Thus 0 is an eigenvalue of L, with a corresponding eigenvector 1.

We distinguish three types of Laplacian matrices depending on their entries. Each type is useful
for a set of cooperative control problems introduced in later chapters.

• If A is nonnegative, then L has nonnegative diagonal entries and nonpositive off-diagonal
entries. This L is called standard Laplacian matrix.

• If A is (arbitrary) real, then L is called signed Laplacian matrix.

• If A is complex, then L is called complex Laplacian matrix.

36 Chapter 1. Graphs and Laplacian Matrices

Continuing the example in Fig. 1.10, the degree matrix is D := diag(d1, d2, d3, d4, d5), where
d1 = a12, d2 = a21, d = a31 + a32 + a35, d4 = a41 + a43 + a45, and d5 = a52 + a54. Thus the
Laplacian matrix is

L :=

d1 −a12 0 0 0

−a21 d2 0 0 0

−a31 −a32 d3 0 −a35

−a41 0 −a43 d4 −a45

0 −a52 0 −a54 d5

.

Since 0 is by definition an eigenvalue of Laplacian matrix L, its kernel (i.e. null space)2 is at
least one-dimensional. It turns out that the dimensions of the kernel of Laplacian matrices play a
central role in characterizing the types of allowable cooperative behaviors.

Remark 1.1 It is sometimes convenient to define degree matrix and Laplacian matrix with respect
to the out-degrees of nodes. Consider a weighted digraph G and its adjacency matrix A. The
out-degree matrix of G is Do := diag(do1, . . . , d

o
n); hence Do = diag(1#A). Correspondingly, the

out-degree Laplacian matrix of G is Lo := Do−A. By this definition 1#Lo = 0; namely each column
of Lo sums to zero. Thus 0 is again an eigenvalue of Lo, with a corresponding left-eigenvector 1.

1.4 Standard Laplacian Matrices

Let G be a weighted digraph with n nodes, A the associated adjacency matrix, and D(= diag(A1))

the degree matrix. In this section we consider that A is nonnegative, and L = D −A the standard
Laplacian matrix.

The kernel of L is at least one-dimensional, for L has at least one eigenvalue 0. The following
is a graphical condition that characterizes when the kernel of L is exactly one-dimensional (namely
the 0 eigenvalue of L is simple). We use dim(·) to denote the dimension of a vector space.

Theorem 1.7 Let G be a weighted digraph with n nodes and L the standard Laplacian
matrix. Then dim(kerL) = 1 if and only if G contains a spanning tree.

Note that dim(kerL) = 1 is equivalent to rank(L) = n − 1. To prove Theorem 1.7, it is useful
to first present the following sufficient condition for rank(L) = n− 1.

2Kernel of matrix L (viewed as a linear map) is defined as kerL := {v | Lv = 0}.

	Preface
	I Mathematical Preliminaries
	Graphs and Laplacian Matrices
	Directed graphs
	Connectivity of digraphs
	Matrices of digraphs
	Standard Laplacian Matrices
	Complex Laplacian Matrices
	Signed Laplacian Matrices
	Notes and References

	II Strongly Connected Digraphs: Averaging and Optimization
	Averaging
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Parameter Bound and Convergence Speed
	Simulation Examples
	Notes and References

	Optimization
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Distributed Resource Allocation
	Simulation Examples
	Notes and References
	Appendix: Convex Optimization

	III Spanning Tree Digraphs: Consensus and Synchronization
	Consensus
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Synchronization
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References
	Appendix: Linear Systems and Feedback Control

	IV Spanning Two-Tree Digraphs: Similar Formation and Localization
	Similar Formation in Two-Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Localization in Two-Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	V Spanning Multi-Tree Digraphs: Affine Formation and Localization
	Affine Formation in Arbitrary Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Localization in Arbitrary Dimensional Space
	Problem Formulation
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Index

