Chapter 1

Graphs and Laplacian Matrices

We introduce basic elements of directed graphs, including nodes, edges, subgraphs, neighbors, and degrees. Then graph connectivity concepts key for multi-agent cooperative control problems are introduced; these concepts include strongly connectedness, strong components, spanning trees, and spanning multiple trees. We then introduce relevant matrices of directed graphs, including adjacency matrices, degree matrices, and Laplacian matrices. In particular, we define three types of Laplacian matrices and analyze their algebraic properties (eigenstructures and ranks). Key relations between these algebraic properties of graph matrices and graph connectivity conditions are established.

1.1 Directed graphs

A directed graph (or simply digraph) $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ consists of a non-empty finite set \mathcal{V} of elements called nodes, and a finite set \mathcal{E} of ordered pairs of nodes called edges. Thus $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ (the Cartesian product of \mathcal{V} and itself). The set \mathcal{V} is called the node set and \mathcal{E} the edge set of digraph \mathcal{G}.

Three examples of digraphs are displayed in Fig. 1.1:

$$
\begin{aligned}
& \mathcal{G}_{1}=\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\},\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{1}\right),\left(v_{4}, v_{2}\right)\right\}\right) \\
& \mathcal{G}_{2}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)\right\}\right) \\
& \mathcal{G}_{3}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)\right\}\right)
\end{aligned}
$$

For an edge (u, v) the first node u is its tail and the second node v is its head. The edge (u, v) is said to leave u and enter v. The head and tail of an edge are its end-nodes. A loop is an edge whose end-nodes are the same node. An edge is multiple if there is another edge with the same end-nodes. A digraph is simple if it has no loops or multiple edges.

[^0]

Figure 1.1: Directed graphs (digraphs)

For example, consider the digraphs in Fig. 1.1. Here, digraph \mathcal{G}_{1} is simple; digraph \mathcal{G}_{2} has multiple edges, namely $\left(v_{1}, v_{2}\right)$; and digraph \mathcal{G}_{3} has a loop, namely $\left(v_{1}, v_{1}\right)$.

In the special case where for every edge $(u, v) \in \mathcal{E}$, the edge (v, u) of the opposite direction is also an edge, i.e. $(v, u) \in \mathcal{E}, \mathcal{G}=(\mathcal{V}, \mathcal{E})$ is called an undirected graph.

Two examples of undirected graphs are given in Fig. 1.2:

$$
\begin{aligned}
& \mathcal{G}_{1}=\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\},\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{3}\right),\left(v_{4}, v_{1}\right),\left(v_{1}, v_{4}\right)\right\}\right) \\
& \mathcal{G}_{2}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{1}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right)\right\}\right)
\end{aligned}
$$

For undirected graphs, their edges are commonly drawn without arrows as in Fig. 1.2.

Figure 1.2: Undirected graphs

Subdigraphs

Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a digraph. We say that $\mathcal{G}^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)$ is a subdigraph of \mathcal{G} if $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ and $\mathcal{E}^{\prime} \subseteq \mathcal{E}$. If moreover $\mathcal{V}^{\prime}=\mathcal{V}$, then \mathcal{G}^{\prime} is a spanning subdigraph of \mathcal{G}. For a digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ and a nonempty subset $\mathcal{V}^{\prime} \subseteq \mathcal{V}$, the induced subdigraph by \mathcal{V}^{\prime} is $\mathcal{G}^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)$, with $\mathcal{E}^{\prime}=\mathcal{E} \cap\left(\mathcal{V}^{\prime} \times \mathcal{V}^{\prime}\right)$.

For example, consider the digraphs displayed in Fig. 1.3. Here $\mathcal{G}_{11}, \mathcal{G}_{12}$, and \mathcal{G}_{13} are subdigraphs of $\mathcal{G}_{1}=(\mathcal{V}, \mathcal{E})$ in Fig. 1.1. Only \mathcal{G}_{12} is a spanning subdigraph, while only \mathcal{G}_{13} is the induced subdigraph by $\mathcal{V}^{\prime}=\left\{v_{1}, v_{2}, v_{4}\right\} \subseteq \mathcal{V}$. Note that \mathcal{G}_{11} is not the induced subdigraph by $\mathcal{V}^{\prime}=\left\{v_{1}, v_{2}, v_{4}\right\}$ because edge $\left(v_{4}, v_{2}\right)$ is absent and $\mathcal{E}^{\prime} \varsubsetneqq \mathcal{E} \cap\left(\mathcal{V}^{\prime} \times \mathcal{V}^{\prime}\right)$.

Figure 1.3: Subdigraphs

Neighbors and degrees

The local structure of a digraph is described by the neighbors and the degrees of its nodes. For a digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ and a node $v \in \mathcal{V}$, the (in-) neighbor set of v is $\mathcal{N}_{v}:=\{u \in \mathcal{V} \mid(u, v) \in \mathcal{E}\}$, while the out-neighbor set of v is $\mathcal{N}_{v}^{o}:=\{u \in \mathcal{V} \mid(v, u) \in \mathcal{E}\}$. Thus \mathcal{N}_{v} is a set of nodes that are connected to v with an edge (v being the head), whereas \mathcal{N}_{v}^{o} is a set of nodes to which v is connected with an edge (v being the tail). The nodes in \mathcal{N}_{v} and \mathcal{N}_{v}^{o} are respectively the (in-)neighbors and out-neighbors of v.

The (in-)degree, d_{v}, of a node v is the cardinality of the neighbor set \mathcal{N}_{v}, written $d_{v}=\left|\mathcal{N}_{v}\right|$. Similarly, the out-degree, d_{v}^{o}, of a node v is the cardinality of the out-neighbor set \mathcal{N}_{v}^{o}, i.e. $d_{v}^{o}=\left|\mathcal{N}_{v}^{o}\right|$.

A node v with $d_{v}=d_{v}^{o}$ is called balanced. A digraph \mathcal{G} is balanced if every node is balanced. Every undirected graph is balanced.

As an illustration, consider the digraph \mathcal{G}_{1} displayed in Fig. 1.1. For node v_{1}, its neighbor set is $\mathcal{N}_{v_{1}}=\left\{v_{4}\right\}$ and out-neighbor set $\mathcal{N}_{v_{1}}^{o}=\left\{v_{2}, v_{3}\right\}$; hence its degree is $d_{v_{1}}=1$ and
out-degree $d_{v_{1}}^{o}=2$. As a result, v_{1} is not balanced. Next consider the digraph \mathcal{G}_{11} in
Fig. 1.3. Observe that every node has degree 1 and out-degree 1 , so every node is balanced and digraph \mathcal{G}_{11} is balanced.

1.2 Connectivity of digraphs

A (directed) path in a digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is a sequence of nodes

$$
v_{1} v_{2} \cdots v_{k} \quad(k \geq 1)
$$

such that $\left(v_{i}, v_{i+1}\right) \in \mathcal{E}$ for every $i=1,2, \ldots, k-1$. The path is said to be from v_{1} to v_{k}. If $v_{1}=v_{k}$, the path is called a cycle. The length of a path is the number of the consisting edges. Hence the path above has length $k-1$. It is allowed that $k=1$, in which case the path is of length 0 . Also note that a loop $\left(v_{i}, v_{i}\right)$ is a cycle of length 1 .

Let $u, v \in \mathcal{V}$ be two nodes of \mathcal{G}. We say that v is reachable from u if there is a path from u to v; written $u \rightarrow v$. If v is not reachable from u, we write $u \nrightarrow v$. Every node v is reachable from itself, i.e. $v \rightarrow v$, by the (trivial) path v of length 0 . For any node v, the set of nodes reachable from v is

$$
\mathcal{V}\left(v^{\rightarrow}\right)=\left\{v^{\prime} \in \mathcal{V} \mid v \rightarrow v^{\prime}\right\}
$$

while the set of nodes from which v is reachable is

$$
\mathcal{V}(\rightarrow v)=\left\{v^{\prime} \in \mathcal{V} \mid v^{\prime} \rightarrow v\right\} .
$$

We call $\mathcal{V}(v \rightarrow)$ the reachable set of v, and $\mathcal{V}(\rightarrow v)$ the backward reachable set of v. Both $\mathcal{V}(v \rightarrow)$ and $\mathcal{V}(\rightarrow v)$ are nonempty, because v belongs to both.

A digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is strongly connected if

$$
(\forall u, v \in \mathcal{V}) u \rightarrow v
$$

namely every node is reachable from every other node. In this case, $\mathcal{V}\left(v^{\rightarrow}\right)=\mathcal{V}(\rightarrow v)=\mathcal{V}$ for every node $v \in \mathcal{V}$.

For example, consider digraph \mathcal{G}_{1} in Fig. 1.4. Although for $i=1,2,3$ there holds $\mathcal{V}\left(v_{i}\right)=$ $\mathcal{V}\left(\rightarrow v_{i}\right)=\mathcal{V}$, for $i=4,5$ only $\mathcal{V}\left(v_{i}\right)=\left\{v_{4}, v_{5}\right\} \varsubsetneqq \mathcal{V}$. The latter means that nodes v_{4}, v_{5} cannot reach v_{1}, v_{2}, v_{3}. Hence \mathcal{G}_{1} is not strongly connected. By contrast, \mathcal{G}_{2} is strongly connected: $\mathcal{V}\left(v_{i}\right)=\mathcal{V}\left(\rightarrow v_{i}\right)=\mathcal{V}$ for all $i=1,2,3$.

Figure 1.4: Reachability and strongly connected digraphs

A strongly connected digraph \mathcal{G} contains at least one cycle. Given a strongly connected digraph \mathcal{G} containing $m(\geq 1)$ cycles, let l_{1}, \ldots, l_{m} be the lengths of these cycles and denote by p their greatest common divisor, i.e.

$$
p:=\text { g.c.d. }\left\{l_{1}, \ldots, l_{m}\right\} .
$$

If $p>1$, we say that \mathcal{G} is periodic with period p. Otherwise $(p=1)$, we say that \mathcal{G} is aperiodic. Note that a strongly connected digraph with a loop is aperiodic (as in this case the loop is a cycle of length 1 and this renders the greatest common divisor $p=1$).

In a digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, a node $r \in \mathcal{V}$ is called a root if

$$
(\forall v \in \mathcal{V}) r \rightarrow v
$$

that is, every node is reachable from r (equivalently $\mathcal{V}\left(r^{\rightarrow}\right)=\mathcal{V}$). Note that in a strongly connected digraph \mathcal{G}, every node is a root.

Let r be a root of digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. A spanning subdigraph $\mathcal{G}^{\prime}=\left(\mathcal{V}, \mathcal{E}^{\prime}\right)$ is called a spanning tree (with root r) if

- r has no neighbor, i.e. $\mathcal{N}_{r}=\emptyset$;
- every node $v \in \mathcal{V} \backslash\{r\}$ has exactly one neighbor, i.e. $d_{v}=1$.

Definition 1.1 Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a digraph. We say that \mathcal{G} contains a spanning tree if there exists a spanning subdigraph of \mathcal{G} that is a spanning tree.

Note that by definition, \mathcal{G} contains a spanning tree if and only if there exists a root in \mathcal{G}.

Figure 1.5: Strongly connected digraphs and spanning trees

Consider the digraphs displayed in Fig. 1.5. Digraph \mathcal{G}_{1} is a spanning tree with root v_{3}. \mathcal{G}_{2} is strongly connected, and (so) it contains a spanning tree (say \mathcal{G}_{1}). \mathcal{G}_{3} is not strongly connected, but contains a spanning tree $\left(\mathcal{G}_{1}\right)$. Finally \mathcal{G}_{4} is neither strongly connected nor contains a spanning tree.

Note that if \mathcal{G} is strongly connected, then \mathcal{G} contains a spanning tree; but the reverse need not hold. Nevertheless whether or not \mathcal{G} contains a spanning tree may be verified by inspecting its strongly connected subdigraphs.

Strong components

Let $\mathcal{G}^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)$ be a subdigraph of $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where $\emptyset \neq \mathcal{V}^{\prime} \subseteq \mathcal{V}$ and $\mathcal{E}^{\prime}=\mathcal{E} \cap\left(\mathcal{V}^{\prime} \times \mathcal{V}^{\prime}\right)$. Namely \mathcal{G}^{\prime} is an induced subdigraph of \mathcal{G} by \mathcal{V}^{\prime}. We say that \mathcal{G}^{\prime} is a strong component of \mathcal{G} if \mathcal{G}^{\prime} is strongly connected and for every other induced subdigraph $\mathcal{G}^{\prime \prime}=\left(\mathcal{V}^{\prime \prime}, \mathcal{E}^{\prime \prime}\right)$ with $\mathcal{V}^{\prime} \subseteq \mathcal{V}^{\prime \prime}$ and $\mathcal{E}^{\prime} \subseteq \mathcal{E}^{\prime \prime}, \mathcal{G}^{\prime \prime}$ is not strongly connected. In other words, \mathcal{G}^{\prime} is a maximal strongly connected induced
subdigraph of \mathcal{G} (which need not be unique). Let $\mathcal{G}_{1}=\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ and $\mathcal{G}_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$ be two strong components of $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. Then they are either identical (i.e. $\mathcal{V}_{1}=\mathcal{V}_{2}, \mathcal{E}_{1}=\mathcal{E}_{2}$) or disjoint (i.e. $\left.\mathcal{V}_{1} \cap \mathcal{V}_{2}=\emptyset, \mathcal{E}_{1} \cap \mathcal{E}_{2}=\emptyset\right)$.

A strong component $\mathcal{G}^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)$ is said to be closed if

$$
\left(\forall u \in \mathcal{V}^{\prime}\right)\left(\forall v \in \mathcal{V} \backslash \mathcal{V}^{\prime}\right) v \nrightarrow u
$$

namely no edge enters any node in \mathcal{V}^{\prime}. In this case, $\mathcal{V}^{\prime}=\mathcal{V}(\rightarrow u) \subseteq \mathcal{V}\left(u^{\rightarrow}\right)$ for every node $u \in \mathcal{V}^{\prime}$.
Fig. 1.6 provides examples of induced subdigraphs, $\mathcal{G}_{1}, \mathcal{G}_{2}$, and \mathcal{G}_{3}, of the first digraph \mathcal{G}, where \mathcal{G}_{1} is not a strong component, \mathcal{G}_{2} is a closed strong component, and \mathcal{G}_{3} is a strong component but not closed.

Figure 1.6: Strong components and closed strong components

Theorem 1.1 Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a digraph. The following statements are equivalent:
(i) \mathcal{G} contains a spanning tree;
(ii) \mathcal{G} contains a unique closed strong component.

Proof. (i) \Rightarrow (ii). Suppose that $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ contains a spanning tree. Let \mathcal{V}_{r} be the subset of all roots, i.e.

$$
\mathcal{V}_{r}:=\left\{r \in \mathcal{V} \mid \mathcal{V}\left(r^{\rightarrow}\right)=\mathcal{V}\right\}
$$

Thus $\mathcal{V}_{r} \neq \emptyset$. Let \mathcal{G}_{r} be the induced subdigraph by \mathcal{V}_{r}. It will be shown that \mathcal{G}_{r} is the unique
closed strong component of \mathcal{G}.
If $\mathcal{V}_{r}=\mathcal{V}$, namely every node is a root, then $\mathcal{G}_{r}=\mathcal{G}$ is strongly connected; thus maximality, closedness, and uniqueness follow trivially.

If $\mathcal{V}_{r} \varsubsetneqq \mathcal{V}$ (i.e. \mathcal{V}_{r} is a strict subset of \mathcal{V}), first note that \mathcal{G}_{r} is closed. To see this, suppose on the contrary that there exist $r \in \mathcal{V}_{r}$ and $v \in \mathcal{V} \backslash \mathcal{V}_{r}$ such that $v \rightarrow r$. Since r is a root, v is also a root, but this contradicts $v \notin \mathcal{V}_{r}$. Next, note that \mathcal{G}_{r} is strongly connected. This follows from the fact that every node in \mathcal{V}_{r} is a root and \mathcal{G}_{r} is closed. Moreover, no node in $\mathcal{V} \backslash \mathcal{V}_{r}$ (i.e. non-root) can be added to \mathcal{V}_{r} while preserving strongly connectedness, so \mathcal{G}_{r} is a closed strong component of \mathcal{G}. Finally, we prove that \mathcal{G}_{r} is unique. Let $\mathcal{G}_{r}^{\prime}=\left(\mathcal{V}_{r}^{\prime}, \mathcal{E}_{r}^{\prime}\right)$ be another closed strong component of \mathcal{G}. Then either $\mathcal{V}_{r}^{\prime} \cap \mathcal{V}_{r}=\emptyset$ or $\mathcal{V}_{r}^{\prime}=\mathcal{V}_{r}$. Since all nodes in \mathcal{V}_{r} are roots, they can reach all nodes in \mathcal{V}_{r}^{\prime}, but this contradicts closedness of \mathcal{G}_{r}^{\prime}. Hence, it is only possible that $\mathcal{V}_{r}^{\prime}=\mathcal{V}_{r}$, and $\mathcal{G}_{r}^{\prime}=\mathcal{G}_{r}$ after all. This establishes that \mathcal{G}_{r} is the unique closed strong component of \mathcal{G}.
(ii) \Rightarrow (i). Suppose that \mathcal{G} contains a unique closed strong component $\mathcal{G}_{r}=\left(\mathcal{V}_{r}, \mathcal{E}_{r}\right)$. We will prove that \mathcal{G} contains a spanning tree by showing that every node in \mathcal{V}_{r} is a root.

Let $r \in \mathcal{V}_{r}$ and suppose on the contrary that r is not a root. Then $\mathcal{V}(r \rightarrow) \varsubsetneqq \mathcal{V}$. Let $\mathcal{U}:=$ $\mathcal{V} \backslash \mathcal{V}\left(r^{\rightarrow}\right)$; thus $\mathcal{U} \neq \emptyset$. Note that no node in $\mathcal{V}\left(r^{\rightarrow}\right)$ can reach any node in \mathcal{U}, because otherwise r could also reach some node in \mathcal{U}. Hence the induced subdigraph \mathcal{G}_{u} by \mathcal{U} is closed. In the following, it will be shown that \mathcal{G}_{u} contains at least one closed strong component.

Select an arbitrary node $u_{1} \in \mathcal{U}$, and check if $\mathcal{V}\left(\rightarrow u_{1}\right) \subseteq \mathcal{V}\left(u_{1}\right)$. If so, it follows that the induced subdigraph \mathcal{G}_{1} by $\mathcal{V}\left(\rightarrow u_{1}\right)$ is a closed strong component of \mathcal{G}_{u}. If the condition fails, then select another arbitrary node $u_{2} \in \mathcal{V} \backslash \mathcal{V}\left(\rightarrow u_{1}\right)$, and check if $\mathcal{V}\left(\rightarrow u_{2}\right) \subseteq \mathcal{V}\left(u_{2}\right)$. Note that here $\mathcal{V}\left(\rightarrow u_{2}\right) \subseteq \mathcal{V} \backslash \mathcal{V}\left(\rightarrow u_{1}\right)$ necessarily holds, for otherwise u_{1} could be reached from u_{2}. If the condition holds, then the induced subdigraph \mathcal{G}_{2} by $\mathcal{V}\left(\rightarrow u_{2}\right)$ is a closed strong component of \mathcal{G}_{u}. If not, repeat the above procedure. Since the node set \mathcal{U} is finite, in the worst case after (say) k repetitions and check failures, the subset $\mathcal{V}\left(\rightarrow u_{k+1}\right) \subseteq \mathcal{V} \backslash \mathcal{V}\left(\rightarrow u_{1}\right) \backslash \cdots \backslash \mathcal{V}\left(\rightarrow u_{k}\right)$ contains a singleton node u_{k+1}. Since $\mathcal{V}\left(\rightarrow u_{k+1}\right) \subseteq \mathcal{V}\left(u_{k+1}\right)$ holds trivially, the induced subdigraph \mathcal{G}_{k+1} by $\mathcal{V}\left(\rightarrow u_{k+1}\right)$ is a closed strong component of \mathcal{G}_{u}.

We have thus proved that \mathcal{G}_{u} contains a closed strong component, say \mathcal{G}_{u}^{\prime}. Since \mathcal{G}_{u} is closed in $\mathcal{G}, \mathcal{G}_{u}^{\prime}$ is also a closed strong component of \mathcal{G}. But \mathcal{G}_{u}^{\prime} is different from \mathcal{G}_{r}, which is a contradiction to the assumed uniqueness of the strong component \mathcal{G}_{r}. Therefore, every node $r \in \mathcal{V}_{r}$ is a root and \mathcal{G} contains at least one spanning tree.

To illustrate Theorem 1.1, consider the digraphs in Fig. 1.4. \mathcal{G}_{1} contains two strong components, but only the one induced by $\left\{v_{1}, v_{2}, v_{3}\right\}$ is closed. Hence \mathcal{G}_{1} has a unique closed strong component, and therefore \mathcal{G}_{1} contains a spanning tree with root (say) v_{1}. \mathcal{G}_{2} contains only one strong component, namely itself, which is (trivially) closed. So again \mathcal{G}_{2} contains a spanning tree with root (say) v_{3}. On the other hand, consider digraph \mathcal{G}_{4} in Fig. 1.5. We
have identified that \mathcal{G}_{4} does not contain a spanning tree. Indeed, this digraph contains 4 strong components, two of which are closed: one induced by $\left\{v_{1}\right\}$ and the other by $\left\{v_{3}\right\}$. Namely \mathcal{G}_{4} fails to have a unique closed strong component.

Spanning multiple trees

Let us now generalize the concept of spanning trees to allow multiple roots.
Consider a digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. Let $\mathcal{R} \subseteq \mathcal{V}$ be a subset of nodes, and $k:=|\mathcal{R}|$. Consider $k \geq 2$, i.e. \mathcal{R} contains at least two nodes. Let $v \in \mathcal{V} \backslash \mathcal{R}$. We say that v is k-reachable from \mathcal{R} if there is a path from a node in \mathcal{R} to v after removing arbitrary $k-1$ nodes except for v itself; written $\mathcal{R} \rightarrow_{k} v$. More formally, $\mathcal{R} \rightarrow_{k} v$ if

$$
(\forall \mathcal{U} \subseteq \mathcal{V} \backslash\{v\})|\mathcal{U}|=k-1 \Rightarrow(\exists r \in \mathcal{R} \cap(\mathcal{V} \backslash \mathcal{U})) r \rightarrow v \text { in } \mathcal{G}^{\prime} \text { induced by } \mathcal{V} \backslash \mathcal{U}
$$

If v is not k-reachable from \mathcal{R}, we write $\mathcal{R} \not \nrightarrow 力_{k} v$.
The subset \mathcal{R} of $k(\geq 2)$ nodes is called a k-root subset if

$$
(\forall v \in \mathcal{V} \backslash \mathcal{R}) \mathcal{R} \rightarrow_{k} v
$$

that is, every node (not in $\mathcal{R})$ is k-reachable from \mathcal{R}. Note that in $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, if \mathcal{R} is a k-root subset, then for every $r \in \mathcal{R}, \mathcal{R} \backslash\{r\}$ is a $(k-1)$-root subset in the induced subgraph by $\mathcal{V} \backslash\{r\}$. In the special case $k=2$, i.e. $\mathcal{R}=\left\{r_{1}, r_{2}\right\}, r_{1}$ (resp. r_{2}) is a root of the induced subgraph by $\mathcal{V} \backslash\left\{r_{2}\right\}$ (resp. by $\mathcal{V} \backslash\left\{r_{1}\right\}$).

Consider the digraphs in Fig. 1.7. In \mathcal{G}_{1}, v_{1} is 2-reachable from $\left\{v_{2}, v_{3}\right\}$, and $\left\{v_{2}, v_{3}\right\}$ is a 2-root set. By contrast, in \mathcal{G}_{2}, v_{1} is not 2-reachable from $\left\{v_{2}, v_{3}\right\}$, because after removing v_{2}, v_{1} is no longer reachable from v_{3}. Similarly, in \mathcal{G}_{3}, v_{1} is 3 -reachable from $\left\{v_{2}, v_{3}, v_{4}\right\}$, and $\left\{v_{2}, v_{3}, v_{4}\right\}$ is a 3 -root set. But in \mathcal{G}_{4}, v_{1} is not 3 -reachable, because after removing v_{2} and v_{3}, v_{1} is not reachable from v_{4}. Finally, removing v_{2} in \mathcal{G}_{1}, v_{3} is a root of the induced subgraph by $\left\{v_{1}, v_{3}\right\}$; also removing v_{4} in $\mathcal{G}_{3},\left\{v_{2}, v_{3}\right\}$ is a 2-root subset of the induced subgraph by $\left\{v_{1}, v_{2}, v_{3}\right\}$.

Let \mathcal{R} be a k-root subset of $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. A spanning subdigraph $\mathcal{G}^{\prime}=\left(\mathcal{V}, \mathcal{E}^{\prime}\right)$ is called a spanning k-tree (with k-root subset \mathcal{R}) if

- every root $r \in \mathcal{R}$ has no neighbor, i.e. $\mathcal{N}_{r}=\emptyset$;
- every node $v \in \mathcal{V} \backslash \mathcal{R}$ has exactly k neighbors, i.e. $d_{v}=k$.

Figure 1.7: k-reachability

Definition 1.2 Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a digraph and $k \geq 2$. We say that \mathcal{G} contains a spanning k-tree if there exists a spanning subdigraph of \mathcal{G} that is a spanning k-tree.

By this definition, \mathcal{G} contains a spanning k-tree if and only if there exists a k-root subset in \mathcal{G}.
As an illustration, \mathcal{G}_{1} in Fig. 1.7 contains a spanning 2-tree \mathcal{G}_{1}^{\prime}, which is displayed in Fig. 1.8. For another example, \mathcal{G}_{3} in Fig. 1.7 contains a spanning 3-tree \mathcal{G}_{2}^{\prime} in Fig. 1.8.

A counterpart of Theorem 1.1 is the following, which establishes the relation between \mathcal{G} containing a spanning k-tree and the number of closed strong components.

Theorem 1.2 Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a digraph and $k \geq 2$. If \mathcal{G} contains a spanning k-tree, then \mathcal{G} contains $l \in[1, k]$ closed strong components.

Figure 1.8: Spanning k-tree

Proof. Suppose on the contrary that \mathcal{G} contains $k+1$ closed strong components: $\mathcal{G}_{1}, \ldots, \mathcal{G}_{k}, \mathcal{G}_{k+1}$. It will be shown that there cannot exist a k-root subset, and consequently \mathcal{G} does not contain a spanning k-tree.

Consider an arbitrary subset \mathcal{V}^{\prime} of k nodes in \mathcal{G}. Since there are $k+1$ closed strong components, there exists at least one closed strong component $\mathcal{G}_{i}=\left(\mathcal{V}_{i}, \mathcal{E}_{i}\right)(i \in[1, k+1])$ such that $\mathcal{V}^{\prime} \cap \mathcal{V}_{i}=\emptyset$. Namely \mathcal{G}_{i} does not contain any node in \mathcal{V}^{\prime}. Now choose a node v_{i} in \mathcal{G}_{i}, so $v_{i} \in \mathcal{V}_{i}$ and $v_{i} \notin \mathcal{V}^{\prime}$. Then remove $k-1$ nodes from the other k closed strong components (\mathcal{G}_{i} excluded). Since \mathcal{G}_{i} is closed, the chosen node v_{i} cannot be reached from the subset \mathcal{V}^{\prime}. This by definition means that \mathcal{V}^{\prime} is not a k-root subset. Since \mathcal{V}^{\prime} is arbitrary, we conclude that there cannot exist a k-root subset in \mathcal{G}. This completes the proof.

To illustrate Theorem 1.2, first consider $k=2$. Both \mathcal{G}_{1} in Fig. 1.7 and \mathcal{G}_{1}^{\prime} in Fig. 1.8 contain a spanning 2 -tree. While \mathcal{G}_{1} contains 1 closed strong component (induced by $\left\{v_{3}\right\}$), \mathcal{G}_{1}^{\prime} contains 2 closed strong components (induced respectively by $\left\{v_{2}\right\}$ and $\left\{v_{3}\right\}$). Next consider $k=3$. The digraphs in Fig. 1.9 contain a spanning 3 -tree. \mathcal{G}_{3}^{\prime} has 1 closed strong component (induced by $\left\{v_{2}, v_{3}, v_{4}\right\}$), while \mathcal{G}_{4}^{\prime} has 2 closed strong components (induced respectively by $\left\{v_{2}, v_{4}\right\}$ and $\left\{v_{3}\right\}$). In addition, the spanning 3 -tree \mathcal{G}_{2}^{\prime} in Fig. 1.8 has 3 closed strong components (induced respectively by $\left\{v_{2}\right\},\left\{v_{3}\right\}$, and $\left\{v_{4}\right\}$).

1.3 Matrices of digraphs

Given a digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$, we may assign to each edge $\left(v_{j}, v_{i}\right) \in \mathcal{E}$ a weight $a_{i j}$. If a pair $\left(v_{j}, v_{i}\right)$ is not an edge, i.e. $\left(v_{j}, v_{i}\right) \notin \mathcal{E}$, then $a_{i j}=0$. The weight $a_{i j}$ may be a positive

Figure 1.9: Number of closed strong components in digraphs containing a spanning multiple tree
real number, or any real number, or even a complex number. We note that even if $\left(v_{j}, v_{i}\right) \in \mathcal{E}$, the corresponding weight $a_{i j}$ can still be 0, i.e. an edge can have zero weight. In this case, it is equivalent to treat such a zero-weight edge as nonexisting in the digraph. With weights assigned to edges, the digraph \mathcal{G} is called a weighted digraph.

The adjacency matrix of a weighted digraph \mathcal{G} is an $n \times n$ matrix $A=\left(a_{i j}\right)$. Depending on the field where $a_{i j}$ belongs, A may be a nonnegative matrix (entry-wise nonnegative) if $a_{i j}>0$, an arbitrary real matrix if $a_{i j} \in \mathbb{R}$, or a complex matrix if $a_{i j} \in \mathbb{C}$. In the case that the adjacency $\operatorname{matrix} A$ is nonnegative, $a_{i j}>0$ if and only if $\left(v_{j}, v_{i}\right) \in \mathcal{E}$.

Conversely for a given $n \times n$ matrix $A=\left(a_{i j}\right)$, we may construct a weighted digraph $\mathcal{G}(A)$ of n nodes such that an edge $\left(v_{j}, v_{i}\right)$ exists with weight $a_{i j}$ if and only if $a_{i j} \neq 0$.

Illustration of adjacency matrices is provided in Fig. 1.10. Given a weighted digraph \mathcal{G} of five nodes, its adjacency matrix A is a 5×5 matrix with each entry $a_{i j}$ the weight on edge $\left(v_{j}, v_{i}\right)$. Conversely for a given 4×4 matrix A^{\prime}, its corresponding digraph $\mathcal{G}\left(A^{\prime}\right)$ has four nodes, and an edge $\left(v_{j}, v_{i}\right)$ with weight $a_{i j}$ exists whenever $a_{i j} \neq 0$. Note that the two loops in $\mathcal{G}\left(A^{\prime}\right)$ are due to the nonzero diagonal entries a_{11} and a_{44}.

We write $A \geq 0$ if A is a nonnegative matrix, and $A>0$ if A is a positive matrix (entrywise positive). The same notation is used for nonnegative and positive vectors (which are special one-column matrices).

When the adjacency matrix A is a nonnegative matrix (i.e. $A \geq 0$), there are several important properties concerning its spectrum (i.e. set of eigenvalues) that we shall introduce in the sequel (the Perron-Frobenius Theorem in Theorem 1.5). To this end, we introduce two types of nonnegative matrices in order: irreducible matrices and primitive matrices.

Figure 1.10: Adjacency matrices

Irreducible matrices

A square matrix P is a permutation matrix if for each row and each column, there is exactly one entry equal to 1 . That is, the columns of a permutation matrix are a reordering of the standard basis vectors. Indeed, if P is a permutation matrix and M an arbitrary matrix, then the operation $M \mapsto P M$ amounts to reordering the rows of M; further $P M \mapsto P M P^{\top}$ amounts to doing the same reordering of the columns of $P M$. A permutation matrix P is orthogonal: $P^{\top} P=P P^{\top}=I$.

Let $A \in \mathbb{R}^{n \times n}$ be a nonnegative matrix, i.e. $A \geq 0$. We say that A is reducible if either (i) $n=1$ and $A=0$, or (ii) there exists a permutation matrix P such that $P A P^{\top}$ is block upper triangular as follows:

$$
\left[\begin{array}{ll}
B & C \\
0 & D
\end{array}\right]
$$

where B and D are square matrices. Otherwise A is irreducible.

For example, consider two nonnegative matrices

$$
A_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
2 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 4 & 5 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 4 & 5 & 0
\end{array}\right]
$$

A_{1} is reducible because there exists the following permutation matrix

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \text { such that } \quad P A_{1} P^{\top}=\left[\begin{array}{lll|l}
0 & 0 & 1 & 0 \\
2 & 0 & 0 & 3 \\
0 & 4 & 0 & 5 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]
$$

On the other hand, A_{2} is irreducible: no permutation matrix P can render $P A_{2} P^{\top}$ in a block upper triangular form.

Irreducibility of matrices is elegantly characterized by connectivity of digraphs.
Theorem 1.3 Let \mathcal{G} be a weighted digraph with n nodes and $A \geq 0$ the corresponding nonnegative adjacency matrix. Then A is irreducible if and only if \mathcal{G} is strongly connected.

For the example A_{1}, A_{2} above, they are respectively the nonnegative adjacency matrices of digraphs \mathcal{G}_{1} and \mathcal{G}_{2} in Fig. 1.11. A_{1} is reducible and digraph \mathcal{G}_{1} is not strongly connected; whereas A_{2} is irreducible and digraph \mathcal{G}_{2} is strongly connected.

Figure 1.11: Irreducibility of nonnegative matrices characterized by graph connectivity

To prove Theorem 1.3, the following lemma is useful, which establishes a link between positivity of entries in powers of an adjacency matrix and reachability of the corresponding nodes. For an arbitrary positive integer $k \geq 1$, denote by $a_{i j}^{k}$ the (i, j)-entry of the matrix A^{k}.

Lemma 1.1 Let \mathcal{G} be a weighted digraph with n nodes and $A \geq 0$ the corresponding nonnegative adjacency matrix. Then for every $i, j \in\{1, \ldots, n\}$ and every positive integer $k \geq 1$, $a_{i j}^{k}>0$ if and only if there exists a path of length k from node v_{j} to node v_{i}.

Proof. The proof is by induction on $k \geq 1$. For the base case where $k=1$, the assertion holds by the definition of nonnegative adjacency matrix A. Namely, $a_{i j}>0$ if and only if there is an edge $\left(v_{j}, v_{i}\right) \in \mathcal{E}$ (i.e. path of length 1 from v_{j} to $\left.v_{i}\right)$.

For the induction step, suppose that the assertion holds for $k-1$. Note from $A^{k}=A^{k-1} A$ that

$$
a_{i j}^{k}=\sum_{m=1}^{n} a_{i m}^{k-1} a_{m j}
$$

Thus $a_{i j}^{k}>0$ if and only if there is $m \in\{1, \ldots, n\}$ such that $a_{i m}^{k-1}>0$ and $a_{m j}>0$. That is, there exist a path of length $k-1$ from node v_{m} to v_{i} and a path of length 1 from v_{j} to v_{m}. These two paths constitute a path of length k from v_{j} to v_{i}. This finishes the induction step, and thereby establishes the assertion for any positive integer $k \geq 1$.

Proof of Theorem 1.3. (If) Suppose on the contrary that A is reducible. By definition, there is a permutation matrix P such that

$$
P A P^{\top}=\left[\begin{array}{cc}
B & C \\
0 & D
\end{array}\right]=: \tilde{A}
$$

Then the matrix $I+\tilde{A}$ is also block upper triangular, and so is its $n-1$ powers $(I+\tilde{A})^{n-1}$. Consequently $(I+\tilde{A})^{n-1}$ is not a positive matrix. Note that

$$
(I+\tilde{A})^{n-1}=P(I+A)^{n-1} P^{\top}
$$

so neither is $(I+A)^{n-1}$ positive. Since in general

$$
(I+A)^{n-1}=I+c_{1} A+c_{2} A^{2}+\cdots+c_{n-1} A^{n-1}
$$

and the combinatorial coefficients c_{1}, \ldots, c_{n-1} are all positive, there exist $i, j \in\{1, \ldots, n\}(i \neq j)$ such that for every $k \in\{1, \ldots, n-1\}$ it holds that $a_{i j}^{k}=0$. But this means (by Lemma 1.1) that there is no path of any length $k \in\{1, \ldots, n-1\}$ from node v_{j} to node v_{i}. Namely $v_{j} \nrightarrow v_{i}$; hence
digraph \mathcal{G} is not strongly connected.
(Only if) Suppose on the contrary that \mathcal{G} is not strongly connected. By definition, there exist two nodes v_{i}, v_{j} such that $v_{j} \nrightarrow v_{i}$. Thus the set of nodes that cannot reach v_{i} is nonempty, i.e. $\mathcal{V} \backslash \mathcal{V}\left(\rightarrow v_{i}\right) \neq \emptyset$. In fact, there does not exist any path from any node in $\mathcal{V} \backslash \mathcal{V}\left(\rightarrow v_{i}\right)$ to any node in $\mathcal{V}\left(\rightarrow v_{i}\right)$. To see this, suppose that there exist $v_{l} \in \mathcal{V} \backslash \mathcal{V}\left(\rightarrow v_{i}\right)$ and $v_{m} \in \mathcal{V}\left(\rightarrow v_{i}\right)$ such that $v_{l} \rightarrow v_{m}$. Since $v_{m} \rightarrow v_{i}$, we have $v_{l} \rightarrow v_{i}$, but this contradicts $v_{l} \notin \mathcal{V}\left(\rightarrow v_{i}\right)$. By this fact, we reorder the nodes according to the partition of the node set: $\left\{\mathcal{V} \backslash \mathcal{V}\left(\rightarrow v_{i}\right), \mathcal{V}\left(\rightarrow v_{i}\right)\right\}$. The reordering amounts to a permutation of the indices of nodes, and correspondingly there is a permutation matrix P such that

$$
P A P^{\top}=\left[\begin{array}{ll}
B & C \\
0 & D
\end{array}\right]
$$

But this means that A is reducible.

Primitive matrices

Next we introduce primitive matrices. Let $A \in \mathbb{R}^{n \times n}$ be a nonnegative matrix, i.e. $A \geq 0$. We say that A is primitive if

$$
(\exists k \geq 1) A^{k}>0
$$

A primitive matrix is irreducible, but the converse need not hold. This is evident from the following graphical characterization of primitive matrices, as compared to that of irreducible matrices in Theorem 1.3.

Theorem 1.4 An $n \times n$ nonnegative matrix A is primitive if and only if $\mathcal{G}(A)$ is strongly connected and aperiodic.

Consider again the matrix A_{2} which is the adjacency matrix of digraph \mathcal{G}_{2} in Fig. 1.11. We have analyzed that A_{2} is irreducible, as \mathcal{G}_{2} is strongly connected. Moreover \mathcal{G}_{2} is aperiodic: there are two cycles in \mathcal{G}_{2} of length 3 and 4 , respectively; hence $p=$ g.c.d. $\{3,4\}=1$. By Theorem 1.4, A_{2} is primitive. Indeed, it is checked that A_{2}^{10} is a positive matrix.
Let us consider two more matrices

$$
A_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 5 & 0
\end{array}\right], \quad A_{4}=\left[\begin{array}{cccc}
4 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 5 & 0
\end{array}\right]
$$

First, A_{3} is not primitive because digraph $\mathcal{G}\left(A_{3}\right)$ in Fig. 1.12 is not aperiodic. Indeed $\mathcal{G}\left(A_{3}\right)$ is a strongly connected digraph of period 4 . Hence A_{3} is irreducible but not primitive. On the other hand, A_{4} is the same as A_{3} except for the positive $(1,1)$ entry. This diagonal entry is crucial, however, since digraph $\mathcal{G}\left(A_{4}\right)$ in Fig. 1.12 is aperiodic due to the loop at v_{1}. Therefore A_{4} is primitive (in fact $A_{4}^{6}>0$).

Figure 1.12: Primitivity of nonnegative matrices characterized by graph connectivity

The proof of Theorem 1.4 requires the following lemmas.
Lemma 1.2 Let $m_{1}, m_{2} \geq 1$ be two positive integers. If g.c.d. $\left\{m_{1}, m_{2}\right\}=1$, then there is an integer $\bar{k} \geq 0$ such that for any integer $k \geq \bar{k}$,

$$
k=\alpha m_{1}+\beta m_{2}
$$

for some nonnegative integers α, β.

Proof. Since

$$
\text { g.c.d. }\left\{m_{1}, m_{2}\right\}=1,
$$

1 is an integer combination of m_{1} and m_{2}, i.e.

$$
1=\alpha_{1} m_{1}-\beta_{1} m_{2}
$$

for some nonnegative integers α_{1}, β_{1}. Let $\bar{k}:=\beta_{1} m_{2}^{2}$. Thus $\bar{k} \geq 0$ and for all $k \geq \bar{k}$,

$$
k=\beta_{1} m_{2}^{2}+i m_{2}+j
$$

for some integers i, j satisfying $i \geq 0$ and $0 \leq j<m_{2}$. Substituting $1=\alpha_{1} m_{1}-\beta_{1} m_{2}$ into the above equation yields

$$
\begin{aligned}
k & =\beta_{1} m_{2}^{2}+i m_{2}+j\left(\alpha_{1} m_{1}-\beta_{1} m_{2}\right) \\
& =\left(j \alpha_{1}\right) m_{1}+\left(\beta_{1}\left(m_{2}-j\right)+i\right) m_{2}
\end{aligned}
$$

Let

$$
\alpha:=j \alpha_{1} \text { and } \beta:=\beta_{1}\left(m_{2}-j\right)+i .
$$

Then α, β are nonnegative integers due to $j<m_{2}$. Therefore, the conclusion follows.
The next result shows the relationship between the period of a strongly connected digraph and the period of each node in the digraph. For an arbitrary node v in a strongly connected digraph \mathcal{G}, let $l_{v, 1}, \ldots, l_{v, m}$ be the lengths of all $m(\geq 1)$ cycles from v to v. Denote by p_{v} their greatest common divisor, i.e.

$$
p_{v}:=\text { g.c.d. }\left\{l_{v, 1}, \ldots, l_{v, m}\right\}
$$

and we say that p_{v} is the period of node v.

Lemma 1.3 Consider a strongly connected digraph \mathcal{G}. Let p be the period of a digraph \mathcal{G} and p_{i} be the period of node $v_{i}, i \in\{1, \ldots, n\}$. Then $p=p_{1}=\cdots=p_{n}$.

Proof. Let $i \in\{1, \ldots, n\}$. We will establish $p=p_{i}$ by showing that p divides p_{i} and p_{i} divides p.
First let $\mathcal{L}:=\left\{l_{1}, \ldots, l_{k}\right\}$ be the set of all the lengths of all $k(\geq 1)$ cycles in digraph \mathcal{G}. Then by definition, p is the greatest common divisor of the elements in \mathcal{L}. Note that for every path from v_{i} to v_{i}, it is either a (simple) cycle or consists of a number of cycles. So the length $l_{v_{i}}$ of any path from v_{i} to v_{i} is an integer combination of $l_{j}, j \in\{1, \ldots, k\}$, with nonnegative integer coefficients. This means that every $l_{j} \in \mathcal{L}$ divides $l_{v_{i}}$. Therefore p divides $l_{v_{i}}$, which further implies p divides p_{i}.

On the other hand, consider an arbitrary cycle in digraph \mathcal{G}, and let its length be $l_{j} \in \mathcal{L}$. If the cycle goes through v_{i}, then p_{i} divides l_{j}. If not, then the cycle necessarily goes through some other node, say v_{m}. Since \mathcal{G} is strongly connected, there must exist a cycle going through v_{i} and v_{m}. Denote by $l_{i, m}$ the length of this cycle. Thus p_{i} divides $l_{i, m}$. Note that these two cycles constitute a path of length $l_{i, m}+l_{j}$ from v_{i} to v_{i}. So p_{i} divides $l_{i, m}+l_{j}$ and therefore p_{i} divides l_{j}. Hence, p_{i} divides any l_{j} in \mathcal{L}. This means that p_{i} divides p.

Based on the above established two facts that p_{i} divides p and p divides p_{i}, we conclude that $p=p_{i}$ for every $i \in\{1, \ldots, n\}$.

Lemma 1.4 Let A be an $n \times n$ nonnegative matrix. If $\mathcal{G}(A)$ is strongly connected and p-periodic, then $a_{i i}^{k}=0$ for any $i \in\{1, \ldots, n\}$ and for any k that is not a multiple of p.

Proof. Let $p_{i}, i \in\{1, \ldots, n\}$, be the period of the node v_{i} in $\mathcal{G}(A)$. Thus by Lemma 1.3

$$
p=p_{1}=\cdots=p_{n}
$$

since $\mathcal{G}(A)$ is strongly connected. Hence the length of any path from v_{i} to v_{i} is a multiple of p. Namely there is no path from v_{i} to v_{i} with length k that is not a multiple of p. So it follows from Lemma 1.1 that $a_{i i}^{k}=0$ for every $i \in\{1, \ldots, n\}$ and any k that is not a multiple of p.

With the three lemmas above, we present the proof of Theorem 1.4.
Proof of Theorem 1.4. (If) Since $\mathcal{G}(A)$ is strongly connected and aperiodic, by Lemma 1.3 the period of $\mathcal{G}(A)$ and the period of each node v_{i} are equal to 1 . For any node v_{i}, let $l_{v_{i}}^{1}, l_{v_{i}}^{2}\left(l_{v_{i}}^{1} \neq l_{v_{i}}^{2}\right)$ be the lengths of two paths from v_{i} to v_{i}. By Lemma 1.2 there is sufficiently large \bar{k}_{i} such that for any $k \geq \bar{k}_{i}, k$ may be expressed by a nonnegative integer combination of $l_{v_{i}}^{1}$ and $l_{v_{i}}^{2}$, which means that there is a path of length k from v_{i} to v_{i}. Let v_{j} be another node. Since $\mathcal{G}(A)$ is strongly connected, there is a path from v_{i} to v_{j}; let its length be $l_{i j}$. Thus for any $k \geq q_{i j}:=\bar{k}_{i}+l_{i j}$ there is a path of length k from v_{i} to v_{j}. It follows from Lemma 1.1 that $a_{i j}^{k}>0$ for all $k \geq q_{i j}$. Let

$$
q:=\max \left\{q_{i j} \mid i, j=1, \ldots, n\right\}
$$

Then we have $a_{i j}^{k}>0$ for all $i, j=1, \ldots, n$ and $k \geq q$. Therefore by definition, A is a primitive matrix.
(Only if) Suppose on the contrary that $\mathcal{G}(A)$ is not strongly connected, or that it is strongly connected but not aperiodic. For the first case that $\mathcal{G}(A)$ is not strongly connected, there is a pair of nodes v_{i} and v_{j} such that v_{j} is not reachable from v_{i}. So by Lemma 1.1, $a_{i j}^{k}=0$ for all $k>0$. Hence there is no positive integer k such that A^{k} is positive and consequently A is not primitive.

For the second case, $\mathcal{G}(A)$ is strongly connected but not aperiodic, that is, it is p-periodic where $p>1$. It follows from Lemma 1.4 that $a_{i i}^{k^{\prime}}=0$ for any positive integer k^{\prime} that is not a multiple of p. Hence there is no positive integer k such that A^{k} is positive, as otherwise if there were a positive integer k^{*} such that $A^{k^{*}}$ is positive, then A^{k} is positive for any $k \geq k^{*}$, which contradicts $a_{i i}^{k^{\prime}}=0$ for any positive integer k^{\prime} that is not a multiple of p. Therefore, A is not primitive.

Perron-Frobenius Theorem

We are now ready to introduce the Perron-Frobenius Theorem. Denote by $\sigma(A)$ the spectrum of matrix A, i.e. the set of all eigenvalues of A, and $\rho(A)$ the spectral radius of A, i.e. the maximum magnitude of the eigenvalues of A.

Theorem 1.5 (Perron-Frobenius Theorem) Consider a nonnegative matrix A. If A is irreducible, then

- $\rho(A)>0$;
- $\rho(A)$ is a simple eigenvalue of A;
- $\rho(A)$ has a positive eigenvector and a positive left-eigenvector.

Moreover, if A is primitive, then all eigenvalues except for $\rho(A)$ have absolute values smaller than $\rho(A)$:

- $(\forall \lambda \in \sigma(A)) \lambda \neq \rho(A) \Rightarrow|\lambda|<\rho(A)$.
${ }^{a}$ Left-eigenvector w corresponding to an eigenvalue λ of A satisfies $w^{\top} A=w^{\top} \lambda$.

Of particular interest is specialization of the Perron-Frobenius Theorem to a special class of nonnegative matrices: stochastic matrices. A nonnegative matrix A is called row-stochastic (resp. column-stochastic) if every row (resp. every column) of A sums up to one; if A is both row-stochastic and column-stochastic, it is called doubly-stochastic.

Lemma 1.5 If A is a row-stochastic (column-stochastic, doubly-stochastic) matrix, then $\rho(A)=1$.

Proof. We prove the statement for row-stochastic matrices; the proofs for column-stochastic and doubly-stochastic matrices are similar.

Since A is row-stochastic, we have $A \mathbf{1}=\mathbf{1}$. This means that 1 is an eigenvalue of A. Hence $\rho(A) \geq 1$. On the other hand,

$$
\begin{aligned}
\rho(A) & =\max \{|\lambda| \mid \lambda \text { is an eigenvalue of } A\} \\
& =\max \left\{\|\lambda x\|_{\infty} \mid \lambda \text { is an eigenvalue of } A, x \text { is a corresponding eigenvector, }\|x\|_{\infty}=1\right\} \\
& =\max \left\{\|A x\|_{\infty} \mid x \text { is an eigenvector of } A,\|x\|_{\infty}=1\right\} \\
& \leq \max \left\{\|A x\|_{\infty} \mid\|x\|_{\infty}=1\right\} \\
& =\|A\|_{\infty} \\
& =\max _{i} \sum_{j}\left|a_{i j}\right|=1 .
\end{aligned}
$$

The last equality follows from the fact that every row of A sums to one. Therefore $\rho(A)=1$.

Theorem 1.6 (Perron-Frobenius Theorem for Stochastic Matrices) Consider a row-stochastic (column-stochastic, doubly-stochastic) matrix A. If A is irreducible, then $\rho(A)=1$ is a simple eigenvalue of A, with a positive eigenvector and a positive left-eigenvector. Specifically:

- if A is row-stochastic, then eigenvalue 1 has a positive eigenvector $\mathbf{1}(A \mathbf{1}=\mathbf{1})$ and a positive left eigenvector $\pi_{l}\left(\pi_{l}^{\top} A=\pi_{l}^{\top}\right)$;
- if A is column-stochastic, then eigenvalue 1 has a positive eigenvector $\pi_{r}\left(A \pi_{r}=\pi_{r}\right)$ and a positive left eigenvector $\mathbf{1}\left(\mathbf{1}^{\top} A=\mathbf{1}^{\top}\right)$;
- if A is doubly-stochastic, then eigenvalue 1 has a positive eigenvector $\mathbf{1}(A \mathbf{1}=\mathbf{1})$ and a positive left eigenvector $\mathbf{1}\left(\mathbf{1}^{\top} A=\mathbf{1}^{\top}\right)$.

Moreover, if A is primitive, then all eigenvalues except for 1 have absolute values smaller than 1:

- $(\forall \lambda \in \sigma(A)) \lambda \neq 1 \Rightarrow|\lambda|<1$.

Laplacian matrices

For a weighted digraph \mathcal{G}, the weighted (in-) degree d_{i} of a node i is the sum of the weights of all edges entering i, i.e. $d_{i}=\sum_{j=1}^{n} a_{i j}$. Similarly, the weighted out-degree d_{i}^{o} of a node i is the sum of the weights of all edges leaving i, i.e. $d_{i}^{o}=\sum_{j=1}^{n} a_{j i}$. A node i with $d_{i}=d_{i}^{o}$ is called weight-balanced. A digraph \mathcal{G} is weight-balanced if every node is weight-balanced.

The degree matrix of a weighted digraph \mathcal{G} is $D:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. Let A be the adjacent matrix of \mathcal{G}; then $D=\operatorname{diag}(A \mathbf{1})$ (where $\mathbf{1}$ is the vector of all ones).

The Laplacian matrix of a weighted digraph \mathcal{G} is $L:=D-A$. By definition $L \mathbf{1}=0$; namely each row of L sums to zero. Thus 0 is an eigenvalue of L, with a corresponding eigenvector 1 .

We distinguish three types of Laplacian matrices depending on their entries. Each type is useful for a set of cooperative control problems introduced in later chapters.

- If A is nonnegative, then L has nonnegative diagonal entries and nonpositive off-diagonal entries. This L is called standard Laplacian matrix.
- If A is (arbitrary) real, then L is called signed Laplacian matrix.
- If A is complex, then L is called complex Laplacian matrix.

Continuing the example in Fig. 1.10, the degree matrix is $D:=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right)$, where $d_{1}=a_{12}, d_{2}=a_{21}, d=a_{31}+a_{32}+a_{35}, d_{4}=a_{41}+a_{43}+a_{45}$, and $d_{5}=a_{52}+a_{54}$. Thus the Laplacian matrix is

$$
L:=\left[\begin{array}{ccccc}
d_{1} & -a_{12} & 0 & 0 & 0 \\
-a_{21} & d_{2} & 0 & 0 & 0 \\
-a_{31} & -a_{32} & d_{3} & 0 & -a_{35} \\
-a_{41} & 0 & -a_{43} & d_{4} & -a_{45} \\
0 & -a_{52} & 0 & -a_{54} & d_{5}
\end{array}\right] .
$$

Since 0 is by definition an eigenvalue of Laplacian matrix L, its kernel (i.e. null space) ${ }^{2}$ is at least one-dimensional. It turns out that the dimensions of the kernel of Laplacian matrices play a central role in characterizing the types of allowable cooperative behaviors.

Remark 1.1 It is sometimes convenient to define degree matrix and Laplacian matrix with respect to the out-degrees of nodes. Consider a weighted digraph \mathcal{G} and its adjacency matrix A. The out-degree matrix of \mathcal{G} is $D^{o}:=\operatorname{diag}\left(d_{1}^{o}, \ldots, d_{n}^{o}\right)$; hence $D^{o}=\operatorname{diag}\left(\mathbf{1}^{\top} A\right)$. Correspondingly, the out-degree Laplacian matrix of \mathcal{G} is $L^{o}:=D^{o}-A$. By this definition $1^{\top} L^{o}=0$; namely each column of L^{o} sums to zero. Thus 0 is again an eigenvalue of L^{o}, with a corresponding left-eigenvector $\mathbf{1}$.

1.4 Standard Laplacian Matrices

Let \mathcal{G} be a weighted digraph with n nodes, A the associated adjacency matrix, and $D(=\operatorname{diag}(A \mathbf{1}))$ the degree matrix. In this section we consider that A is nonnegative, and $L=D-A$ the standard Laplacian matrix.

The kernel of L is at least one-dimensional, for L has at least one eigenvalue 0 . The following is a graphical condition that characterizes when the kernel of L is exactly one-dimensional (namely the 0 eigenvalue of L is simple). We use $\operatorname{dim}(\cdot)$ to denote the dimension of a vector space.

Theorem 1.7 Let \mathcal{G} be a weighted digraph with n nodes and L the standard Laplacian matrix. Then $\operatorname{dim}(\operatorname{ker} L)=1$ if and only if \mathcal{G} contains a spanning tree.

Note that $\operatorname{dim}(\operatorname{ker} L)=1$ is equivalent to $\operatorname{rank}(L)=n-1$. To prove Theorem 1.7, it is useful to first present the following sufficient condition for $\operatorname{rank}(L)=n-1$.

[^1]
[^0]: ${ }^{1}$ In this book, unless otherwise specified, only simple digraphs are considered.

[^1]: ${ }^{2}$ Kernel of matrix L (viewed as a linear map) is defined as ker $L:=\{v \mid L v=0\}$.

