
Chapter 4

Consensus

In this chapter we introduce the problem of distributed consensus. This problem can be viewed as
a generalized version of averaging in Chapter 2, in that as long as the networked agents reach an
agreement, the agreed value can be arbitrary and need not be the initial average.

Consensus has been studied in a variety of disciplines, including social behaviors, political sci-
ence, biology, computer animation, and robotics. For example, reaching consensus among a group
of people is one of the central investigation in social/political opinion dynamics. In natural/ani-
mated group behaviors such as bird flocking and fish schooling, consensus on heading angles and
velocities among group members is key. As a final example, rendezvous of a team of mobile robots
means that these robots reach consensus on their meeting locations.

Modeling the interacting agents by digraphs, we show that a necessary graphical condition to
achieve consensus is that the digraph contains a spanning tree, namely there exists (at least) one
agent that can reach all the other agents. This is intuitively evident, as for all agents to reach
consensus, at least some agent’s information need to be spread across the whole network. Under
this graphical condition, we present a distributed algorithm that achieves consensus.

4.1 Problem Statement
Consider a network of n (> 1) agents. Each agent i (∈ [1, n]) has a state variable xi(t) ∈ R, where
t ≥ 0 is a nonnegative real number and denotes the continuous time. Each agent i is modeled as a
single integrator:

ẋi(t) :=
dxi(t)

dt
= ui(t) (4.1)

where ui(t) ∈ R is a real-valued control input. For simplicity we often write (4.1) as ẋi = ui

(omitting the time).
For agents modeled by (4.1), we say that an algorithm is distributed if every agent i’s control

input ui(t) is based only on the information received from its neighbors in Ni.

Consensus Problem:

109

110 Chapter 4. Consensus

Consider a network of n agents (4.1) interconnected through a digraph G. Design a distributed
algorithm such that

(∀i ∈ [1, n])(∀xi(0) ∈ R)(∃c ∈ R) lim
t→∞

xi(t) = c.

We say that c is the consensus value. As we shall see, this c depends on the initial states xi(0) as
well as the graph topology.

1

2 3

4

5

Figure 4.1: Illustrating example of consensus problem with five agents

Example 4.1 We provide an example to illustrate the consensus problem. As displayed in
Fig. 4.1, five agents are interconnected through a digraph. The neighbor sets of the agents
are N1 = {2}, N2 = {1}, N3 = {1, 2, 5}, N4 = {1, 3, 5}, and N5 = {2, 4}.
Suppose that the initial states of the agents are x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4,
x5(0) = 5. The consensus problem is to design a distributed algorithm such that each agent’s
state asymptotically converges to the same value. This consensus value by no means needs to
be the initial average (which is 3); hence consensus problem includes averaging as a special
case.

A necessary graphical condition for solving the consensus problem is given below.

Proposition 4.1 Suppose that there exists a distributed algorithm that solves the consensus
problem. Then the digraph contains a spanning tree.

Proof. The proof is by contradiction. Suppose that the digraph G does not contain a spanning
tree. Then it follows from Theorem 1.1 that G has at least two (distinct) closed strong components
(say) G1,G2. In this case, consider an initial condition such that the agents in G1 have initial state
c1 ∈ R, those in G2 have c2 ∈ R, and c1 %= c2. Since G1 and G2 are closed, information cannot be

4.2. Distributed Algorithm 111

communicated from one to the other. Consequently, there exists no distributed algorithm that can
solve the consensus problem. !

Owing to Proposition 4.1, we shall henceforth assume that the digraph contains a spanning tree.

Assumption 4.1 The digraph G modeling the interconnection structure of the networked agents
contains a spanning tree.

4.2 Distributed Algorithm

Example 4.2 Consider again Example 4.1. To achieve consensus, a natural idea is that
each agent ‘pursuits’ the state values received from neighbors. Namely, for i ∈ [1, 5]

ẋi =
∑

j∈Ni

(xj − xi).

Concretely, based on the neighbor sets of the agents (see Fig. 4.1):

ẋ1 = (x2 − x1)

ẋ2 = (x1 − x2)

ẋ3 = (x1 − x3) + (x2 − x3) + (x5 − x3)

ẋ4 = (x1 − x4) + (x3 − x4) + (x5 − x4)

ẋ5 = (x2 − x5) + (x4 − x5).

Write the above in vector form:

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

=

−1 1 0 0 0

1 −1 0 0 0

1 1 −3 0 1

1 0 1 −3 1

0 1 0 1 −2

x1

x2

x3

x4

x5

.

Observe that the matrix above has zero row sums, and is indeed the minus of the standard
Laplacian matrix (i.e. −L) with weights aij = 1 for all existing edges (vj , vi).
With the initial condition in Example 4.1 (i.e. xi(0) = i for i = 1, . . . , 5), Fig. 5.3 displays
that all states converge to the same value, namely consensus. Note that the consensus value
1.5 is different from the initial average 3.

112 Chapter 4. Consensus

0 200 400 600 800 1000

Time t

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ta
te

x
i(
t)
,
i
=

1,
2,
3,
4,
5

1.5

Figure 4.2: Success of achieving consensus

Given the effectiveness of ‘pursuing neighbors’ states’, we describe the following distributed
algorithm that updates the state xi(t) such that the agents achieve consensus.

Consensus Algorithm (CA):
Every agent i has a state variable xi(t) whose initial value is an arbitrary real number. At time

t ≥ 0, every agent i updates its state xi(t) as follows:

ẋi =
∑

j∈Ni

aij(xj − xi). (4.2)

Here the updating weights aij > 0 are the weights of the edges (j, i) (i.e. the entries of the adjacency
matrix). For this update, agent i needs to receive the state xj(t) or relative state xj(t)−xi(t) from
each neighbor j ∈ Ni.

In words, (4.2) updates each state xi(t) towards the direction of pursuing a weighted average
of the relative state differences with the neighbors. Regarding the updating weights aij , there are

4.3. Convergence Result 113

different choices. A simple valid choice is aij = 1 whenever j ∈ Ni (as in Example 4.2). Let
x := [x1 · · ·xn]$ ∈ Rn be the aggregated state of the networked agents. Then the n equations (4.2)
become

ẋ = −Lx. (4.3)

4.3 Convergence Result

The following is the main result of this section.

Theorem 4.1 Suppose that Assumption 4.1 holds. Then CA solves the consensus problem.

To prove Theorem 4.1, we will analyze the locations of eigenvalues of the matrix −L in (4.3).
For this, the following tool is convenient.

Theorem 4.2 (Gershgorin Discs Theorem) Consider an arbitrary real square matrix
M = (mij) ∈ Rn×n, and for every i ∈ [1, n] let

Di :=
{
z ∈ C

∣∣∣ |z −mii| ≤
∑

j &=i

|mij |
}

(4.4)

be the disc centered at the diagonal entry mii with radius equal to the sum of absolute values
of ith row’s off-diagonal entries. Then the spectrum σ(M), i.e. the set of n eigenvalues of
M , satisfies

σ(M) ⊆
⋃

i

Di.

Theorem 4.2 provides an easy estimation of the locations of eigenvalues; namely every eigenvalue
lies in the union of the Gershgorin discs in (4.4). This estimation is particularly useful for the
spectrum of standard Laplacian matrices owing to the way they are defined (i.e. degree matrix
minus adjacency matrix).

In addition to the Gershgorin Discs Theorem, we also need the following facts on solution and
stability of linear ordinary differential equations. Let A ∈ Rn×n. Then the matrix exponential eA

is as follows:

eA := I +A+
1

2!
A2 +

1

3!
A3 + · · · =

∞∑

k=0

1

k!
Ak.

	Preface
	I Mathematical Preliminaries
	Graphs and Laplacian Matrices
	Directed graphs
	Connectivity of digraphs
	Matrices of digraphs
	Standard Laplacian Matrices
	Complex Laplacian Matrices
	Signed Laplacian Matrices
	Notes and References

	II Strongly Connected Digraphs: Averaging and Optimization
	Averaging
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Parameter Bound and Convergence Speed
	Simulation Examples
	Notes and References

	Optimization
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Distributed Resource Allocation
	Simulation Examples
	Notes and References
	Appendix: Convex Optimization

	III Spanning Tree Digraphs: Consensus and Synchronization
	Consensus
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Synchronization
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References
	Appendix: Linear Systems and Feedback Control

	IV Spanning Two-Tree Digraphs: Similar Formation and Localization
	Similar Formation in Two-Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Localization in Two-Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	V Spanning Multi-Tree Digraphs: Affine Formation and Localization
	Affine Formation in Arbitrary Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Localization in Arbitrary Dimensional Space
	Problem Formulation
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Index

