
Chapter 5

Synchronization

The problem of consensus in the preceding chapter requires all the agents to converge to the same
value, which is static in steady state. A generalized notion is the requirement that all the agents
converge to the same but dynamic values. This is the problem of synchronization.

A familiar example is a network of harmonic oscillators that synchronize their phases and angular
velocities. Another example is a group of autonomous vehicles that flock with the same velocities.
A physiology example is a network of neurons that fire with the same frequencies. Indeed the
synchronization problem typically involves higher-order dynamic models of the agents.

In this chapter we study the synchronization problem of (homogeneous) linear time-invariant
dynamic agents. We show that a necessary graphical condition to achieve synchronization is that
the digraph contains a spanning tree (the same as that to achieve consensus). Under this condition,
we present a distributed algorithm that achieves synchronization.

5.1 Problem Statement
Consider a network of n (> 1) agents. Each agent i (∈ [1, n]) is modeled by a general linear
time-invariant (LTI) dynamic system:

ẋi = Axi +Bui (5.1)
yi = Cxi +Dui

where xi ∈ Rp is the state vector, ui ∈ Rq the (control) input vector, and yi ∈ Rr the (observation)
output vector. A compact graphical notation of LTI is displayed in Fig. 5.1.

The matrices A,B,C,D in (5.1) are of the following sizes:

A ∈ Rp×p, B ∈ Rp×q, C ∈ Rr×p, D ∈ Rr×q.

These matrices are the same for all agents; thus the multi-agent system is called homogeneous.
Several assumptions are made concerning these matrices.

127



128 Chapter 5. Synchronization

A B

C D

xi

ui yi
xi

ui yi
or

Figure 5.1: Linear time-invariant system

Assumption 5.1 The matrices A,B,C satisfy the following conditions.

• (A,B) is stabilizable, i.e. there exists a matrix F ∈ Rq×p such that all the eigenvalues of
A+BF have negative real parts.

• (C,A) is detectable, i.e. there exists a matrix G ∈ Rp×r such that all the eigenvalues of
A+GC have negative real parts.

• All the eigenvalues of matrix A have nonpositive real parts.

The first two assumptions are standard for the feasibility of feedback control design (see Ap-
pendix). The third condition means that the uncontrolled agent dynamics does not contain expo-
nentially unstable modes. The reason why this last condition is needed is because we need to ensure
that the rate of convergence to synchronization (determined by graph Laplacian) can dominate the
possibly divergence of uncontrolled agent dynamics.

Synchronization Problem:
Consider a network of agents modeled by (5.1) interconnected through a digraph G. Suppose

that Assumption 5.1 holds. Design a distributed algorithm such that

(∀x1(0), . . . , xn(0) ∈ Rp)(∀i, j ∈ [1, n]) lim
t→∞

(xi(t)− xj(t)) = 0.

Example 5.1 We provide an example to illustrate the synchronization problem. Consider
a network of five harmonic oscillators:

ẋi1 = xi2

ẋi2 = −xi1 + ui

yi = xi1, i ∈ [1, 5].
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Figure 5.2: Illustrating example of synchronization problem with five agents

This corresponds to (5.1) with

A =

[
0 1

−1 0

]
, B =

[
0

1

]
, C =

[
1 0

]
, D = 0.

Here xi1, xi2 are respectively the phase angle and angular velocity of oscillator i. Since

rank([B AB]) = 2

rank(

[
C

CA

]
) = 2

the pair (A,B) is controllable and thus stabilizable, and the pair (C,A) is observable and
thus detectable.a Moreover, the eigenvalues of A are ±j whose real parts are zero. Hence
Assumption 5.1 holds.
The interconnection of the five oscillators is modeled by the digraph in Fig. 5.2. The neighbor
sets of the agents are N1 = {2}, N2 = {1}, N3 = {1, 2, 5}, N4 = {1, 3, 5}, and N5 = {2, 4}.
Given arbitrary initial conditions x1(0), . . . , x5(0) ∈ R2, the synchronization problem is to
design a distributed algorithm such that each oscillator’s phase angle (resp. angular velocity)
asymptotically converges to the same dynamic phases (resp. dynamic velocities).

aA review of these basic concepts of LTI systems is provided in Appendix.

A necessary graphical condition for solving the synchronization problem is given below.
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Proposition 5.1 Suppose that there exists a distributed algorithm that solves the synchro-
nization problem. Then the digraph contains a spanning tree.

Proof. The proof is by contradiction. Suppose that the digraph G does not contain a spanning
tree. Then it follows from Theorem 1.1 that G has at least two (distinct) closed strong components
(say) G1,G2. In this case, consider an initial condition such that the agents in G1 have initial state
c1 ∈ Rp, those in G2 have c2 ∈ Rp, and c1 $= c2. Since G1 and G2 are closed, information cannot be
communicated from one to the other. Consequently, there exists no distributed algorithm that can
solve the synchronization problem. !

Owing to Proposition 5.1, we shall henceforth assume that the digraph contains a spanning tree.

Assumption 5.2 The digraph G modeling the interconnection structure of the networked agents
contains a spanning tree.

5.2 Distributed Algorithm

Example 5.2 Consider again Example 5.1. To achieve synchronization, a natural idea is
to use the consensus algorithm in Chapter 4 on the output yi (i ∈ [1, 5]):

ui =
∑

j∈Ni

aij(yj(k)− yi(k)).

For simplicity consider unit weight for all edges (i.e. aij = 1). Then substitute the input ui

into (5.1) and write in vector form:




ẋ1

ẋ2

ẋ3

ẋ4

ẋ5




=





A−BC BC 0 0 0

BC A−BC 0 0 0

BC BC A− 3BC 0 BC

BC 0 BC A− 3BC BC

0 BC 0 BC A− 2BC









x1

x2

x3

x4

x5




.

More compactly

ẋ = (I ⊗A− L⊗BC)x

where x = [x%
1 · · · x%

5 ]
% is the aggregated state, L is the standard Laplacian matrix, and ⊗

denotes Kronecker product. With a random initial condition x(0) ∈ R10, a simulation result
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of the above system is displayed in Fig. 5.3. Evidently, synchronization did not occur. Thus
the simple idea of achieving consensus on the output fails to work for synchronization.
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Figure 5.3: Failure to achieve synchronization using consensus algorithm

In the following, we describe a distributed algorithm that employs an observer that estimates
the state xi based on the output yi, as well as a generator that applies the consensus algorithm
based on stable dynamics.

Synchronization Algorithm (SA):
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Every agent i has a dynamic model in (5.1) with an arbitrary initial state xi(0) ∈ Rp. Let F,G

be matrices such that all the eigenvalues of A+BF and A+GC have negative real parts (such F,G

exist under Assumption 5.1). At each time t ≥ 0, every agent i performs the following updates:

˙̂xi = Ax̂i +Bui +G(Cx̂i +Dui − yi) (5.2)

ξ̇i = (A+BF )ξ +
∑

j∈Ni

aij(ξj − ξi)−
∑

j∈Ni

aij(x̂j − x̂i) (5.3)

ui = F ξi. (5.4)

Here the updating weights aij > 0 are the weights of the edges (j, i) (i.e. the entries of the adjacency
matrix); the initial conditions x̂i(0) ∈ Rp and ξi(0) ∈ Rp are arbitrary.

xi
ui yi

x̂i, ξi

network

x̂j, ξj

(j ∈ Ni)

Figure 5.4: Dynamic distributed controller

Remark 5.1 In words, (5.2) is a local observer that estimates the state xi based on output yi

and input ui. The observer has stable dynamics (since A + GC is stable), so that the estimate
x̂i (exponentially) converges to the true state xi. Next, (5.3) is a local generator also with stable
dynamics (since A + BF is stable). This generator executes two consensus algorithms on the
generators’ states and on the observers’ states, for which agent i needs to receive information
ξj(t), x̂j(t) or relative information ξj(t) − ξi(t), x̂j(t) − x̂i(t) from each neighbor j ∈ Ni. The
purpose of this generator is to achieve consensus on the generator states on one hand, and on the
other hand drive the difference in generator states ξj(t)− ξi(t) to the difference in estimated states
x̂j(t) − x̂i(t). Since the estimated states converge to the true states, the difference in any pair of
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Figure 5.5: Synchronization of true states

true states will diminish, and desired synchronization occurs. Finally, (5.4) computes the control
input ui. Overall, this is a dynamic distributed controller for agent i, whose inputs are yi (from
itself) and x̂j , ξj (from its neighbors) while the output is ui. A graphical illustration of this dynamic
distributed controller is provided in Fig. 5.4.

Remark 5.2 If C = I, i.e. yi = xi, then the observer in (5.2) is not needed. Namely in this
special case, SA becomes

ξ̇i = (A+BF )ξ +
∑

j∈Ni

aij(ξj − ξi)−
∑

j∈Ni

aij(xj − xi)

ui = F ξi.
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Let

x :=





x1

...
xn



 ∈ Rnp, x̂ :=





x̂1

...
x̂n



 ∈ Rnp, ξ :=





ξ1
...
ξn



 ∈ Rnp

be the aggregated true state, estimated state, and generator state of the networked agents. Then
the equations (5.1), (5.2), and (5.3) become

ẋ = (In ⊗A)x+ (In ⊗BF )ξ

˙̂x = (In ⊗ (A+GC))x̂+ (In ⊗BF )ξ − (In ⊗GC)x (5.5)
ξ̇ = (In ⊗ (A+BF )− L⊗ Ip)ξ + (L⊗ Ip)x̂.

Note that the Laplacian matrix L appears only in the last equation of the generator dynamics.

Example 5.3 Let us revisit Example 5.2. First, we assign desired eigenvalues for A+BF

and A + GC. Say for both matrices, let the desired eigenvalues be −1,−2. Then by pole
assignment (see Appendix), we obtain

F =
[
−1 −3

]
, G =

[
−3

−1

]
.

Substituting A,B,C, F,G, L into (5.5) and performing simulation with a set of random initial
conditions x(0), x̂(0), ξ(0), we obtain the synchronized states of the oscillators as displayed
in Fig. 5.5. Observe that both phase angles and angular velocities of the five oscillators
converge to the same dynamic values. The estimated states also synchronize (Fig. 5.6), as
they converge to the true states that are synchronized. Finally, the generator states converge
to 0 (Fig. 5.7), for these generators are so designed that the difference in pairwise generator
states converge to the difference in pairwise estimated states (the latter converges to 0).

5.3 Convergence Result

The following is the main result of this section.

Theorem 5.1 Suppose that Assumptions 5.1 and 5.2 hold. Then SA solves the synchro-
nization problem.
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Figure 5.6: Synchronization of estimated states

To proceed, let us first consider the third equation in (5.5):

ξ̇ = (In ⊗ (A+BF )− L⊗ Ip)ξ + (L⊗ Ip)x̂

= (In ⊗ (A+BF ))ξ + (L⊗ Ip)(x̂− ξ).

Since the eigenvalues of A+BF have negative real parts, the convergence of ξ(t) depends on that
of (x̂(t)− ξ(t)). Let

ε := x̂− ξ.

Then ε̇ = ˙̂x − ξ̇. Substituting ˙̂x, ξ̇ by the second and third equations in (5.5) and arranging the
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Figure 5.7: Convergence of generator states

terms yield

ε̇ = (In ⊗A− L⊗ Ip)ε− (In ⊗GC)(x− x̂).

Ignoring for now the second term (i.e. the state estimation error which exponentially vanishes):

ε̇ = (In ⊗A− L⊗ Ip)ε; (5.6)

thus corresponding to each εi (i ∈ [1, n]) is a consensus-like algorithm:

ε̇i = Aεi +
∑

j∈Ni

aij(εj − εi). (5.7)

The following lemma states that for every i ∈ [1, n], εi(t) converges to ε0(t) which is a solution of
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