
Chapter 7

Localization in Two-Dimensional
Space

In this chapter, we introduce a distributed localization problem of multi-agent systems in two-
dimensional (2D) space. This problem has found numerous important applications in (wireless)
sensor networks, including environmental information collection, wildlife monitoring, target track-
ing, and intrusion detection. In these applications, it is essential that the individual sensor nodes
know their positions in a common (global) coordinate frame. For example, it would be ideal to
have a GPS onboard each sensor. In practical sensor networks, however, there are typically a large
number of sensor nodes each with limited hardware/software capacities. Thus it is costly and im-
plementationally difficult to install a device like GPS on every sensor, not to mention that there
are situations where GPS is at best inaccurate and at worst denied.

Therefore it is desirable to have a distributed scheme to determine the global positions of
individual sensor nodes based on low-cost, easily implementable onboard devices. A typical such
scheme is to compose a sensor network with a minority of anchor nodes that do know their positions
in the global coordinate frame, and the rest majority of free nodes that need to determine their
global positions based on their local frames and locally sensed information (e.g. distances and
bearing angles with respect to neighboring nodes). Those anchor nodes play the role of leaders or
landmarks, while the free nodes are followers. We adopt this distributed scheme, and focus in this
chapter on solving a localization problem in 2D, while 3D localization will be covered in Chapter 9.

To solve the 2D distributed localization problem, we present an approach based on complex
Laplacian matrices. Modeling the interacting sensor nodes by digraphs, we show that a necessary
graphical condition to achieve 2D localization is that the digraph contains a spanning 2-tree whose
two roots are anchor nodes. This condition is similar to that for achieving 2D similar formations
in the preceding chapter. However, the two anchor nodes (i.e. two roots) who already know their
global positions should not, and will not, change their positions; hence they do not have, nor do they
need, any neighbors (i.e. incoming edges). In this way, the exact global positions of the free nodes
may be determined (without the flexibility of translation, rotation, and scaling as in the similar
formation problem). Under the above graphical condition, we present a distributed algorithm for
the free nodes to achieve localization in 2D.

185



186 Chapter 7. Localization in Two-Dimensional Space

7.1 Problem Statement
Consider a network of n (> 1) agents that are stationary in a plane (i.e. their two-dimensional
positions are fixed), and a global coordinate frame Σ which is unknown to the agents. The agents
labeled 1, 2 (renumbering if necessary) are the anchor agents, whose positions ξ1, ξ2 ∈ C in Σ are
known. Here Re(ξi) and Im(ξi) are the positions of agents i ∈ [1, 2] on the real and imaginary axes,
respectively. The rest agents labeled 3, . . . , n are the free agents, whose positions ξ3, . . . , ξn ∈ C in
Σ are unknown and need to be determined by these individual free agents. Let

ξa :=

[
ξ1

ξ2

]
∈ C2, ξf :=





ξ3
...
ξn



 ∈ Cn−2

be the aggregated position vectors of the anchor and free agents, respectively. Write

ξ :=

[
ξa

ξf

]
∈ Cn

and call ξ the configuration of the agents.
To determine its own position, each free agent i (∈ [3, n]) is equipped with a state variable

xi(k) ∈ C, which denotes the estimate of agent i’s position ξi under the global frame Σ. The time
k ≥ 0 is a nonnegative integer and denotes the discrete time. Let

xf (k) :=





x3(k)
...

xn(k)



 ∈ Cn−2

be the aggregated state vector of the free agents at time k. It is desired that

xf (k) → ξf as k → ∞.

For convenience, also let xa(k) := [x1(k) x2(k)]" ∈ C2 be the aggregated state vector of the two
anchor agents, such that xa(k) = ξa for all k ≥ 0 (i.e. the anchor agents know their positions
in the global frame Σ from the initial time k = 0 and never update their estimates). Write
x(k) := [xa(k)" xf (k)"]" ∈ Cn. Hence the purpose of localization is to achieve

lim
k→∞

x(k) = ξ.

We model the interconnection structure of the networked agents by a digraph G = (V, E): Each



7.1. Problem Statement 187

node in V = {1, ..., n} stands for an agent, and each directed edge (j, i) in E ⊆ V × V denotes
that agent i can obtain the relative state information from agent j. The neighbor set of agent i is
Ni := {j ∈ V | (j, i) ∈ E}. For the two anchor nodes (numbered 1 and 2 without loss of generality),
since they do not update their states, even if they had neighbors, the corresponding incoming edges
would be associated with weight 0. This is equivalent to considering that the anchor nodes do not
have neighbors. For this reason, henceforth in this chapter we consider that Ni = ∅ (i = 1, 2).

Moreover, consider that digraph G is weighted: each edge (j, i) ∈ V is associated with a complex
weight aij ∈ C. Hence the adjacency matrix A = (aij), degree matrix D = diag(A1), and Laplacian
matrix L = D−A are all complex. Since Ni = ∅ for the anchor nodes i = 1, 2, the Laplacian matrix
L has the following structure:

L =

[
Laa Laf

Lfa Lff

]
=

[
0 0

Lfa Lff

]
. (7.1)

Here Lfa ∈ C(n−2)×2 and Lff ∈ C(n−2)×(n−2).

To achieve localization, consider the distributed control

ui(k) =
∑

j∈Ni

wij(xj(k)− xi(k)), i ∈ [1, n]. (7.2)

Here the control gain wij satisfies

(i)
∑

j∈Ni

wij(ξj − ξi) = 0 (7.3)

(ii) wij = εiaij , εi ∈ C \ {0}. (7.4)

This control ui in (7.2) is in the same form as that for similar formation control: the gains wij are
not simply the edge weights aij , but are complex (nonzero) multiples of aij (7.4) and satisfy linear
constraints with respect to the configuration ξ (7.3).

Substituting (7.4) into (7.3) and removing the common multiple εi yield
∑

j∈Ni

aij(ξj − ξi) = 0. (7.5)

This in vector form is Lξ = 0. In view of (7.1) we have
[

0 0

Lfa Lff

][
ξa

ξf

]
= 0.



188 Chapter 7. Localization in Two-Dimensional Space

Hence the following equation ensues:

Lffξf = −Lfaξa (7.6)

which relates the configuration of the free agents to that of the anchor agents through appropriate
multiplications of submatrices of the complex Laplacian matrix.

Two-Dimensional Localization Problem:

Consider a network of agents (stationary in a 2D space) interconnected through a digraph and
a configuration ξ := [ξ"a ξ"f ]" ∈ Cn, which represents the fixed positions of the agents under the
global coordinate frame Σ. Here ξa ∈ C2 is known but ξf ∈ Cn−2 is unknown. Design a distributed
algorithm using the control ui in (7.2) such that

(i) rank(L) = n− 2

(ii) (∀xf (0) ∈ Cn−2) lim
k→∞

xf (k) = ξf .

The first requirement (i) implies rank(Lff ) = n − 2; namely Lff is invertible. Then it follows
from (7.6) that ξf = −L−1

ff Lfaξa. Hence the second requirement (ii) becomes:

(∀xf (0) ∈ Cn−2) lim
k→∞

xf (k) = −L−1
ff Lfaξa.

1

2 3

4

5 6

Figure 7.1: Illustrating example of six agents



7.1. Problem Statement 189

Example 7.1 We provide an example to illustrate the localization problem in 2D. As dis-
played in Fig. 7.1, six agents are interconnected through a digraph; agents 1 and 2 are anchor
agents while the rest four are free agents. The neighbor sets of the agents are N1 = N2 = ∅,
N3 = {2, 5}, N4 = {1, 3}, N5 = {4, 6}, and N6 = {1, 2}.
Let the configuration of the agents be ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]", i.e. a regular hexagon.

The position vector of the anchor agents ξa = [1 e
π
3 j]" is known, and that of the free nodes

ξf = [e
2π
3 j eπj e

4π
3 j e

5π
3 j]" is unknown and needs to be determined.

The localization problem is to design a distributed algorithm using the control ui in (7.2)
such that the rank of the complex Laplacian matrix L is n− 2, and moreover the free agents’
state vector asymptotically converges to ξf .

A necessary graphical condition for solving the two-dimensional localization problem is given
below.

Proposition 7.1 Suppose that there exists a distributed control ui in (7.2) that solves the
two-dimensional localization problem. Then the digraph contains a spanning 2-tree whose
two roots are the two anchor agents.

Proof. Suppose that there exists a distributed control in (7.2) that solves the two-dimensional
localization problem, but that the digraph G = (V, E) does not contain a spanning 2-tree whose
two roots are the two anchor agents. We will derive a contradiction that rank(L) < n− 2, thereby
proving that after all G must contain a spanning 2-tree whose two roots are the two anchor agents.

There are two cases that need to be considered separately. First, the digraph contains a spanning
2-tree but at least one of the two roots is a free agent. In this case, the subdigraph of free agents
contains either a spanning tree or a spanning 2-tree. Hence rank(Lff ) < n − 2. Since the anchor
agents do not have neighbors, rank(L) < n− 2.

The second case is that the digraph does not contain a spanning 2-tree. Then it follows similarly
to the proof of Proposition 6.1 that rank(L) < n− 2.

Therefore in both cases above, a contradiction is derived to the solvability of the two-dimensional
localization problem. The proof is now complete. !

Owing to Proposition 7.1, we shall henceforth assume the following graphical condition.

Assumption 7.1 The digraph G modeling the interconnection structure of the networked agents
contains a spanning 2-tree whose two roots are the two anchor agents.

Even if Assumption 7.1 holds, not every configuration ξ may be determined by a distributed
control ui in (7.2). Similar to Example 6.2, if ξ is not generic, it is possible that rank(L) < n − 2

for all complex Laplacian matrices L satisfying Lξ = 0. This means that the two-dimensional



190 Chapter 7. Localization in Two-Dimensional Space

localization problem is not solvable. For this reason, and also the fact that the set of all non-generic
configurations has Lebesgue measure zero after all, we assume that the configuration ξ is generic.

Assumption 7.2 The configuration ξ := [ξ"a ξ"f ]" ∈ Cn is generic.

7.2 Distributed Algorithm

ξ1

ξ2ξ3

ξ4

ξ5 ξ6

a32ρ32e
jθ32

a35ρ52e
jθ52

Im

Re
Σ

ρ32

ρ35

Im
Re

α3

θ32θ35

Σ3

Figure 7.2: Illustration of design of complex weights

Example 7.2 Consider again Example 7.1, where the configuration is the regular hexagon
ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]". This ξ is generic.

The anchor agents’ configuration ξa = [1 e
π
3 j]" is known, and the free agents’ configuration

ξf = [e
2π
3 j eπj e

4π
3 j e

5π
3 j]" is to be determined. To this end, we consider using the simplest

form of distributed control (7.2) by setting all εi = 1:

xi(k + 1) = xi(k) +
∑

j∈Ni

aij(xj(k)− xi(k)), i ∈ [1, 6] (7.7)

where aij ∈ C are complex weights of edges (j, i) to be designed to satisfy (7.5):
∑

j∈Ni

aij(ξj − ξi) = 0, i ∈ [1, 6].

In the following we illustrate how the complex weights may be designed locally to satisfy the



7.2. Distributed Algorithm 191

above linear constraints. Each free agent i ∈ [3, 6] has a local coordinate frame Σi, whose
origin is the (stationary) position of agent i. The orientation of Σi is fixed, but the offset
angle θi with respect to the global coordinate frame Σ is unknown. For each neighbor (free
or anchor) j ∈ Ni, we assume that agent i can sense the relative position by measuring
the relative distance and relative bearing angle in Σi. That is, if agent j is a neighbor of
agent i, then the distance ρij between j and i, as well as the bearing angle θij of j in Σi are
measured by i. Thus the relative position in Σi is

yij := ρije
jθij . (7.8)

Note that yijejθi = ξj − ξi; since θi is unknown, even though the relative position yij in Σi

is known, ξj − ξi in Σ is unknown. Substituting ξj − ξi = yijejθi into (7.5) and removing the
common factor ejθi , we derive

∑

j∈Ni

aijyij = 0. (7.9)

Hence the weights aij may be designed based on the relative position yij in (7.8) under the
local coordinate frame Σi.
For example, Fig. 7.2 provides an illustrative example. For agent 3, it has two neighbors 2, 5.
Thus we must find weights a32, a52 such that a32y32 + a35y35 = 0. In the local coordinate
frame Σ3, y32 = ρ32ejθ32 and y35 = ρ35ejθ35 . Thus we want to find a32, a35 such that

a32ρ32e
jθ32 + a35ρ35e

jθ35 = 0.

There are infinitely many choices; a simple one is a32 = e−jθ32

ρ32
and a35 = − e−jθ35

ρ35
. Con-

cretely, ρ32 = 1, ρ35 =
√
3, and let θ32 = 7π

4 , θ35 = 5π
4 ; then a32 =

√
2
2 +

√
2
2 j, a35 =

√
6
6 −

√
6
6 j.

Similarly we design other complex weights to satisfy (7.9), and write (7.7) in vector form:
x(k + 1) = (I − L)x(k) where

L =





0 0 0 0 0 0

0 0 0 0 0 0

0 −
√
2
2 −

√
2
2 j 3

√
2+

√
6

6 + 3
√
2−

√
6

6 j 0 −
√
6
6 +

√
6
6 j 0

−
√
3
4 − 1

4 j 0
√
3
2 − 1

2 j −
√
3
4 + 3

4 j 0 0

0 0 0 − 1
2 +

√
3
2 j −

√
3j 1

2 +
√
3
2 j

−
√
3
2 + 1

2 j
√
3
6 − 1

2 j 0 0 0
√
3
3





.

It is verified that the complex Laplacian matrix L has zero row sums and satisfies Lξ = 0.



192 Chapter 7. Localization in Two-Dimensional Space

Moreover, partition the matrix L according to anchor agents and free agents:

L =

[
Laa Laf

Lfa Lff

]
.

Thus Laa = Laf = 0; Lfa ∈ C4×2 and Lff ∈ C4×4. It is checked that rank(Lff ) = 4,
and thus Lff is invertible. Therefore the first condition of the two-dimensional localization
problem is satisfied.
It is left to verify the second condition that the state vector of the free agents xf (k) converges
to −L−1

ff Lfaξa (when xa(k) = ξa for all k ≥ 0). Fix ξa ∈ C2. First note that

x̄ =

[
x̄a

x̄f

]
=

[
ξa

−L−1
ff Lfaξa

]

is the unique fixed point of (7.7). To see this, substituting x̄ into (7.7) yields x̄, which means
that x̄ is a fixed point of (7.7). Moreover, let

x̄′ =

[
ξa

x̄′
f

]

be another fixed point of (7.7), namely
[
ξa

x̄′
f

]
=

([
I 0

0 I

]
−
[

0 0

Lfa Lff

])[
ξa

x̄′
f

]
=

[
I 0

−Lfa I − Lff

][
ξa

x̄′
f

]
.

From the above we derive

x̄′
f = −L−1

ff Lfaξa = x̄f .

This shows that x̄ is the unique fixed point of (7.7), which in turn implies that starting from
an arbitrary initial condition x(0) = [ξ"a x"

f (0)]
" ∈ Cn, xf (k) converges to −L−1

ff Lfaξa if
and only if all the eigenvalues of I − Lff lie inside the unit circle.
Unfortunately, the eigenvalues of matrix I − Lff are

−0.5774, 0.3041− 0.6475j,−0.9368− 0.3062j,−0.0497 + 1.637j.

The last eigenvalue lies outside the unit circle. Hence (7.7) is unstable and xf (k) diverges.
To stabilize xf (k) to the desired fixed point −L−1

ff Lfaξa (to satisfy the second requirement



7.2. Distributed Algorithm 193

of the two-dimensional localization problem), the unstable eigenvalues of I − Lff must be
moved inside the unit circle. This shows that simply setting all εi = 1 in (7.2) does not work
in general. In fact, εi need to be properly chosen in order to stabilize I − Lff .

In the following we describe a distributed algorithm using (7.2) in vector form, and will analyze
its stability in relation to the values of εi in the next section.

Two-Dimensional Localization Algorithm (TDLA):
Each anchor agent i ∈ [1, 2] has a state variable xi(k) ∈ C whose initial value is set to be

xi(0) = ξi (which is known). Each free agent i ∈ [3, . . . , n] also has a state variable xi(k) ∈ C whose
initial value is an arbitrary complex number. Offline, each free agent i computes weights aij ∈ C
based on the measured relative positions yij = ρijeθij in (7.8) by solving

∑

j∈Ni

aijyij = 0.

Then online, at each time k ≥ 0, while each anchor agent stays put, i.e.

xi(k + 1) = xi(k), i ∈ [1, 2]

each free agent i updates its xi(k) using the following local update protocol:

xi(k + 1) = xi(k) + εi
∑

j∈Ni

aij(xj(k)− xi(k)), i ∈ [3, n] (7.10)

where εi ∈ C \ {0} is a (nonzero) complex control gain.
Let x := [x1 · · ·xn]" ∈ Cn be the aggregated state vector of the networked agents, and

E = diag(ε1, . . . , εn) ∈ Cc×n

the (diagonal and invertible) control gain matrix. Then the n equations (7.10) become

x(k + 1) = x(k)− ELx(k) = (I − EL)x(k). (7.11)

Remark 7.1 The above TDLA requires that the following information be available for each free
agent i ∈ [3, n]:

• yij for all j ∈ Ni (offline computation of weights)

• xj − xi for all j ∈ Ni (online state update).



194 Chapter 7. Localization in Two-Dimensional Space

7.3 Convergence Result

The following is the main result of this section.

Theorem 7.1 Suppose that Assumptions 7.1 and 7.2 hold. There exists a (diagonal and in-
vertible) control gain matrix E = diag(ε1, . . . , εn) such that TDLA solves the two-dimensional
localization problem.

To prove Theorem 7.1, we analyze the eigenvalues of the matrix I −EL in (7.11). For this, the
following fact is useful (which is the discrete counterpart of Lemma 6.1).

Lemma 7.1 Consider an arbitrary square complex matrix M ∈ Cn×n. If all the prin-
cipal minors of M are nonzero, then there exists an invertible diagonal matrix E =

diag(ε1, . . . , εn) ∈ Cn×n such that all the eigenvalues of I − EM lie inside the unit cir-
cle.

Proof: The proof is based on induction on n. For the base case n = 1, M = m11 is a nonzero
scalar (as the principal minor of M is nonzero). Write m11 = ρ1ejθ1 , and let ε1 := γ1ejφ1 where
γ1 ∈ (0, 1

ρ1
) and φ1 = −θ1. Then EM = ε1m11 = ρ1γ1 ∈ (0, 1). Hence 1− EM ∈ (0, 1) which lies

inside the unit circle.
For the induction step, suppose that the conclusion holds for M ∈ C(n−1)×(n−1). Now consider

M ∈ Cn×n, with all of its principal minors nonzero. Let M1 be the submatrix of M with the last row
and last column removed. Then all the principal minors of M1 are nonzero, and by the hypothesis
there exists an invertible diagonal matrix E1 = diag(ε1, . . . , εn−1) such that all the eigenvalues
1− λ1, . . . , 1− λn−1 of I − E1M1 lie inside the unit circle. Now write

M =

[
M1 M2

M3 mnn

]

where mnn is a nonzero scalar (since all the principal minors of M are nonzero). Also let

E =

[
E1 0

0 εn

]

for some complex εn. Thus

I − EM =

[
I 0

0 1

]
−
[
E1 0

0 εn

][
M1 M2

M3 mnn

]
=

[
I − E1M1 −E1M2

−εnM3 1− εnmnn

]
.


	Preface
	I Mathematical Preliminaries
	Graphs and Laplacian Matrices
	Directed graphs
	Connectivity of digraphs
	Matrices of digraphs
	Standard Laplacian Matrices
	Complex Laplacian Matrices
	Signed Laplacian Matrices
	Notes and References


	II Strongly Connected Digraphs: Averaging and Optimization
	Averaging
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Parameter Bound and Convergence Speed
	Simulation Examples
	Notes and References

	Optimization
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Distributed Resource Allocation
	Simulation Examples
	Notes and References
	Appendix: Convex Optimization


	III Spanning Tree Digraphs: Consensus and Synchronization
	Consensus
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Synchronization
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References
	Appendix: Linear Systems and Feedback Control


	IV Spanning Two-Tree Digraphs: Similar Formation and Localization
	Similar Formation in Two-Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Localization in Two-Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References


	V Spanning Multi-Tree Digraphs: Affine Formation and Localization
	Affine Formation in Arbitrary Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Localization in Arbitrary Dimensional Space
	Problem Formulation
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Index


