
Chapter 8

Affine Formation in Arbitrary
Dimensional Space

In this chapter, we study a formation control problem of multi-agent systems in arbitrary dimen-
sional space. In Chapter 6 we introduced a similar formation control problem in 2D, which is
applicable to teams of autonomous robots and mobile sensors moving on a plane. However, appli-
cations such as formation flying of unmanned aerial vehicles and ocean data retrieval of autonomous
underwater vehicles, 3D formation control methods are needed.

This chapter introduces a new formation control problem called affine formation control, which
includes Chapter 6’s 2D similar formation control as a special case. Specifically, in a d (≥ 2)
dimensional space, a network of agents is required to form a geometric shape, which can be ob-
tained from a prescribed desired shape via translation, rotation, and dimension-wise scaling. The
dimension-wise scaling means that scaling factors along each dimension are possibly different. Pre-
cisely when all dimensions have identical scaling factors, affine formation control coincides with
similar formation control.

The solution for similar formation control in Chapter 6 was based on complex Laplacian, which
is however restricted to 2D only. To solve affine formation control in arbitrary dimensions, we
introduce the third type of graph Laplacian: signed Laplacian. Modeling the interacting agents by
digraphs, we show that a necessary graphical condition to achieve affine formation in a d (≥ 2)
dimensional space is that the digraph contains a spanning (d + 1)-tree, namely there exists (at
least) d + 1 agents that can reach all the other agents through independent paths. These d + 1

root agents play the role of leaders, which determine the translation, rotation, and dimension-wise
scaling offsets from the prescribed shape. Under this graphical condition, we present a distributed
algorithm for the agents to achieve affine formations in arbitrary dimensions.

8.1 Problem Statement
Consider a network of n (> 1) agents in a d (≥ 2) dimensional space. Each agent i (∈ [1, n]) has a
state variable xi(t) ∈ Rd, which is a d-dimensional real vector and denotes the position of agent i
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208 Chapter 8. Affine Formation in Arbitrary Dimensional Space

in the d-dimensional space at time t. The time t ≥ 0 is a (nonnegative) real number and denotes
the continuous time. The motion of each agent is governed by the following ordinary differential
equation:

ẋi = ui, i ∈ [1, n] (8.1)

where ui(t) ∈ Rd is the d-dimensional control input.

Let digraph G = (V, E) model the interconnection structure of the n agents. Each node in
V = {1, ..., n} stands for an agent, and each directed edge (j, i) in E ⊆ V × V denotes that agent
i can measure the relative position of agent j (namely xj − xi in agent i’s coordinate frame). The
neighbor set of agent i is Ni := {j ∈ V | (j, i) ∈ E}.

Moreover, consider that digraph G is weighted: each edge (j, i) ∈ V is associated with a real-
valued weight aij ∈ R. Hence the adjacency matrix A = (aij), degree matrix D = diag(A1n), and
Laplacian matrix L = D − A are all real. Note that the adjacency matrix A is not a nonnegative
matrix in general; thus L is a signed Laplacian matrix.

Define a target configuration

ξ =





ξ1
...
ξn



 ∈ Rnd, where ξi ∈ Rd and i ∈ [1, n]

to be the assignment of the n agents to (d-dimensional) points in a global coordinate frame Σ. This
configuration ξ specifies the d-dimensional formation shape that the agents are required to achieve.
To consider not just the ‘consensus formation’, we henceforth assume that ξ is linearly independent
from 1nd (the vector of nd ones).

Given a target configuration ξ ∈ Rnd, we say that another configuration ξ′ ∈ Rnd is affine to ξ

if there exist a matrix A ∈ Rd×d and a vector a ∈ Rd such that

(∀i ∈ [1, n])ξ′i = Aξi + a.

Since an arbitrary real matrix A may be factorized by singular value decomposition as A = UΓV ,
where U, V are unitary matrices (i.e. UU# = U#U = I, V V # = V #V = I) and Γ is a d × d

diagonal matrix (diagonal entries being singular values), configuration ξ′ can be obtained from ξ

via a rotation by V , a scaling along every dimension by Γ, another rotation by U , and finally a
translation by a. This is an affine motion from ξ.
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Figure 8.1: Illustration of target configuration and affine configuration

For example, Fig. 8.1 displays a target configuration ξ = [ξ#1 · · · ξ#8 ]# where

ξ1 =




cos π

4

0

sin π
4



 , ξ2 =




− cos π

4

0

sin π
4



 , ξ3 =




0

− cos π
4

− sin π
4



 , ξ4 =




0

cos π
4

− sin π
4



 ,

ξ5 =




0

− cos π
4

sin π
4



 , ξ6 =




cos π

3

− sin π
3

0



 , ξ7 =




− cos π

3

sin π
3

0



 , ξ8 =




1

0

0



 .

This target configuration consists of eight points on a unit sphere in 3D. Also displayed
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is another configuration ξ′ affine to ξ, as it may be obtained from ξ via rotations and
(dimension-wise) scalings via A and a translation via a.

For a given target configuration ξ, let

A(ξ) : = {ξ′ ∈ Rnd | (∃A ∈ Rd×d, ∃a ∈ Rd)(∀i ∈ [1, n])ξ′i = Aξi + a}

= {ξ′ ∈ Rnd | (∃A ∈ Rd×d, ∃a ∈ Rd)ξ′ = (In ⊗A)ξ + 1n ⊗ a} (8.2)

be the family of all configurations affine to ξ. Here ⊗ is Kronecker product. We say that the n agents
with the aggregated state vector x = [x#

1 · · ·x#
n ]

# ∈ Rnd form an affine formation with respect to
ξ if x ∈ A(ξ).

To achieve an affine formation, consider the distributed control

ui =
∑

j∈Ni

wij(xj − xi) (8.3)

where the control gain wij ∈ R satisfies

(i)
∑

j∈Ni

wij(ξj − ξi) = 0 (8.4)

(ii) wij = εiaij , εi ∈ R \ {0}. (8.5)

This control (8.3) is in the same form as that for similar formation in Chapter 6: the gains wij

are not simply the edge weights aij , but are real (nonzero) multiples of aij (8.5) and satisfy linear
constraints with respect to the target configuration ξ (8.4). Different from the control for similar
formations where edge weights and control gains are complex, here edge weights and control gains
are real.

Moreover, substituting (8.5) into (8.4) and removing the common multiple εi yield
∑

j∈Ni

aij(ξj − ξi) = 0. (8.6)

This in matrix form is (L⊗Id)ξ = 0; that is, the target configuration lies in the kernel of L⊗Id, where
L is the signed Laplacian matrix of the (real-)weighted digraph. Since L1n = 0 (by definition), it
follows that

ker(L⊗ Id) ⊇ A(ξ). (8.7)

To see this, let ξ′ ∈ A(ξ). Then there exist a matrix A and a vector a such that ξ′ = (In⊗A)ξ+1n⊗a.
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Hence

(L⊗ Id)ξ
′ = (L⊗ Id)((In ⊗A)ξ + 1n ⊗ a)

= (L⊗ Id)(In ⊗A)ξ + (L⊗ Id)(1n ⊗ a)

= (L⊗A)ξ + (L1n)⊗ a

= (In ⊗A)(L⊗ Id)ξ

= 0.

The above derivation means ξ′ ∈ ker(L ⊗ Id). Therefore, if the control ui in (8.3) satisfying (8.4)
and (8.5) can be found, the kernel of L⊗ Id at least contains the family of all configurations affine
to the target ξ.

Affine Formation Control Problem:
Consider a network of agents modeled by (8.1) interconnected through a digraph, and let ξ ∈ Rnd

be a target configuration (linearly independently from 1nd). Design a distributed control ui in (8.3)
such that

(i) ker(L⊗ Id) = A(ξ)

(ii) (∀x(0) ∈ Rnd)(∃ξ′ ∈ A(ξ)) lim
t→∞

x(t) = ξ′.

The first requirement (i) strengthens (8.7) to equality; namely the kernel of L ⊗ Id is exactly
the family A(ξ) of all configurations affine to ξ. The second requirement (ii) means that every
trajectory of the networked agents converges to an affine formation in A(ξ).

Example 8.1 We provide an example to illustrate the affine formation control problem.
As displayed in Fig. 8.2, eight agents are interconnected through a digraph. The neighbor
sets of the agents are N1 = N2 = N3 = N4 = ∅, N5 = {1, 2, 6, 7}, N6 = {3, 4, 7, 8},
N7 = {1, 5, 6, 8}, and N8 = {4, 5, 6, 7}.
Let the target configuration ξ be eight (three-dimensional) points on a unit sphere (see
Fig. 8.1). Thus the family A(ξ) contains all affine formations that can be obtained from ξ

via affine motions.
The affine formation control problem is to design a distributed control ui in (8.3) such that
the kernel of L ⊗ Id coincides with A(ξ), and moreover the agents’ aggregated state vector
asymptotically converges to an affine formation in A(ξ).

A necessary graphical condition for solving the affine formation control problem is given below.
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Figure 8.2: Illustrating example of eight agents

Proposition 8.1 Suppose that there exists a distributed control ui in (8.3) that solves the
affine formation control problem in a d-dimensional space. Then the digraph contains a
spanning (d+ 1)-tree.

Proof. Let ξ ∈ Rnd be a target configuration. Suppose that there exists a distributed control in
(8.3) that solves the d-dimensional affine formation control problem with respect to ξ, but that the
digraph G = (V, E) does not contain a spanning (d + 1)-tree. We will derive a contradiction that
ker(L⊗ Id) ! A(ξ), thereby proving that G must contain a spanning (d+ 1)-tree.

First, by definition G containing no spanning (d + 1)-tree means the following. Let R be an
arbitrary set of d+1 nodes. Then removing a set D of d nodes in V \R and all their incoming and
outgoing edges, a subset VD " V \ D is unreachable from R in the new digraph G′. We write this
as R +→ VD in G′.

Now let V̄D := V \ (VD ∪D). This set V̄D is nonempty because R ⊆ V̄D (trivially). In addition,
even after removing D, the nodes in V̄D can still be reached from R, i.e. R → V̄D; but V̄D +→ VD.

Let m := |VD| (≥ 1), and relabel

• nodes in VD from v1 to vm;
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• nodes in D from vm+1 to vm+d;

• nodes in V̄D from vm+d+1 to vn.

Then the signed Laplacian matrix L of G′ after relabeling (denoted by L′) has the following struc-
ture:

L′ =

[
L′
11 L′

12 0

L′
21 L′

22 L′
23

]
.

The 0 matrix in the (1, 3)-block is due to V̄D +→ VD in G′.
Also reorder the components ξi of the target formation ξ according to the above relabeling, and

denote the result by ξ′. By the assumption that there exists a distributed control in (6.3), we have
(L⊗ Id)ξ = 0 and L1n = 0. Substituting the relabeled L′ and ξ′ into the two equations yields

([
L′
11 L′

12 0
]
⊗ Id

)
ξ′ = 0,

[
L′
11 L′

12 0
]
1n = 0.

Since ξ′ and 1nd are linearly independent (linear independence of ξ and 1nd is assumed in the
problem statement), the rows of [L′

11 L′
12 0] are linearly dependent.

Now remove from L′ the d + 1 rows corresponding to R and d + 1 arbitrary columns. Since
R ⊆ V̄D, it holds that the removed rows have labels in [m + d + 1, n]. Then the resulting matrix
L′
R ∈ R(n−d−1)×(n−d−1) is

L′
R =

[
L′
R,11 L′

R,12 0

L′
R,21 L′

R,22 L′
R,23

]
.

Thus [L′
R,11 L′

R,12 0] still has m rows. Since the m rows of [L′
11 L′

12 0] are linearly dependent, so
are the m rows of [L′

R,11 L′
R,12 0]. Hence L′

R has less than n − d − 1 linearly independent rows,
and consequently det(L′

R) = 0.
Finally since the set R of d + 1 nodes is arbitrary, the original signed Laplacian matrix L of

G′ does not have any minor with size n − d − 1 that has nonzero determinant. This means that
rank(L) ≤ n− d− 2, and therefore ker(L⊗ Id) ! A(ξ). This is a contradiction to the solvability of
the affine formation control problem. The proof is now complete. !

Owing to Proposition 8.1, we shall henceforth assume that the digraph contains a spanning
(d+ 1)-tree.

Assumption 8.1 The digraph G modeling the interconnection structure of the networked agents
contains a spanning (d+ 1)-tree.

Remark 8.1 (Affine formation versus similar formation in 2D) Consider the special case
d = 2, i.e. a 2D plane (with two axes labeled x, y). In this case, both affine formations and
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similar formations may be defined, but there is a notable difference. Let ξ ∈ Cn or R2n. A similar
formation ξ′ ∈ Cn can be obtained from ξ via a translation, a rotation, and a scaling which is the
same for both x and y axes. On the other hand, an affine formation ξ′ ∈ R2n can be obtained from
ξ via a translation, a rotation, a scaling for x axis and a possibly different scaling for y axis. Hence
an affine formation allows different scalings along different axes, and this is the reason why the
necessary graphical condition for achieving affine formations requires a spanning 3-tree, in contrast
with a spanning 2-tree required for similar formations.

Even if Assumption 8.1 holds, not every configuration ξ ∈ Rnd (linearly independent from 1nd)
whose affine configurations may be achieved by a distributed control ui in (8.3). An illustrative
example is provided below.
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Figure 8.3: Eight-node digraph containing a spanning 3-tree
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Example 8.2 Consider a network of eight agents in a 2D space (i.e. d = 2). Their
interconnection is modeled by the digraph displayed in Fig. 8.3. This digraph G contains
a spanning 3-tree, with the 3-root subset R = {1, 2, 3}. Now consider the following target
configuration ξ = [ξ#1 · · · ξ#8 ]# where

ξ1 =

[
0

0

]
, ξ2 =

[
1

1

]
, ξ3 =

[
−1

−1

]
, ξ4 =

[
1

1

]
, ξ5 =

[
−1

−1

]
, ξ6 =

[
2

2

]
, ξ7 =

[
2

2

]
, ξ8 =

[
0

−6

]
.

This target configuration ξ has its first seven two-dimensional points on the same line. Thus
ξ is not generic, though it is linearly independent from 116. For this non-generic ξ, for every
signed Laplacian matrix L of G with (L ⊗ I2)ξ = 0, it is verified that rank(L) ≤ 4. To see
this, write (L⊗ I2)ξ explicitly as









0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

l41 0 0 l44 l45 0 l47 0

0 l52 0 l54 l55 l56 0 0

0 0 l63 0 l65 l66 l67 0

0 0 0 l74 0 l76 l77 l78

l81 l82 l83 0 0 0 0 l88





⊗
[
1 0

0 1

]









ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8





.

For the fourth row of L (other rows are similar), it follows from L18 = 0 and (L⊗ I2)ξ = 0

that

l41 + l44 + l45 + l47 = 0

(l41 ⊗ I2)ξ1 + (l44 ⊗ I2)ξ4 + (l45 ⊗ I2)ξ5 + (l47 ⊗ I2)ξ7 = 0.

To satisfy these equations, the entries l31, l32, l33, l35 are such that




l41

l44

l45

l47




⊗ 12 = c4





ξ7 − ξ4

ξ1 − ξ5

ξ4 − ξ7

ξ5 − ξ1




= c4





1

1

−1

−1




⊗ 12

for some nonzero real number c4. Similarly, the (four) entries of rows 5,6,7,8 may be
determined up to nonzero real multiples c5, c6, c7, c8 (respectively). For simplicity, letting
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c4 = c5 = c6 = c7 = c8 = 1 we have one instance of L as follows:

L =





0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 −1 0 −1 0

0 1 0 2 −1 −2 0 0

0 0 3 0 −3 −3 3 0

0 0 0 0 0 −1 1 0

−2 1 1 0 0 0 0 0





.

This L has rank 4, meaning that the last five rows are linearly dependent. Then for arbi-
trary values of c4, c5, c6, c7, c8, these five rows cannot become linearly independent. Hence
rank(L) ≤ 4 for every L with (L⊗ I2)ξ = 0. This means that ker(L⊗ I2) ! S(ξ), and con-
sequently there does not exist a distributed control in (8.3) that solves the affine formation
control problem with the chosen target configuration ξ.

In virtue of Example 8.2, we henceforth require that the target formation ξ be generic. The
requirement is mild, nevertheless, inasmuch as the set of all non-generic configurations has Lebesgue
measure zero. This means that for a given non-generic configuration ξ, randomly perturbing its
entries generates a generic configuration. It is also noted that every generic configuration ξ is
linearly independent from 1.

Assumption 8.2 The target configuration ξ = [ξ#1 · · · ξ#n ]# ∈ Rnd is generic.

8.2 Distributed Algorithm

Example 8.3 Consider again Example 8.1, where the target configuration ξ consists of eight
(three-dimensional) points on a unit sphere (see Fig. 8.1). This ξ is generic.
To achieve an affine formation of ξ, we consider using the simplest form of the distributed
control (8.3) by setting all εi = 1:

ẋi =
∑

j∈Ni

aij(xj(k)− xi(k)), i ∈ [1, 8] (8.8)
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where aij ∈ R are real weights of edges (j, i) to be designed to satisfy (8.6):
∑

j∈Ni

aij(ξj − ξi) = 0, i ∈ [1, 8].

Now we illustrate how such real weights may be designed. Take agent 6 for example: it has
four neighbors 3, 4, 7, 8. Thus we must find weights a63, a64, a67, a68 such that

a63(ξ3 − ξ6) + a64(ξ4 − ξ6) + a67(ξ7 − ξ6) + a68(ξ8 − ξ6) = 0.

Substituting vectors ξ3, ξ4, ξ6, ξ7, ξ8 into the above equation yields

a63




− cos π

3

sin π
3 − cos π

4

− sin π
4



+ a64




− cos π

3

sin π
3 + cos π

4

− sin π
4



+ a67




−2 cos π

3

2 sin π
3

0



+ a68




1− cos π

3

sin π
3

0



 = 0.

This is a system of linear equations, with four unknowns (the weights) and three equations.
Thus there are infinitely many solutions (indeed the solution space is one-dimensional). One
solution is the following:

a63 = − sin
π

3
, a64 = sin

π

3
, a67 = cos

π

4
(cos

π

3
− 1), a68 = −2 cos

π

3
cos

π

4
.

Note that this weight design can be done locally by individual agents if relative information
ξj − ξi (j ∈ Ni) is available.
Similarly we design other weights to satisfy (8.6), and write (8.8) in vector form:
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ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8





= ( [
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

cos π
3 − sin π

3 − cos π
3 − sin π

3 0 0

0 0 − sin π
3 sin π

3

− sin π
3 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2 sin π
3 − cos π

4 cos π
4 0

0 cos π
4 (cos

π
3 + 1) cos π

4 (cos
π
3 − 1) −2 cos π

3 cos π
4

sin π
3 − 1

2 cos
π
4 (1 + sin π

3 + cos π
3 )

1
2 cos

π
4 (1− sin π

3 − cos π
3 ) cos π

4 (sin
π
3 + cos π

3 )

1 −1 −1 0

]
⊗




1 0 0

0 1 0

0 0 1



 )




x1

x2

x3

x4

x5

x6

x7

x8





.

Inspect that the matrix above has zero row sums, and is indeed the minus of the signed
Laplacian matrix L of the (real-)weighted digraph. It is also checked that (L ⊗ I3)ξ = 0,
namely the target configuration lies in the kernel of L ⊗ I3. Moreover, there are exactly
four eigenvalues 0 of L, and hence ker(L ⊗ I3) = A(ξ) (the first requirement of the affine
formation control problem is satisfied).
However, the nonzero eigenvalues of matrix −L are

−1.0578,−2.371, 0.3828 + 0.8926j, 0.3828− 0.8926j

and hence −L is not stable (the last two eigenvalue have positive real parts). Therefore to
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stabilize x(t) to the kernel of L⊗I3 (to satisfy the second requirement of the affine formation
control problem), the unstable eigenvalues of −L must be moved to the open left-half plane.
This shows that simply setting all εi = 1 in (8.3) does not work in general. In fact, εi need
to be properly chosen in order to stabilize −L.

In the following we redescribe the distributed control (8.3) in vector form, and will analyze its
stability in relation to the values of εi in the next section.

Affine Formation Control Algorithm (AFCA):
Every agent i has a state variable xi(t) ∈ Rd (d ≥ 1) representing its position in a d-dimensional

space at time t; the initial state xi(0) is an arbitrary d-dimensional real vector. Offline, each agent
i computes weights aij by solving (8.6):

∑

j∈Ni

aij(ξj − ξi) = 0.

Then online, at each time t ≥ 0, every agent i updates its state xi(t) using the following distributed
control:

ui = εi
∑

j∈Ni

aij(xj − xi) (8.9)

where εi ∈ R \ {0} is a (nonzero) real control gain.
Let x := [x#

1 · · ·x#
n ]

# ∈ Rnd be the aggregated state vector of the networked agents, and E =

diag(ε1, . . . , εn) ∈ Rn×n the (diagonal and invertible) control gain matrix. Then the n equations
(8.9) become

ẋ = ((−EL)⊗ Id)x. (8.10)

Remark 8.2 The above AFCA requires that the following information be available for each indi-
vidual agent i:

• ξj − ξi for all j ∈ Ni (offline computation of weights)

• xj − xi for all j ∈ Ni (online computation of control inputs).

8.3 Convergence Result
The following is the main result of this section.
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Theorem 8.1 Suppose that Assumptions 8.1 and 8.2 hold. There exists a (diagonal and in-
vertible) control gain matrix E = diag(ε1, . . . , εn) such that AFCA solves the affine formation
control problem.

To prove Theorem 8.1, we analyze the eigenvalues of the matrix (−EL)⊗ Id in (8.10). For this,
the following fact is useful (which is the real counterpart of Lemma 6.1).

Lemma 8.1 Consider an arbitrary square real matrix M ∈ Rn×n. If all the principal minors
of M are nonzero, then there exists an invertible diagonal matrix E = diag(ε1, . . . , εn) ∈
Rn×n such that all the eigenvalues of EM have positive real parts.

Proof: The proof is based on induction on n. For the base case n = 1, M = m11 is a nonzero scalar
(as the principal minor of M is nonzero). Let ε1 := 1

m11
. Then EM = ε1m11 = 1(= det(E)det(M)).

For the induction step, suppose that the conclusion holds for M ∈ R(n−1)×(n−1). Since the n−1

eigenvalues are either positive real or conjugate pairs with positive real parts and det(E)det(M) =

λ1 · · ·λn−1, we have det(E)det(M) > 0. Now consider M ∈ Rn×n, with all of its principal minors
nonzero. Let M1 be the submatrix of M with the last row and last column removed. Then all
the principal minors of M1 are nonzero, and by the hypothesis there exists an invertible diagonal
matrix E1 = diag(ε1, . . . , εn−1) such that all the eigenvalues λ1, . . . ,λn−1 of E1M1 have positive
real parts. Now write

M =

[
M1 M2

M3 mnn

]

where mnn is a nonzero scalar (since all the principal minors of M is nonzero). Also let

E =

[
E1 0

0 εn

]

for some real εn. Thus

EM =

[
E1 0

0 εn

][
M1 M2

M3 mnn

]
=

[
E1M1 E1M2

εnM3 εnmnn

]
.

If εn = 0, then

EM =

[
E1M1 E1M2

0 0

]
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