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Preface

Cooperative control of multi-agent systems has been actively studied in the field of systems and
control in the past two decades. Such systems typically consist of a large number of distributed
agents, which locally interact with one another such that they jointly pursue a global goal. Research
results on cooperative control of multi-agent systems have found wide applications in robotics
(swarms of vehicles/drones) [CWRKG20, MC19, SVC+16], engineering (sensor/power networks)
[CAYM15,DB10,OS07], physics (systems of oscillators) [DCB13,PR11,SS08], epidemics (spreading
processes) [YLAC21,KBG14,OGNK13], and social/political science (opinion dynamics) [YLA+18,
FJB16,AL15]. The literature has grown in near-intractable volumes, but excellent textbooks (e.g.
[Bul22, FM16, BAW11, ME10, RB08]) and surveys (e.g. [OPA15, DB14, CYRC13, GS10, OSFM07])
have kept the content in organized manners.

In writing this book, we aim to provide a new perspective to link together various research work
on cooperative control of multi-agent systems. This perspective is on different types of graph Lapla-
cian matrices. The standard (conventional) Laplacian matrix is defined based on a nonnegative
adjacency matrix [Bap10, GR00], which describes the interaction graph topology of a multi-agent
system. This type of Laplacian matrix is fundamental in describing the dynamics of a number of
multi-agent cooperative control problems including consensus, averaging, synchronization, regula-
tion, flocking, and optimization [JLM03, INK19, CI11, CI12, Ren08, Lun12, WSA11, KCK20, OS06,
XHC+17, ZYC20]. The algebraic properties of this type of Laplacian matrix have been found to
characterize stability and performance of the corresponding cooperative control algorithms. These
algebraic properties are also closely related to the connectivity properties of the interaction graph.

More recently, two other types of Laplacian matrices have been proposed in designing cooperative
control algorithms. One type is defined from a complex-valued (entry-wise) adjacency matrix,
and is called complex Laplacian. A complex Laplacian matrix has been found useful in solving
a class of formation control and localization problems on a 2D space (that can be represented
as a complex plane) [LDY+13, LWHF14, LFD15, LHZF16, LWHF16]. The other type of Laplacian
matrix is defined from a general real adjacency matrix which need not be nonnegative. This
type of Laplacian matrix is called signed Lapalcian, and has been found effective in designing
cooperative control algorithms to solve formation control and localization in a 3D (and higher-
dimensional) space [LWC+16, Zha18, HLZ+17, CWL+17, CLC+16]. For both types – complex and
signed Laplacian matrices – their algebraic properties are again essential in characterizing stability
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and performance of the corresponding cooperative control algorithms. In addition, these algebraic
properties are also related to certain connectivity properties of the interaction graph.

The three different types of Laplacian matrices thus offer a new angle to look into the relevant
literature on multi-agent cooperative control. Although there are many different cooperative control
problems in their appearances, they have a few basic points in common. The interaction graph
topology of the agents can be described by graphs, the dynamics of multi-agent systems is hence
underlied by Laplacian matrices, and the algebraic properties of these Laplacian matrices dictate
stability/performance of the corresponding cooperative control algorithms. These common points
therefore allow us to interlink and organize different cooperative control problems and their solutions
by different types of Laplacian matrices and the corresponding algebraic properties.

Eight cooperative control problems and their solutions are covered in this book: averaging,
optimization, consensus, synchronization, 2D similar formation control, 2D localization, arbitrary-
dimensional affine formation control, and arbitrary-dimensional localization. Focus is given exclu-
sively to agents’ interaction topology modeled by directed graphs. The reason for choosing this focus
is multifold. First, directed graphs are more general than undirected graphs; hence the theoretical
results of directed graphs include those of undirected graphs as special cases. Second, directed
graphs can be more widely applicable, as bidirectional communication may not always possible
(e.g. leader-follower structured robotic teams or sensor networks where nodes have heterogeneous
communication ranges). Finally, results on directed graphs are scattered in the literature, which
calls for an organized presentation. This books serves this purpose.

How to read this book

This book consists of nine chapters:

• Chapter 1: mathematical preliminaries on graphs and their matrices

• Chapters 2–9: eight cooperative control problems

Each chapter is self-contained. Our recommendation is that the reader reads Chapter 1 first, and
then feels free to jump to any later chapter on a cooperative control problem of interest. More
experienced reader may skip Chapter 1, though we suggest a skim of Sections 1.5 and 1.6 whose
content may be less familiar.

Based on different types of Laplacian matrices, Chapters 2–9 are further divided as follows:

• Standard Laplacian: Chapters 2–5 (averaging, optimization, consensus, synchronization)

• Complex Laplacian: Chapters 6–7 (2D similar formation control, 2D localization)

• Signed Laplacian: Chapters 8–9 (arbitrary dimensional affine formation control, arbitrary
dimensional localization)
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From an alternative angle, Chapters 2–9 are divided into four parts. This division is based on
different connectivity conditions on directed graphs.

• Strongly connected and weight-balanced: Chapters 2–3 (averaging, optimization)

• Spanning tree: Chapters 4–5 (consensus, synchronization)

• Spanning 2-tree: Chapters 6–7 (2D similar formation control, 2D localization)

• Spanning multiple tree: Chapters 8–9 (arbitrary dimensional affine formation control, arbi-
trary dimensional localization)

Each of these eight chapters is structured similarly. The first two sections provide illustrative
examples of the problem studied and explanation of ideas behind the designed algorithm. The third
section is technical, with statements of formal results and their proofs (which may be skipped at the
first reading). The simulation section presents more illustrative examples of larger-scale networks
of agents. The final section provides the main references relevant to the presented algorithms
and results. In addition, Chapters 3 and 5 each include an Appendix that introduces background
knowledge on the respective subject.

We hope that these different ways of organizing the content of this book provide flexibility to
the reader with different purposes. One may choose to read different cooperative control problems
independently, or different types of graph Laplacian independently, or graph connectivity conditions
progressively.

Who to read this book

This book is written for applied science and engineering students in the graduate level or higher
undergraduate levels, as a textbook or a reference for a relevant course. The book is also intended for
researchers in systems control, robotics, artificial intelligence, machine learning, signal processing,
and computer engineering with interests in multi-agent systems, networked control, and cooperative
behaviors.

Where to find additional material

Supplementary material (slides, codes) and updates to this book can be found on the website
below:

https://www.control.eng.osaka-cu.ac.jp/mas

Kai Cai and Zhiyun Lin
March 16, 2023

https://www.control.eng.osaka-cu.ac.jp/mas
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