
Automatica 142 (2022) 110333

K

m
n
t

c

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Consistent reduction in discrete-event systems✩

ai Cai a,∗, Alessandro Giua b, Carla Seatzu b

a Department of Core Informatics, Osaka Metropolitan University, Japan
b Department of Electrical and Electronic Engineering, University of Cagliari, Italy

a r t i c l e i n f o

Article history:
Received 30 October 2019
Received in revised form 17 February 2022
Accepted 13 March 2022
Available online 6 May 2022

a b s t r a c t

In this paper we develop a general framework, called ‘‘consistent reduction’’, for formalizing and
solving a class of state minimization/reduction problems in discrete-event systems. Given an arbitrary
finite-state automaton and a cover on its state set, we propose a consistent reduction procedure that
generates a reduced automaton, preserving certain special properties of the original automaton. The
key concept of the consistent reduction procedure is the dynamically consistent cover; in each cell
of this cover, any two states, as well as their future states reached by the same system trajectories,
satisfy the binary relation induced from the given cover. We propose a new algorithm that computes
a dynamically consistent cover that refines a given cover. We demonstrate the developed general
framework on state reduction problems in different application areas.

© 2022 Elsevier Ltd. All rights reserved.
&
b

t
c
‘
a
a
o
t
(
‘
t
t
i

a

1. Introduction

A fundamental notion in the theory of computation is that of
inimal automaton (Hopcroft et al., 2006), i.e., a deterministic fi-
ite automaton G with a minimal number of states which accepts
he same language accepted by a given automaton H. Defining an
equivalence relation ≈, called congruence, on the state space of H
— such that two states are congruent if the languages accepted
starting from each of them are identical — it is well known that
the minimal automaton G is exactly the quotient H/ ≈.

In more general terms one can describe this problem as fol-
lows: one aims to classify the infinite set of strings on a given
alphabet into two classes (accepted or not accepted), and a finite
structure, e.g., an automaton, is used to do the classification.
Introducing a suitable equivalence relation on the state set of the
automaton allows one to solve the problem in an optimal fashion,
i.e., with a minimal structure.

In more recent years, the above approach has been generalized
to the setting of state transition systems. In this case several
types of bisimulation relation on the state set have been defined
to capture interesting features of the system trajectories (Alur

✩ This work was supported in part by the JSPS KAKENHI Grant no. 21H04875,
the JSPS Invitational Fellowships no. S19091, the Visiting Professor Program
2017 of the University of Cagliari, and Region Sardinia (RAS) with project
MOSIMA, RASSR05871, FSC 2014–2020, Annualita’ 2017, Area Tematica 3, Linea
d’Azione 3.1. This paper was recommended for publication in revised form by
Associate Editor Christoforos Hadjicostis under the direction of Editor Christos
G. Cassandras.

∗ Corresponding author.
E-mail addresses: cai@omu.ac.jp (K. Cai), giua@unica.it (A. Giua),

arla.seatzu@unica.it (C. Seatzu).
 T

ttps://doi.org/10.1016/j.automatica.2022.110333
005-1098/© 2022 Elsevier Ltd. All rights reserved.
et al., 2000; Milner, 1989; Tabuada, 2009). Since bisimulation is
also an equivalence relation, a minimal quotient system may be
constructed. We note that bisimulation has also been used as an
abstraction method in discrete-event systems (DES) (Mohajerani
et al., 2014; Su et al., 2010).

There are other problems where the minimization (or at least
reduction) of the number of states plays a fundamental role in
DES. One such problem is supervisor localization (Cai & Wonham,
2016) (as well as its parent problem supervisor reduction (Su &
Wonham, 2004, 2018)). Another (perhaps less familiar) problem
is model identification, i.e., inferring the structure of a determin-
istic finite automaton G from examples and counterexamples of
its accepted language Lm(G) (Bugalho & Oliveira, 2005; Oncina

Garcia, 1992; Verwer et al., 2006). The latter problem can
e described as follows. Given a set of strings S+ that must be

accepted and a set of strings S− that must not be accepted, a prefix
ree acceptor H (a loopless deterministic finite automaton) is first
onstructed. In H states reached by accepted strings are labeled
‘A" (these are the accepting states), states corresponding to non-
ccepted strings are labeled ‘‘N", and all other ‘‘don’t care" states
re not labeled. Then one tries to reduce the number of states
f H by merging state pairs that are consistent: i.e., it is possible
o merge a state labeled ‘‘A" (resp., ‘‘N") with either a state ‘‘A"
resp., ‘‘N") or a ‘‘don’t care" state; it is also possible to merge two
‘don’t care" states. By this state merging (and determinization),
he reduced automaton G is ensured to accept a language Lm(G)
hat satisfies S+ ⊆ Lm(G) and S− ∩ Lm(G) = ∅, namely all strings
n S+ are accepted while no string in S− is accepted.

Although the problems and approaches mentioned above may
ppear rather different, we point out a similarity among them.

hey can all be described in terms of a classification problem of

https://doi.org/10.1016/j.automatica.2022.110333
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2022.110333&domain=pdf
mailto:cai@omu.ac.jp
mailto:giua@unica.it
mailto:carla.seatzu@unica.it
https://doi.org/10.1016/j.automatica.2022.110333

K. Cai, A. Giua and C. Seatzu Automatica 142 (2022) 110333

t
o
t
a
p
a
a

s
o
c
t
t
d

(
i
t
o
s
M
i
F
c
r
o
G

(
i
g
a
s
a
i
s
q
t
n

(
i
t
p
e

he infinite set of strings, solved by means of the finite structure
f an automaton. One tries to minimize/reduce the size of the au-
omaton by aggregating states that are pairwise consistent under
suitable relation that depends on the considered classification
roblem. However, while the Myhill–Nerode and the bisimulation
pproaches consider equivalence relations, in model identification
nd supervisor reduction/localization the relations are not tran-

sitive. In model identification, a state x1 labeled ‘‘A" (accepting
state) can be merged with a ‘‘don’t care" state x2, and x2 can be
merged with another state x3 labeled ‘‘N’’ (non-accepting state),
but x1 and x3 cannot be merged. The non-transitive relation in
supervisor reduction/localization is similar.

In this paper we develop a general framework, called ‘‘con-
sistent reduction’’, for formalizing and solving a large class of
minimization/reduction problems in DES. In particular, this
framework includes minimal automaton, minimal bisimulation,
model identification, and supervisor localization/reduction as spe-
cial cases. Concretely, the consistent reduction problem starts
with an arbitrary deterministic finite automaton and a (non-
redundant) cover on the state set of that automaton (every cell
containing at least one distinct state). Note that such a cover
naturally induces a (binary) relation on the state set: two states
are related if there exists a cell of the cover to which they both
belong. Then we present a consistent reduction procedure that
generates a reduced automaton, achieving consistency in a certain
ense with the original automaton and cover. The key concept
f the consistent reduction procedure is dynamically consistent
over: in each cell of this special cover, any two states, as well as
heir future states reached by the same system trajectories, satisfy
he induced relation. We design a new algorithm to compute a
ynamically consistent cover that is finer than the given cover.
The main contributions of our work are as follows.

i) We establish a unified framework for formulating and solv-
ng state minimization/reduction problems in DES. Any problem
hat can be formulated in terms of an automaton and a cover
n its state set may be cast into our formulation including a
et of existing minimization/reduction problems as special cases.
oreover, within this general framework, it is possible to define

nteresting new problems in DES that find immediate solutions.
or example, in state estimation of an automaton G we may
onsider the problem of localizing a monolithic observer with
espect to a particular subset Q̄ of states in G, with the purpose
f distinguishing three cases: (a) G is in Q̄ ; (b) G is not in Q̄ ; (c)
may be in Q̄ (Section 5.2).

ii) To solve our formulated consistent reduction problem, a key
ssue is how to compute a dynamically consistent cover refining a
iven cover. We design a new algorithm that effectively does so,
nd prove that the complexity is O(n4), where n is the number of
tates of the given automaton. Note that the supervisor reduction
lgorithm in Su and Wonham (2004), designed to solve a special
nstance of the consistent reduction problem, generally fails to
olve our problem (illustrated by Example 12). This is a conse-
uence of that algorithm’s lack of a mechanism to account for
he initial given cover, and hence the generated partition need
ot refine the given cover in general.

iii) Our new algorithm’s capability of processing and generat-
ng covers can potentially achieve further state reduction than
he partition-based algorithm in Su and Wonham (2004), for
roblems where both algorithms can solve. In particular, there
xist cases where minimal state reduction cannot be achieved by

the algorithm in Su and Wonham (2004) because it is based on
partitions, but can be achieved by our cover-based algorithm. An
illustration is given in Example 13.

(iv) Moreover, since our designed algorithm generates a cover,
different reduced automata may be obtained. This provides an
2

additional degree of flexibility as compared to the supervisor re-
duction algorithm in Su and Wonham (2004) which can generate
just a single partition and thus a single reduced automaton. To
corroborate this claim, we discuss in Example 14 a case where the
flexibility may allow one to select reduced automata with many
selfloop events. A reduced automaton with this property can save
observation/communication costs since selfloop events causing
no state changes do not need to be observed or communicated:
this can be particularly beneficial for designing communication
resource aware control and estimation schemes in networked
distributed DES.

Preliminary results concerning our consistent reduction ap-
proach are presented in Cai et al. (2019). In this paper, besides
a thorough reformulation of the problem, we propose a new
algorithm that solves the consistent reduction problem in all
generality. In addition, we provide a new section with different
application areas to demonstrate the generality of our framework.

The remainder of this paper is organized as follows. In Sec-
tion 2 we provide preliminaries on binary relations and covers,
and in Section 3 formulation of the consistent reduction problem.
In Section 4 we present a consistent reduction procedure that
solves the formulated problem, and an algorithm is designed to
compute a dynamically consistent cover. In Section 5 we illus-
trate our consistent reduction solutions with different application
areas, and provide detailed comparisons with Su and Wonham
(2004). Finally in Section 6 we state our conclusions and point
out our future lines of research in this framework.

2. Binary relations and covers

In this section we provide some background on binary rela-
tions and covers, relevant to the rest of the paper.

2.1. Binary relations

Given a set X , R ⊆ X × X is a binary relation on X , and we
write (x, x′) ∈ R to denote that x is related with x′.

In the following we will consider binary relations satisfying
the following two properties:

(i) (∀x ∈ X) (x, x) ∈ R (reflexivity)
(ii) (∀x, x′

∈ X) (x, x′) ∈ R ⇒ (x′, x) ∈ R (symmetry).

Given R ⊆ X × X , the reflexive and symmetric closure of R is
R̃ := R ∪ {(x, x) | x ∈ X} ∪ {(x′, x) | (x, x′) ∈ R}.

We say that R is an equivalence relation if it is reflexive,
symmetric, and transitive, namely it satisfies properties (i) and
(ii), plus the following additional property:

(iii) (∀x, x′, x′′
∈ X)(x, x′) ∈ R & (x′, x′′) ∈ R ⇒ (x, x′′) ∈ R

(transitivity).

2.2. Covers

Definition 1. Given a set X and an index set I , an (I-) cover on X
is a set C = {Xi ⊆ X | i ∈ I} such that (i) (∀i ∈ I)Xi ̸= ∅ and (ii)⋃

i∈I Xi = X . Each Xi is referred to as a cell of C.

Given a cover C = {Xi ⊆ X | i ∈ I}, we define the associated
indicator function O : X → Pwr(I) (Pwr denotes powerset) by
O(x) = {i ∈ I | x ∈ Xi}. Thus O(x) is the set of indices for the cells
that x belongs to. Note that O(x) ̸= ∅ for all x ∈ X , and O(x) is not
a singleton set iff x is shared by two or more cells.

We point out that a cover C on a set X can be viewed as a
multi-criterion classifier for the elements in X , which assigns (via
the indicator function O) to each x ∈ X those criteria in I that x
satisfies.

K. Cai, A. Giua and C. Seatzu Automatica 142 (2022) 110333

E

i
p

xample 2. Consider a set X = {x1, x2, x3, x4}, an index set
I = {1, 2, 3}, and a cover C = {X1 = {x1, x2}, X2 = {x2, x4}, X3 =

{x3, x4}}. Thus one obtains O(x1) = {1}, O(x2) = {1, 2}, O(x3) =

{3}, and O(x4) = {2, 3}. ■

Definition 3. A cover C = {Xi ⊆ X | i ∈ I} is non-redundant if
(∀i ∈ I) (∃x ∈ Xi) (∀j ̸= i) x ̸∈ Xj, namely each cell contains at
least one element of X that does not belong to other cells.

Note that in a non-redundant cover removing any cell destroys
the covering property

⋃
i∈I Xi = X . It follows that if the cover C

is non-redundant, then |I| ≤ |X |.
A cover C = {Xi ⊆ X | i ∈ I} is a partition on X if (∀i, j ∈

I) i ̸= j ⇒ Xi ∩ Xj = ∅. Thus a partition is a special cover that has
pairwise disjoint cells. Given two covers C1 = {Xi1 ⊆ X | i1 ∈ I1},
C2 = {Xi2 ⊆ X | i2 ∈ I2} on X , we say that C2 refines C1 (written
C1 ≽ C2) if (∀i2 ∈ I2)(∃i1 ∈ I1)Xi2 ⊆ Xi1 .

2.3. R-consistent covers

Definition 4. Given a reflexive and symmetric binary relation
R ⊆ X × X we say that a cover C = {Xi ⊆ X | i ∈ I} of X is
R-consistent if

(∀i ∈ I)(∀x, x′
∈ Xi)(x, x′) ∈ R (1)

i.e., all elements that belong to the same cell are pairwise related
with respect to R.

An R-consistent cover is called:

• minimal if there does not exist another R-consistent cover
C′ on X with a number of cells |I ′| < |I|;

• complete if (∀i ∈ I) (∀x′
∈ X \Xi) (∃x ∈ Xi) (x, x′) ̸∈ R, i.e., one

cannot add a new element to any cell without destroying the
R-consistency.

It can be easily shown that a minimal R-consistent cover is
also non-redundant, while the opposite is not necessarily true.
In addition we remark that given an R-consistent cover C one
can always, by iteratively adding new elements to cells, obtain a
complete cover C′: if C is minimal then C′ is also minimal.

Given a non-redundant cover C = {Xi ⊆ X | i ∈ I} on X , one
may define an induced relation

RC = {(x, x′) | (∃i ∈ I)x, x′
∈ Xi}. (2)

Note that C is a complete RC-consistent cover. To see this, sup-
pose that there exist Xi ∈ C and x′

∈ X \ Xi such that for every
x ∈ Xi it holds that (x, x′) ∈ RC . Then every x ∈ Xi belongs to
another cell Xj for some j ∈ I , which means that Xi is redundant.
This contradicts the assumption that C is non-redundant.

Among the many possible R-consistent covers, a particularly
interesting problem is that of determining a minimal cover. This
problem does not admit a unique solution and furthermore it is
NP-hard. To show this, we observe that with a reflexive and sym-
metric binary relationR ⊆ X×X one can (univocally) associate an
undirected graph G. The set of vertices of G coincides with the set
X and, given two vertices x and x′, with x ̸= x′, an edge connecting
x and x′ exists if and only if (x, x′) ∈ R (for simplicity, we neglect
self-loops originating from the reflexivity property). Given an
undirected graph, a clique is a subset of vertices such that its
induced subgraph is complete, i.e., any two distinct vertices in
the clique are connected by an edge. The problem of determining
a minimal R-consistent cover is thus equivalent to the problem
of determining a minimum clique cover, a problem that has been
shown NP-hard (Karp, 1972).
 i

3

Example 5. Consider a set X = {x1, x2, x3, x4, x5} and a bi-
nary relation R that is the reflexive and symmetric closure of
{(x1, x2), (x1, x4), (x2, x3), (x2, x5), (x4, x5), (x3, x5)}. Relation R is
clearly not transitive. Indeed, (x1, x2), (x1, x4) ∈ R while (x2, x4) ̸∈

R.
Cover C1 = {{x1, x4}, {x2, x3, x5}} is minimal, non-redundant,

and complete. Another non-redundant and complete cover is
C2 = {{x1, x2}, {x2, x3, x5}, {x4, x5}} but it is not minimal. Cover
C3 = {{x1, x4}, {x1, x2}, {x3, x5}} is still non-redundant, but it is
neither complete nor minimal. Finally, cover C4 = {{x1, x4},
{x1, x2}, {x2, x3, x5}} is complete, but neither minimal nor non-
redundant. Indeed, cell {x1, x2} can be removed without destroy-
ing the covering property. ■

In the particular case in which R is an equivalence relation
on X , there exists a unique non-redundant complete R-consistent
cover that is also minimal: this is the partition of the set X into
equivalence classes for relation R.

3. Problem formulation

Let H = (X, Σ, ξ , x0, Xm) be a finite-state automaton, where X
is a finite state set, x0 ∈ X an initial state, Xm ⊆ X a set of marker
states,1 Σ a finite event set, and ξ : X × Σ → X the (partial)
state transition function. In the usual way, ξ is extended to ξ :

X ×Σ∗
→ X , and we write ξ (x, s)! to mean that ξ (x, s) is defined.

Finally, given a set X ′
⊆ X , define ξ (X ′, σ) :=

⋃
x′∈X ′ ξ (x′, σ).

Let C = {Xi ⊆ X | i ∈ I} be a non-redundant cover on X with
the associated indicator function O : X → Pwr(I). Recall that
C is a complete RC-consistent cover for the induced relation RC
defined in (2).

Our goal is to construct a ‘reduction’ of H, say G with an
associated indicator function P which provides a classification of
strings generated by H consistent with that provided by O based
on H. Formally, we state our problem as follows:

Consistent Reduction Problem (CRP): Given an automaton H =

(X, Σ, ξ , x0, Xm), a non-redundant cover C on X and the associ-
ated indicator function O, construct a reduced automaton G =

(Y , Σ, η, y0, Ym) and an associated indicator function P : Y →

Pwr(I) such that the following three properties hold:

|Y | ≤ |X | (3)

(∀s ∈ Σ∗)ξ (x0, s)! ⇒ η(y0, s)! (4)

(∀s ∈ Σ∗)ξ (x0, s)! ⇒ ∅ ̸= P(η(y0, s)) ⊆ O(ξ (x0, s)). (5)

Condition (3) requires that the state size of G be smaller than (or
at worst equal to) that of H. Indeed, for practical concern, one
would often expect that |Y | be much smaller than |X |. Condi-
tion (4) requires that every string that can be generated by (and
classified in) H can also be generated by (and classified in) G;
namely the generated language of G is larger than or equal to that
of H. Finally, condition (5) means that for any string s generated
by H, the classification of the state η(y0, s) by P is nonempty and
moreover is a subset of the classification of ξ (x0, s) by O. Thus if
the state ξ (x0, s) belongs to a unique cell of C under O (satisfying a
single criterion), the corresponding state η(y0, s) will still belong
to that unique cell under P; while if ξ (x0, s) belongs to multiple
cells of C under O (satisfying multiple criteria), η(y0, s) will belong
to a (nonempty) subset of these cells under P . In exactly this sense
we say that P based on G provides a consistent classification with
O based on H.

1 The explicit inclusion of Xm in the automaton definition is not necessary, be-
cause the partition {Xm, X \Xm} can be viewed as a classification of states/strings
n addition to a given cover. However, since Xm is commonly used in classical
roblems of automaton minimization and supervisory control, we choose to
nclude X in the definition.
m

K. Cai, A. Giua and C. Seatzu Automatica 142 (2022) 110333

i
a

E
a
G
s
t
a
t
c
i

X
l
a
f

O

O
O

Fig. 1. The prefix tree acceptor H for positive samples S+ = {αββ, αβαα} and
negative samples S− = {α, ββ}. States x4, x5 corresponding to accepted strings
n S+ are labeled ‘‘A", states x1, x7 corresponding to non-accepted strings in S−

re labeled ‘‘N", and all other ‘‘non-determined" states are not labeled.

xample 6. To illustrate the formulated CRP, we provide an ex-
mple of model identification, adapted from Verwer et al. (2006).
iven a positive sample S+ = {αββ, αβαα} and a negative
ample S− = {α, ββ} on alphabet Σ = {α, β}, consider the prefix
ree acceptor H displayed in Fig. 1: states x4, x5 corresponding to
ccepted strings in S+ are labeled ‘‘A", states x1, x7 corresponding
o non-accepted strings in S− are labeled ‘‘N", and all other ‘‘don’t
are" states are not labeled. Define A : X → {0, 1} by A(x) = 1
f and only if x is labeled ‘‘A’’. Also define N : X → {0, 1} by So
N(x) = 1 if and only if x is labeled ‘‘N ’’.

Now consider a non-redundant cover C with just two cells:
C = {X1, X2}, where X1 = {x ∈ X | A(x) = 0} and X2 = {x ∈

| N(x) = 0}. Here X1 is the subset of states which are either
abeled ‘‘N ’’ or not labeled, while X2 is the subset of states which
re either labeled ‘‘A’’ or not labeled. The associated indicator
unction O : X → Pwr({1, 2}) is given by

(x) =

{
{1}, if N(x) = 1
{2}, if A(x) = 1
{1, 2}, if N(x) = A(x) = 0.

Thus for the prefix tree acceptor H in Fig. 1 we have O(x1) =

(x7) = {1}, O(x4) = O(x5) = {2} and O(x0) = O(x2) = O(x3) =

(x6) = {1, 2}.
The model identification problem aims to obtain a reduced

automaton G such that every string classified in H can be consis-
tently classified in G. This problem falls under the formulation
of CRP, which is to construct a reduced automaton G and an
associated indicator function P such that the properties (3)–(5)
are satisfied. We will present such a G in Fig. 2 and the associated
indicator function P in Example 10 in the next section (p.6). ■

4. Consistent reduction procedure

In this section we present a procedure that generates a solu-
tion to CRP. The key concept is that of dynamically consistent cover,
based on which consistent reduction is carried out.

4.1. Dynamically consistent cover

Given an automaton H = (X, Σ, ξ , x0, Xm) and a binary rela-
tion R on X , we introduce the following key concept.

Definition 7. Let H = (X, Σ, ξ , x0, Xm) be an automaton, R be
a reflexive and symmetric binary relation on the state set X of H,
and Cdyn = {Xa ⊆ X | a ∈ A} (A is some finite index set) be a
non-redundant cover on X . We say that cover Cdyn is dynamically
consistent with H and R, or for short an (H,R)-consistent cover, if
the following two conditions hold:

(i) (∀a ∈ A)(∀x, x′
∈ X)[x, x′

∈ Xa ⇒ (x, x′) ∈ R]

(ii) (∀a ∈ A) (∀σ ∈ Σ) (∃a′
∈ A) ξ (X , σ) ⊆ X ′ .
a a

4

In this definition, condition (i) requires that all states in the
same cell of Cdyn be pairwise consistent with respect to R (i.e. Cdyn
is an R-consistent cover as in Definition 4). Condition (ii) can
be paraphrased as follows: all states that can be reached from
any states in some cell Xa by the same one-step transition σ
must belong to some cell Xa′ . Inductively, any two states in the
same cell of Cdyn are consistent with respect to R, and all their
future states reached by the same strings are also consistent with
respect to R. Hence Cdyn ‘respects’ the dynamics of H, and for this
reason we call Cdyn dynamically consistent cover. In the case where
the cells of Cdyn are pairwise disjoint, we call Cdyn a dynamically
consistent partition on X .

Example 8. For the example displayed in Fig. 1, the cover
C = {{x0, x1, x2, x3, x6, x7}, {x0, x2, x3, x4, x5, x6}} = {X1, X2} is not
dynamically consistent because condition (ii) is violated. Indeed,
for the pair (x2, x6) in the same cell (X1 or X2) there hold ξ (x2, β)!
and ξ (x6, β)!, but ξ (x2, β), ξ (x6, β) are not covered by the same
cell: ξ (x2, β) = x5 ∈ X2, ξ (x6, β) = x7 ∈ X1. Another pair that
violates condition (ii) is (x0, x3). Refine C to

Cdyn = {{x0, x4, x5}, {x4, x5, x6}, {x1, x3, x7}, {x2, x7}}
= {X1, X2, X3, X4}

and one may check that (ii) is satisfied and Cdyn is a (non-
redundant) dynamically consistent cover. ■

Given an automaton H with state set X and a non-redundant
cover C = {Xi ⊆ X | i ∈ I} on X , let RC be the induced relation
as defined in (2). We present in the next subsection an algorithm
that computes a non-redundant (H,RC)-consistent cover Cdyn =

{Xa ⊆ X | a ∈ A} which refines C, i.e., (∀a ∈ A)(∃i ∈ I)Xa ⊆ Xi.
Having computed such an (H,RC)-consistent cover Cdyn =

{Xa ⊆ X | a ∈ A} on X , we construct a reduced version of H,

G = (Y , Σ, η, y0, Ym) (6)

as follows:
(i) Y := A;
(ii) Let A0 := {a ∈ A | x0 ∈ Xa}. Pick a0 ∈ A0 and let y0 := a0.
(iii) Ym := {a ∈ A | Xa ∩ Xm ̸= ∅};
(iv) For all a ∈ Y and σ ∈ Σ , with ξ (Xa, σ) ̸= ∅, let

T (a, σ) := {a′
∈ A | ξ (Xa, σ) ⊆ Xa′}.

Pick a′
∈ T (a, σ) and let η(a, σ) = a′.

In words, the state set Y of G is simply the index set of Cdyn;
the initial state y0 is the index of a cell where the initial state x0
belongs; the subset Ym of marker states is the subset of indices
of those cells containing some marker states in Xm; and finally
a transition η(a, σ) = a′ is defined if there exists a state x in
the cell labeled a transitions on the event σ to another state
x′ in the cell labeled a′, whenever σ is defined at x via ξ . The
transition function η : Y ×Σ → Y in (iv) is well-defined owing to
condition (ii) of (H,RC)-consistent cover (in Definition 7); hence
G is a deterministic finite automaton. Note that, due to covering,
the choices for y0 and η are non-unique in general; in that case
we pick an arbitrary instance of y0 and of η (by picking a′ as in (iv)
above), respectively. If Cdyn is a partition on X , then y0 and η can
be uniquely determined. The indicator function P : Y → Pwr(I)
associated with G is defined by

P(y) =

⋂
x∈Xy

O(x). (7)

The main result of this subsection is stated below.

Theorem 9. The reduced automaton G in (6) and the associated

indicator function P in (7) solve CRP, i.e. properties (3)–(5) hold.

K. Cai, A. Giua and C. Seatzu Automatica 142 (2022) 110333

ξ
w
c

(

π

T
s
t
A
i
w
i

π

F
w
n

d
a
c
i
s
i
v

h
d

t
w
n
x
0

a
m
c
h

d

d
s
s

ξ

u

Fig. 2. Reduced automaton G for the model identification problem in Example 6,
accepting S+ = {αββ, αβαα} and rejecting S− = {α, ββ}.

Proof. In CRP, we are given an automaton H = (X, Σ, ξ , x0, Xm),
a non-redundant cover C = {Xi ⊆ X | i ∈ I} and the associated
indicator function O. Let RC be the induced relation (as in (2))
and Cdyn = {Xa ⊆ X | a ∈ A} a non-redundant (H,RC)-consistent
cover on X that refines C (such Cdyn can be computed by an
algorithm presented in the next subsection). Referring to (i)-(iv)
that define G in (6), it follows from (i) Y = A that |Y | = |A| ≤

|X |. Thus property (3) holds. Next, it follows from η in (iv) by
induction that for every s ∈ Σ∗, if ξ (x0, s)! then η(y0, s)!. Hence
property (4) also holds.

It remains to prove property (5). Let s ∈ Σ∗ such that ξ (x0, s)!.
It will be shown that ∅ ̸= P(η(y0, s)) ⊆ O(ξ (x0, s)). Since all
states x in the cell Xη(y0,s) are pairwise consistent with respect to
R and Cdyn is finer than C, Xη(y0,s) is a subset of some cell of the
original non-redundant cover C that is complete RC-consistent,
by (7) it holds that P(η(y0, s)) =

⋂
x∈Xη(y0,s)

O(x) ̸= ∅. Now let
i ∈ P(η(y0, s)). It follows from the definition of η in (iv) that
ξ (x0, s) ∈ Xη(y0,s), and thereby we derive again by (7) that i ∈

O(ξ (x0, s)). Therefore P(η(y0, s)) ⊆ O(ξ (x0, s)), and property (5)
holds. The proof is now complete. □

Example 10. For the example displayed in Fig. 1, with the
(non-redundant) dynamically consistent cover C = {{x0, x4, x5},
{x4, x5, x6}, {x1, x3, x7}, {x2, x7}} = {X1, X2, X3, X4} found in Exam-
ple 8, we construct by (6) the reduced automaton G, displayed in
Fig. 2. The state set of G is Y = {y0, y1, y2, y3}, where y0 = 1, y1 =

2, y2 = 3, and y3 = 4. Due to covering (X1 and X2 share states
x4, x5; X3 and X4 share states x7), G is not the unique reduced
automaton; indeed there are two choices of G, one as displayed,
the other having transition η(y1, β) = y2 instead of η(y1, β) = y3.
For the displayed G, it is easily verified that properties (3) and (4)
hold. Then by (7), the associated indicator function P is such that

P(y0) = O(x0) ∩ O(x4) ∩ O(x5) = {1, 2} ∩ {2} ∩ {2} = {2}
P(y1) = O(x4) ∩ O(x5) ∩ O(x6) = {2} ∩ {2} ∩ {1, 2} = {2}
P(y2) = O(x1) ∩ O(x3) ∩ O(x7) = {1} ∩ {1, 2} ∩ {1} = {1}
P(y3) = O(x2) ∩ O(x7) = {1, 2} ∩ {1} = {1}.

Hence property (5) may also be verified to hold. According to
acceptance of strings in S+ and rejection of strings in S−, we
may label y0, y1 as ‘‘A’’ and y2, y3 as ‘‘N ’’. Note that the re-
duced automaton G is an identified model that accepts strings in
S+ = {αββ, αβαα} and rejects those in S− = {α, ββ}, which is
consistent with H. ■

4.2. Computation of a dynamically consistent cover

In this subsection, we present a new algorithm to compute
a non-redundant2 (H,RC)-consistent cover Cdyn which refines a
given non-redundant cover C with the induced relation RC .

2 Non-redundancy is key to ensure state reduction. An algorithm for
supervisor reduction that computes a possibly redundant cover is reported
in Minhas (2002), which however is not guaranteed to achieve state reduction.
 g

5

The main idea is to split a cell for which the condition (ii) of
Definition 7 is violated. This happens when for a cell π and an
event σ such that ξ (π, σ) ̸= ∅, there exists no cell that contains
(π, σ) as a subset. In such a case we say that π is inconsistent
ith σ and given an arbitrary π ′ such that ξ (π, σ) ∩ π ′

̸= ∅ we
all (π, σ , π ′) a splitter.
Consider a cell π inconsistent with σ and one of its splitters

π, σ , π ′). Cell π can be partitioned as: π = π∅ ∪πin ∪πout where

π∅ :={x ∈ π | ¬ξ (x, σ)!} (8)

πin :={x ∈ π | ξ (x, σ)! & ξ (x, σ) ∈ π ′
} (9)

out :={x ∈ π | ξ (x, σ)! & ξ (x, σ) /∈ π ′
}. (10)

hus π∅ is the subset of π where σ is not defined; πin is the
ubset where σ is defined and transitions to π ′; and πout is
he subset where σ is defined but does not transition to π ′.
s far as condition (i) of Definition 7 (namely RC-consistency)
s concerned, the first subset π∅ can go with both πin and πout
ithout violation so one can split π into two sets — non-disjoint

ff π∅ ̸= ∅ — both consistent with σ :

1 := π∅ ∪ πin, π2 := π∅ ∪ πout .

inally, we observe that it is always possible to replace π in C
ith either both cells or with just one, so as to obtain an updated
on-redundant RC-consistent cover that refines the old one.
Now we are ready to present the algorithm to compute a

ynamically consistent cover by refinement. The main idea, given
n initial cover C, is to construct the set V ⊆ C × Σ × C that
ontains a single splitter for each pair (π, σ) such that cell π
s inconsistent with event σ . Note that |V| ≤ |C| · |Σ |, since a
ingle splitter is considered for each violation of condition (ii)
n Definition 7. We then proceed splitting cells that cause a
iolation.
After each splitting, C and V need to be updated. The algorithm

alts when V is empty which means that the corresponding C is
ynamically consistent.
Before we present the algorithm, let us introduce some no-

ation. Given an automaton with state set X = {x0, x1, . . . , xn−1},
e represent a cell π of a cover by its characteristic vector, i.e., an
-dimensional vector char(π) := [u1 u2 · · · un] where ui = 1 if
i−1 ∈ π else ui = 0. We also write char(∅) for the n-dimensional
vector.
For a cover C, we denote by U :=

∑
π∈C char(π) the sum of

ll characteristic vectors of its cells; thus vector U represents the
ultiset (Blizard, 1989) defined by the union of all cells π ∈ C
ounting multiplicities of shared elements. Note that char(π) ≤ U
olds iff π is a subset of the multiset represented by U .
Algorithm 1 is the main procedure which calls three functions

escribed in Fig. 3. We start by describing these functions.3
Function splitter requires input arguments π , σ and π ′ and

etermines if (π, σ , π ′) can be used as a splitter if π is incon-
istent with σ . This can be done with a for loop that checks all
tates in π . The function returns: value 1 if ∅ ⊊ ξ (π, σ) ⊆ π ′, thus
ensuring π is consistent with σ ; value −1 if ∅ ⊊ ξ (π, σ) ∩ π ′ ⊊
(π, σ), thus showing that (π, σ , π ′) can be used as a splitter;

and value 0 otherwise.
Function split requires input arguments π , σ and π ′ and

returns the two subsets (π1, π2) obtained by splitting π according
to (σ , π ′).

Function update requires input arguments V , C and πnew. This
function returns the updated set of violating conditions V and the
updated cover C when a new cell πnew is added to C. This is done

3 Note that the functions require the structure of automaton H, because they
se its transition function ξ or its alphabet Σ . We assume that ξ and Σ are
lobally defined.

K. Cai, A. Giua and C. Seatzu Automatica 142 (2022) 110333

A

R

1
1

1

1
1

1
1

1
1
2

T

c
C
F
V
C

lgorithm 1 . Computation of a dynamically consistent cover

equire: An automaton H = (X, Σ, ξ , x0, Xm), a non-redundant
cover C of X .

Ensure: A non-redundant dynamically consistent cover Cdyn that
refines C.

1: U := char(∅);
2: for π ∈ C do U := U + char(π);
3: V := ∅;
4: for π ∈ C do
5: for σ ∈ Σ do
6: Vspt := ∅;
7: for π ′

∈ C do
8: if splitter(π, σ , π ′) = −1 then
9: Vspt := {(π, σ , π ′)};
0: if splitter(π, σ , π ′) = 1 then
1: Vspt := ∅ and break;
2: V := V ∪ Vspt ;
3: while V ̸= ∅ do
4: Select (π, σ , π ′) ∈ V;

15: for (π̄ , σ̄ , π̄ ′) ∈ V do
6: if π̄ = π then
7: V := V \ {(π̄ , σ̄ , π̄ ′)};
8: C := C \ {π};
9: U := U − char(π);
0: (π1, π2) := split(π, σ , π ′);

21: if char(π1) ̸≤ U + char(π2) then
22: (V, C) := update(V, C, π1);
23: U := U + char(π1);
24: for (π̄ , σ̄ , π̄ ′) ∈ V do
25: if π̄ ′

= π & splitter(π̄ , σ̄ , π1) = −1 then
26: V := (V ∪ {(π̄ , σ̄ , π1)}) \ {(π̄ , σ̄ , π̄ ′)};
27: if char(π2) ̸≤ U then
28: (V, C) := update(V, C, π2);
29: U := U + char(π2);
30: for (π̄ , σ̄ , π̄ ′) ∈ V do
31: if π̄ ′

= π & splitter(π̄ , σ̄ , π2) = −1 then
32: V := (V ∪ {(π̄ , σ̄ , π2)}) \ {(π̄ , σ̄ , π̄ ′)};
33: Cdyn := C.

by checking for all cells π ′ in the updated cover and all symbols
σ in the alphabet if a violating condition involving πnew exists.

We finally describe the main algorithm. Lines 1–12 initialize
vector U and the splitter set V . The while loop at lines 13–32
is executed until there are no more splitters in V . At line 14, a
splitter is selected. At lines 15–17, all splitters with π as the first
element are removed from V . At line 18, π is removed from cover
C. At line 19, vector U is updated. Cell π is split into two cells π1
and π2 by calling function split at line 20. Line 21 checks if cell π1
is necessary to obtain a non-redundant cover: if this is the case,
sets V and C are updated at line 22 while vector U is updated at
line 23. Moreover, all splitters in V with π as the third element
are replaced, if possible, by a splitter with π1 as the third element
at lines 24–26. Line 27 checks if, given the previous choice, cell
π2 is still necessary to obtain a non-redundant cover: if this is the
case, sets V and C are updated at line 28 while vector U is updated
at line 29. Again, all splitters in V with π as the third element are
replaced, if possible, by a splitter with π2 as the third element
at lines 30–32. Note that at the end all spitters with π will be
eventually replaced by a splitter with π1 or π2. When the set of
splitters V is empty the algorithm ends outputting the computed
dynamically consistent cover.

The main result of this subsection is stated below.
6

Fig. 3. Functions for Algorithm 1.

heorem 11. Algorithm 1 terminates in a finite number of steps
and outputs a non-redundant dynamically consistent cover Cdyn that
refines C. The complexity of Algorithm 1 is O(|X |

4
· |Σ |).

Proof. In Algorithm 1, each execution of the while-loop cor-
responds to one split of a cell in the current cover, thereby
producing an updated refined cover. First, since each split of a
cell removes at least one pair (xi, xj) (i ̸= j) from the induced
relation RC and the number of such pairs is finite, the number
of executions of the while-loop is finite. Thus Algorithm 1 termi-
nates in a finite number of steps. Moreover, since each while-loop
generates a refined cover of the previous one, the output cover
Cdyn is a refinement of the input cover C. The fact that Cdyn is
non-redundant follows from the updates in lines 21–32, where
redundant subsets are discarded. To see that Cdyn is dynamically
onsistent, first note that each split preserves RC-consistency, so
dyn is RC-consistent which satisfies condition (i) of Definition 7.
urther, when the algorithm halts, the set of violating conditions
is empty, so condition (ii) of Definition 7 is also satisfied. Hence

is dynamically consistent.
dyn

K. Cai, A. Giua and C. Seatzu Automatica 142 (2022) 110333

c
σ

f
T
O

1
1
(
i
2
T
e
i
|

i
w

5

c
v
i

5

t

w
a
(
s
n
l
a

a

D

S
E
(
X
X
T
t
{

c
G
d

5

c
w
d
b
d
a
o
s
t
s
u
i
s

x
T
s
t
X

r
s
M
b

a
i
e
O
q
p
n
D
A
C
t

Finally we analyze the time complexity of Algorithm 1. First,
we determine the complexity of the three functions. Functions
splitter and split both require a for-loop that checks all states
in π ; hence their complexity is O(|X |). Function update requires
hecking for all cells π ′ in the updated cover and all symbols
in the alphabet if a violating condition involving πnew exists:

or each pair (σ , π ′) two calls to function splitter are required.
hus the time complexity of the function is O(|C| · |Σ | · |X |) =

(|X |
2
· |Σ |), since for a non-redundant cover |C| ≤ |X |.

We conclude with the complexity of the main procedure. Lines
–2 (initialization of U) have a total complexity O(|X |

2). Lines 3–
2 (initialization of the set of splitters V) have a total complexity
including the test at lines 8 and 10) O(|X |

3
· |Σ |). The lines

nside the while-loop with the highest complexity are lines 22-
6 and lines 28-32, both of which have complexity O(|X |

2
· |Σ |).

he while-loop can be executed at most O(|X |
2) times, because

ach split removes at least one pair (xi, xj) (i ̸= j) from the
nduced relation RC and the number of such pairs is bounded by
X |(|X | − 1)/2. Therefore in total the complexity of the algorithm
s O(|X |

4
· |Σ |) corresponding to the repeated executions of the

hile-loop. □

. Applications and comparisons

In this section we demonstrate that different problems may be
ast into our formulated consistent reduction problem, and pro-
ide detailed comparisons with the work of supervisor reduction
n Su and Wonham (2004).

.1. Supervisory control

Given a monolithic supervisor H, we wish to understand the
control logic of H with respect to a particular controllable event
σ . Thus the goal is to construct a local supervisor G for σ such
hat G and H have consistent control decisions for σ .

Formally, let M = (Q , Σ, δ, q0,Qm) be a plant to be controlled,
here Σ is partitioned into a subset Σc of controllable events
nd a subset Σu of uncontrollable events. Suppose that H =

X, Σ, ξ , x0, Xm) is the monolithic supervisor for M (enforcing
ome imposed specification), which is maximally permissive and
onblocking (Wonham and Cai (2019)). Let σ ∈ Σc be a control-
able event, and we consider the problem of constructing from H
local controller for σ .
Define E : X → {0, 1} by E(x) = 1 iff ξ (x, σ)!, i.e., σ is enabled

t x. Also define D : X → {0, 1} by

(x) =

⎧⎪⎨⎪⎩
1, if not ξ (x, σ)! &

(∃s ∈ Σ∗)[ξ (x0, s) = x & δ(q0, sσ)!]
0, otherwise (i.e. ξ (x, σ)! or

(∀s ∈ Σ∗)[ξ (x0, s) = x ⇒ not δ(q0, sσ)!])

o D(x) = 1 iff σ is disabled at x. A state x ∈ X such that
(x) = D(x) = 0 is called a ‘don’t care’ state. Consider the
non-redundant) cover C = {X1, X2} with just two cells, where
1 = {x ∈ X | D(x) = 0}, X2 = {x ∈ X | E(x) = 0}. Note that
1 ∩ X2 = {x ∈ X | E(x) = D(x) = 0}, the set of ‘don’t care’ states.
he associated indicator function O : X → Pwr({1, 2}) is such
hat O(x) = {1} iff E(x) = 1; O(x) = {2} iff D(x) = 1; and O(x) =

1, 2} iff E(x) = D(x) = 0. Given H and C described above, our
onsistent reduction procedure will construct a local controller
for σ such that after every string s ∈ L(H), the decision as to

isable or enable σ made by H and by G are consistent.

7

Fig. 4. A non-deterministic automaton M and its observer H (transition ϵ in M
is ‘silent’ or unobservable). Reduced estimator G for state set Q̄ = {q5}.

.2. State estimation

While supervisor localization is a known problem that can be
ast as a special case of our general formulation, in this subsection
e demonstrate that interesting new reduction problems may be
efined and solved in our framework. Let H = (X, Σ, ξ , x0, Xm)
e an observer (or state estimator), constructed from some non-
eterministic automaton (say) M = (Q , Σ, δ, q0,Qm). Thus H is
deterministic automaton where each state is a subset of states
f M and for all s ∈ Σ∗ the state ξ (x0, s) reached in H by string
coincides with the set of states that can be reached in M by s:
his set is called the current state estimate of H given observation
. Assume, however, one is only interested in monitoring a partic-
lar subset Q̄ ⊆ Q of states of M, which may be of some critical
mportance. Thus the goal is to construct a reduced observer G
uch that G and H provide consistent estimation for Q̄ .
Define O : X → {{1}, {2}, {3}} such that O(x) = {1} if

∩ Q̄ = ∅; O(x) = {2} if x ⊆ Q̄ ; and O(x) = {3} otherwise.
hus O(x) = {1}, {2}, {3} means respectively that M is not at a
tate in Q̄ , is at a state in Q̄ , or may be at a state in Q̄ . Consider
he partition C = {X1, X2, X3} with three (disjoint) cells, where
1 = {x ∈ X | O(x) = {1}}, X2 = {x ∈ X | O(x) = {2}}, X3 = {x ∈

X | O(x) = {3}}. Given H and C described above, our consistent
eduction procedure will construct a reduced estimator G for Q̄
uch that after every string s ∈ L(H), the decision (as to whether
is not at a state in Q̄ , is in Q̄ , or may be in Q̄) made by H and

y G are consistent.
An example of reduced estimator is displayed in Fig. 4 where,

s previously mentioned, H is an observer for the non-determ-
nistic automaton M. We are interested in constructing a reduced
stimator for a (critical) state q5 in M. Let O(x0) = O(x1) =

(x2) = {1} (M is not at q5), O(x5) = {2} (M is exactly at
5), and O(x3) = O(x4) = {3} (M may be at q5). Then the
artition on X is C = {{x0, x1, x2}, {x3, x4}, {x5}}. However, C is
ot a dynamically consistent partition, because condition (ii) of
efinition 7 is violated for states x0, x2 and event α. Applying
lgorithm 1 we obtain a refined dynamically consistent cover
dyn = {{x0, x1}, {x1, x2}, {x3, x4}, {x5}}. Then construct by (6)
he local estimator G, displayed in Fig. 4. By (7) the associated

K. Cai, A. Giua and C. Seatzu Automatica 142 (2022) 110333

O
t
m
u
w
a
c

5

s
r
c
C
2
(
t
W
i

E
a
{

(

{

r
3
i
O
O
P

i
p
i
T
g
t
i

E
H
e
s
a
r
t
p
s
A

{

a
w
G
a

Fig. 5. Example 12: a CRP that cannot be solved by the algorithm in Su and
Wonham (2004).

indicator function P is such that P(y0) = O(x0) ∩ O(x1) = {1} ∩

{1} = {1}, P(y1) = O(x1) ∩ O(x2) = {1} ∩ {1} = {1}, P(y2) =

(x3) ∩ O(x4) = {3} ∩ {3} = {3}, P(y3) = O(x5) = {2}. Observe
hat G makes decisions (as to whether M is not at q5, is at q5, or
ay be at q5) consistently with that done by H; thus one may
se G instead of H, with the benefit of having fewer states. It is
orth noting, in this example, that even though the initial C is
partition on X , the resulting Cdyn is a (dynamically consistent)
over rather than a partition.

.3. Comparisons with supervisor reduction

In Su and Wonham (2004) the supervisor reduction problem is
tudied (cf. Section 5.1), and a solution algorithm is proposed to
educe the states of a given supervisor while keeping consistent
ontrol logic. This problem is a special case of our more general
RP, because only a special type of cover is considered (cf. the
-cell cover in Section 5.1). The algorithm in Su and Wonham
2004) works on a binary relation, which is the induced one from
he considered special cover. If we apply the algorithm in Su and
onham (2004) to our CRP, it may fail to find a solution. This is

llustrated by the example below.

xample 12. Consider the automaton H displayed in Fig. 5,
nd the non-redundant cover C = {X1 = {x0, x1, x2}, X2 =

x2, x3, x4}, X3 = {x0, x4, x5}}. This cover may represent a classifi-
cation of states (or strings) with different features, e.g. markers,
secrets, and outputs (where output symbols are generated). The
CRP is to construct a reduced automaton G and an associated
indicator function P such that the classification is consistent with
H; technically, the properties (3)–(5) are satisfied,

Applying the algorithm in Su and Wonham (2004), the state
pairs will be checked if they can be merged in the fixed order:
x0, x1), (x0, x2), . . . , (x4, x5). The resulting partition is C′

= {X ′

1 =

{x0, x2, x4}, X ′

2 = {x1}, X ′

3 = {x3}, X ′

4 = {x5}}, which does not re-
fine the given cover C; and the corresponding reduced automaton
G is displayed in Fig. 5. For this G, however, it is impossible to
define an indicator function P to satisfy property (5). Specifically,
for y0 = 1 (the index of the first cell in C′), there are eight possible
choices for P(y0): these are all the subsets of cell indices {1, 2, 3}
in C). None of the eight choices, however, can satisfy (5). For
example, P(y0) = ∅ violates (5) for s = β , because P(η(y0, β)) =

P(y0) = ∅; P(y0) = {1} violates (5) for s = αβσ , because
P(η(y , αβσ)) = {1} while O(ξ (x , αβσ)) = {2, 3}; P(y) = {2, 3}
0 0 0

8

Fig. 6. Example 13: monolithic supervisor H for plant M; a minimal-state
supervisor G achieved by Algorithm 1.

violates (5) for s = αα, because P(η(y0, αα)) = {2, 3} while
O(ξ (x0, αα)) = {1, 2}. Similarly one may verify that all the eight
choices for P(y0) fail to satisfy (5), and therefore no function P
exists to solve the CRP.

The reason why the algorithm in Su and Wonham (2004) fails
is because, designed to solve the special instance of supervisor
reduction, it does not have a mechanism to take into account
the given cover C. Indeed, that algorithm always starts from the
singleton partition, trying to merge states in a fixed order, and thus
the resulting partition need not be a refinement of the given C. To
satisfy (5), however, a refinement of C is crucial. This is achieved
by our designed Algorithm 1, which yields the non-redundant
dynamically consistent cover Cdyn = {X ′

1 = {x1, x2}, X ′

2 =

x2, x3, x4}, X ′

3 = {x0, x4, x5}}. This Cdyn gives rise to multiple
educed automata all with three states y0 = 1, y1 = 2, y2 =

(one such automaton is displayed in Fig. 5). The associated
ndicator function P defined as in (7) is such that P(y0) = O(x1)∩
(x2) = {1}, P(y1) = O(x2) ∩ O(x3) ∩ O(x4) = {2}, P(y2) =

(x0) ∩ O(x4) ∩ O(x5) = {3}. It is readily verified that with this
, the required properties (3)–(5) of CRP are all satisfied.

For problems like supervisor reduction where the algorithm
n Su and Wonham (2004) and our Algorithm 1 can both be ap-
lied, due to their different approaches (merging versus splitting)
t is not easy to compare them in terms of reduction efficiency.
here are cases, however, where our Algorithm 1 achieves (much)
reater reduction than the algorithm in Su and Wonham (2004),
hanks to the use of covers instead of partitions. This is illustrated
n the following example.

xample 13. As in Fig. 6, automatonM is a plant to be controlled,
a monolithic supervisor for M, and σ the only controllable

vent. All states are marked. The only disablement of σ by H is at
tate xn; and σ is ‘‘don’t care’’ at x0. For this example, applying the
lgorithm in Su and Wonham (2004) does not achieve any state
eduction. In fact, similar to Su and Wonham (2004, Example 4),
he reason for failing to reduce any states is due to the use of
artitions in that algorithm, and state reduction or even minimal
tate reduction may be achieved only by using covers, as our
lgorithm 1 does.
Consider the 2-cell cover C = {{x0, x1, . . . , xn−1}, {x0, xn}} =:

X1, X2} (as in Section 5.1). It is readily verified that C is already
dynamically consistent cover (inputting H and C to Algorithm 1
ill output C itself). Then C yields a reduced 2-state automaton
displayed in Fig. 6. In fact, this 2-state G is the minimal state

utomaton that satisfies the three properties of CRP.

K. Cai, A. Giua and C. Seatzu Automatica 142 (2022) 110333

s

p
A

a

s
o
g
w
l
u
σ

m
β

o
c
f
u
W

6

g
m
c
e
g
s

R

A

B

B

Fig. 7. Example 14: monolithic supervisor H for plant M; two reduced
upervisors G, G′ .

Finally, while the algorithm in Su and Wonham (2004) com-
utes a partition which corresponds to a single solution, our
lgorithm 1 computes a cover that corresponds to a family of

solutions, offering extra flexibility to define multiple reduced au-
tomata. This flexibility may be useful in exploring additional fea-
tures in different problems. The following example demonstrate
this point from the perspective of reduction of event observation
(or communication).

Example 14. In Fig. 7, automaton M is a plant to be controlled, H
monolithic supervisor for M, and σ the only controllable event.

All states are marked. H enables σ at x0, disables σ at x2, and x1
is a ‘‘don’t care’’ state. Applying the algorithm in Su and Wonham
(2004) results in the partition {{x0, x1}, {x2}}, which leads to a
ingle solution G as displayed in Fig. 7. By contrast, applying
ur Algorithm 1 results in the cover {{x0, x1}, {x1, x2}}, which
ives rise to different partitions {{x0, x1}, {x2}} and {{x0}, {x1, x2}}
hich are both dynamically consistent; the latter yield two so-

utions G and G′ as displayed in Fig. 7. Both G and G′ can be
sed as a supervisor for plant M to correctly enable/disable event
; however, G must observe n events β1, . . . , βn, whereas G′

erely needs to observe one event α. Suppose a priori that events
1, . . . , βn are unobservable (no sensors for them), or a design
bjective is to observe as few events as possible to minimize
osts (but still can control σ correctly), then one may explore the
lexibility offered by the cover from Algorithm 1 and choose to
se G′. This flexibility does not exist in the algorithm in Su and
onham (2004).

. Conclusions

We have developed a consistent reduction procedure which,
iven an arbitrary finite automaton and a binary relation, deter-
ines a reduced one while preserving the possibility of correctly
lassifying generated strings. In future work, we are interested in
xtending this consistent reduction framework to handle more
eneral state transition systems with possibly infinite number of
tates and/or nondeterministic transitions.

eferences

lur, R., Henzinger, T. A., Lafferriere, G., & Pappas, G. J. (2000). Discrete
abstractions of hybrid systems. Proceedings of IEEE, 88(7), 971–984.

lizard, W. (1989). Multiset theory. Notre Dame Journal of Formal Logic, 30(1),
36–66.

ugalho, M., & Oliveira, A. (2005). Inference of regular languages using state
merging algorithms with search. Pattern Recognition, 38(9), 1457–1467.

Cai, K., Giua, A., & Seatzu, C. (2019). On consistent reduction in discrete-event
systems. In Proc. 15th IEEE int. conf. automation science and engineering (pp.
474–479). Vancouver, Canada.
9

Cai, K., & Wonham, W. M. (2016). Lecture notes in control and information sciences:
vol. 459, Supervisor localization: A top-down approach to distributed control of
discrete-event systems. Springer.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2006). Introduction to automata
theory, languages and computation (3rd ed.). Addison-Wesley.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller,
J. W. Thatcher, & J. D. Bohlinger (Eds.), Complexity of computer computations:
Proceedings of a symposium on the complexity of computer computations (pp.
85–103). Boston, MA: Springer US.

Milner, R. (1989). Communication and concurrency. Prentice Hall.
Minhas, R. (2002). Complexity reduction in discrete event systems (Ph.D. thesis),

ECE Dept., University of Toronto.
Mohajerani, S., Malik, R., & Fabian, M. (2014). A framework for compositional

synthesis of modular nonblocking supervisors. IEEE Transactions on Automatic
Control, 59(1), 150–162.

Oncina, J., & Garcia, P. (1992). Inferring regular languages in polynomial update
time. Pattern Recognition and Image Analysis, World Scientific, 1, 49–61.

Su, R., van Schuppen, J. H., Rooda, J. E., & Hofkamp, A. T. (2010). Non-
conflict check by using sequential automaton abstractions based on weak
observation equivalence. Automatica, 46(6), 968–978.

Su, R., & Wonham, W. M. (2004). Supervisor reduction for discrete-event
systems. Discrete Event Dynamic Systems, 14(1), 31–53.

Su, R., & Wonham, W. M. (2018). A generalized theory on supervisor reduction.
In Proc. 57th IEEE conf. on decision and control (pp. 3950–3955). Miami, FL.

Tabuada, P. (2009). Verification and control of hybrid systems: A symbolic approach.
Springer.

Verwer, S., de Weerdt, M., & Witteveen, C. (2006). Identifying an automaton
model for timed data. In Proc. of the 15th annual machine learning conference
of Belgium and the Netherlands (pp. 57–64). Ghent, Belgium.

Wonham, W. M., & Cai, K. (2019). Supervisory control of discrete-event systems.
In Communications and Control Engineering. Springer.

Kai Cai received the B.Eng. degree in Electrical Engi-
neering from Zhejiang University, Hangzhou, China, in
2006; the M.A.Sc. degree in Electrical and Computer
Engineering from the University of Toronto, Toronto,
ON, Canada, in 2008; and the Ph.D. degree in Sys-
tems Science from the Tokyo Institute of Technology,
Tokyo, Japan, in 2011. He is currently a Professor at
Osaka Metropolitan University. Previously, he was an
Associate Professor at Osaka City University (2014–
2020), an Assistant Professor at the University of Tokyo
(2013–2014), and a Postdoctoral Fellow at the Univer-

sity of Toronto (2011–2013).
Dr. Cai’s research interests include discrete-event systems, cyber–physical

systems, and networked multi-agent systems. He is the co-author (with W.M.
Wonham) of Supervisory Control of Discrete-Event Systems (Springer 2019) and
Supervisor Localization (Springer 2016). He is serving as the Chair for the IEEE
CSS Technical Committee on Discrete Event Systems and an Associate Editor
for the IEEE Transactions on Automatic Control. He was the recipient of the
Pioneer Award of SICE in 2021, the Best Paper Award of SICE in 2013, the Best
Student Paper Award of the IEEE Multi-Conference on Systems and Control, and
the Young Author’s Award of SICE in 2010.

Alessandro Giua received the Laurea degree in electric
engineering from the University of Cagliari, Italy, in
1988 and the master’s and Ph.D. degrees in computer
and systems engineering from the Rensselaer Poly-
technic Institute, Troy, NY, USA, in 1990 and 1992,
respectively. He is currently a Professor in automatic
control with the Department of Electrical and Elec-
tronic Engineering (DIEE) of the University of Cagliari.
He has also held faculty or visiting positions in several
institutions worldwide, including Aix-Marseille Univer-
sity, France and Xidian University, Xi’an, China. His

research interests include discrete event systems, hybrid systems, networked
control systems, Petri nets and failure diagnosis.

He is a member of the IEEE Control Systems Society, where he has served
as the Vice President for Conference Activities (2020–21), the General Chair of
the 55th Conf. on Decision and Control, in 2016, and a member of the Board
of Governors (2013–2015). He is an affiliate of the International Federation of
Automatic Control (IFAC) where he has served as the Chair of the IFAC Technical
Committee 1.3 on Discrete Event and Hybrid Systems (2008–2014)and a member
of the Publications Committee, since 2014.

He is currently the Editor-in-Chief of the IFAC journal Nonlinear Analysis:
Hybrid Systems and a senior editor of the IEEE Trans. on Automatic Control.

He is a Fellow of the IEEE and a Fellow of the IFAC for contributions to Discrete
Event and Hybrid Systems, and a recipient of the IFAC Outstanding Service Award.
He received the People’s Republic of China Friendship Award in 2017.

http://refhub.elsevier.com/S0005-1098(22)00181-9/sb1
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb1
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb1
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb2
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb2
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb2
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb3
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb3
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb3
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb4
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb5
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb5
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb5
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb5
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb5
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb6
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb6
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb6
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb7
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb8
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb9
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb9
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb9
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb10
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb10
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb10
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb10
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb10
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb11
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb11
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb11
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb12
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb13
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb13
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb13
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb14
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb14
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb14
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb15
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb15
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb15
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb16
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb16
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb16
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb16
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb16
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb17
http://refhub.elsevier.com/S0005-1098(22)00181-9/sb17

K. Cai, A. Giua and C. Seatzu Automatica 142 (2022) 110333
Carla Seatzu (Senior Member, IEEE) is currently a Full
Professor of Automatic Control with the University of
Cagliari, Cagliari, Italy. She is Coordinator of the B.Sc.
degree in electrical, electronic, and computer engi-
neering. She is the author of over 260 publications,
including 80+ articles in international journals and
one textbook. She is the editor of two international
books. She has been a Visiting Professor with uni-
versities in Spain, (Zaragoza), USA (Atlanta), Mexico
(Guadalajara), and China (Xi’an, Hangzhou). Her h-
index in Scopus is equal to 36. Her research interests
10
include discrete-event systems, Petri nets, hybrid systems, networked control
systems, manufacturing, and transportation systems. Prof. Seatzu is a Senior
Editor of the IEEE CONTROL SYSTEMS LETTERS and the IEEE TRANSACTIONS
ON AUTOMATION SCIENCE AND ENGINEERING. She was a Program Chair of
the 23rd IEEE International Conference on Emerging Technologies and Factory
Automation in 2018, Workshop Chair of the 55th IEEE Conf. on Decision and
Control in 2016 and a General Co-Chair of the 18th IEEE International Conference
on Emerging Technologies and Factory Automation in 2013. She is Department
Editor of Discrete Event Dynamic Systems.

	Consistent reduction in discrete-event systems
	Introduction
	Binary relations and covers
	Binary relations
	Covers
	R-consistent covers

	Problem formulation
	Consistent reduction procedure
	Dynamically consistent cover
	Computation of a dynamically consistent cover

	Applications and comparisons
	Supervisory control
	State estimation
	Comparisons with supervisor reduction

	Conclusions
	References

