
システム/制御/情報，Vol. 66, No. 9, pp. 359–364, 2022 359

||

[確率統計でもっと楽しくなるシステム制御]** 解 説

Data-Driven Supervisory Control of
Discrete-Event Systems

Kai Cai*

||

1. Introduction

Discrete-event systems (DES) is a relatively new
area of control science and engineering[2], which has
taken its place in the mainstream of control research.
A DES is a dynamical system that is discrete, in time
and usually in state space; is asynchronous or event
driven, i.e. driven by events or instantaneous hap-
penings in time; and is uncertain, i.e. embodies inter-
nal chance or other unmodeled mechanisms of choice
governing its state transitions. Applications of DES
have been undertaken in areas such as database man-
agement, software engineering, flexible manufactur-
ing, intelligent transportation, and logistic services.
Recently, DES has been combined with continuous
dynamical systems in areas called hybrid or cyber-
physical systems[3,12].

In the past few years, various machine learning
techniques have been successfully utilized to analyze
and synthesize controllers for continuous dynamical
systems. Representative approaches include identifi-
cation of dynamic models from data[5], learning con-
trol laws directly from observations[13] or through re-
inforcement learning[7]. This research thrust has been
driven by the motivation to tackle challenging control
problems involving unknown system dynamics, high
nonlinearity, huge dimensionality, and on the other
hand the increasing availability of large quantity of
observation data.

The same thrust is, at this time, obscure in the
DES research. Although attempts to apply machine
learning techniques exist[4,6], such works are scarce
and not at all systematic. In this sense, the DES lit-
erature is still basically pre-bigdata or pre-machine
learning. On the other hand, DES problems are fac-
ing similar challenges like unknown system dynamics
and/or high dimensionality, as well as the opportunity
of exploding amount of observation data thanks to
fast advancing data collection capabilities. Hence ma-
chine learning methods may potentially make impor-
tant impacts on certain challenging DES problems.
With this in mind, this article aims to introduce the
∗ This work was supported in part by JSPS KAKENHI

Grant no. 21H0487 and the 2021 Osaka City Univer-

sity Strategic Research Grant to Encourage Applicants

for Upper Level KAKENHI. K. Cai is with Depart-

ment of Core Informatics, Osaka Metropolitan Univer-

sity. Email: cai@omu.ac.jp
Key Words: discrete-event systems, automata, data-driven

methods, supervisory control.

opportunity of developing data-driven approaches for
the modeling and control of DES.

Specifically, this article will focus on introducing
a model identification based approach for one of the
mainstream DES control methods, the supervisory
control theory (SCT). SCT was first proposed by Ra-
madge and Wonham in the 1980s[9,19,10], with the
aim to formalizing general (high-level) control princi-
ples for a wide range of application domains involv-
ing man-made, computerized systems. For a compre-
hensive account of SCT, the reader is referred to[17];
also see[18] for a historical overview of the theory.
In SCT, a DES is first modeled as a finite-state au-
tomaton, and its behaviors represented by regular lan-
guages. Then supervisory control designs are carried
out based on these models; namely, a model-based ap-
proach of control design. If the automaton model of
DES is unknown, then the model must be somehow
identified or estimated before the existing supervisory
control methods may be applied.

Identifying an automaton model of a system based
on the observation data of the system has been in-
vestigated in the field of automata learning (an in-
tersection of automaton theory and machine learn-
ing)[8,1,14]. Given a set of observed strings (i.e. be-
haviors) that must be accepted by the automaton
(meaning that the behaviors are desired, positive ones),
and a set of strings that must not be accepted (i.e. un-
desired, negative behaviors), a prefix tree acceptor H
(a loopless automaton) is first constructed in which
states reached by accepted strings are labeled “A”
(these are the accepting states), states correspond-
ing to non-accepted strings are labeled “N”, and all
other “don’t care” states are not labeled. Then one
tries to reduce the number of states of H by merg-
ing state pairs that are consistent : i.e. it is possible
to merge a state labeled “A” (resp., “N”) with ei-
ther a state “A” (resp., “N”) or a “don’t care” state;
it is also possible to merge two “don’t care” states.
By this state merging, a reduced automaton G is ob-
tained that accepts all positive behaviors while rejects
all negative behaviors. This reduced automaton G is
the identified model from the observation data con-
taining both positive and negative samples. That is,
the dataset is labeled; thus automata learning is a su-
pervised learning approach. More advanced topics of
automata learning can be found in[11,15,16].

It is natural to leverage automata learning to de-
velop a data-driven approach for supervisory control
of DES. The approach consists of first applying au-

– 21 –

「確率統計でもっと楽しくなるシステム制御」特集号

360 システム/制御/情報　第 66 巻　第 9 号　 (2022)

DES plant
(unknown)

Model
identification Identified

plant model

Model-based
control design

Supervisor (wrt.

identified plant)

Data

(strings with labels)

Feedback
control

Observation

Model family
definitionFamily of plant

Data-informativity
for control design

Supervisor (wrt.

plant model family) Feedback
control

models generating
the same data

& labeling

︸ ︷︷ ︸

Approach1

︸ ︷︷ ︸

Approach2

Fig. 1 Two data-driven approaches to supervisory control of discrete-event systems

tomata learning to identify an automaton model of
DES from labeled observation data, and then apply-
ing standard SCT to design supervisory controllers
based on the identified DES model. This is outlined
as “Approach 1” in Fig. 1. This approach is the focus
of this article, which will be introduced in Sections 2–
4.

A second data-driven approach that this article
will briefly touch upon is to learn control laws di-
rectly from observation data, without going through
a model identification step. This is outlined as “Ap-
proach 2” in Fig. 1, and briefly introduced in Sec-
tion 5. This approach is inspired by a recently de-
veloped method based on a new concept called data-
informativity, which requires that observation data
contain sufficient information such that a valid su-
pervisor may be designed for a family of plant models
that all can generate the same observed data.

2. Supervisory Control in a Nutshell

In supervisory control of DES, the plant to be con-
trolled is modeled by a finite-state automaton

G=(Q,Σ,δ,q0,Qm). (1)

Here Q is the finite state set, Σ the finite event set,
δ :Q×Σ→Q the (partial) state transition function,
q0 ∈Q the initial state, and Qm ⊆Q the subset of
marker states (or target states). A sequence of events
in Σ is called a string, and write Σ∗ for the set of all
finite-length strings of Σ, including the empty string
ε (containing no event). Then the state transition
function δ may be inductively defined such that δ :Q×
Σ∗ →Q. Write δ(q,s)! to mean string s is defined at
state q. We say that the automatonG is deterministic
if

(∀q ∈Q)(∀s∈Σ∗)δ(q,s)!⇒|δ(q,s)|=1.

Namely the destination state of every state transition
is unique. We shall focus exclusively on deterministic
automata unless otherwise stated.

The closed behavior L(G) of G is defined as the
set of all strings of Σ∗ which G can generate starting
from the initial state q0:

L(G) := {s∈Σ∗ | δ(q0,s)!}.
A central subset of L(G), called the marked behav-
ior of G, is the collection of strings that can reach a
marker state:

Lm(G) := {s∈L(G) | δ(q0,s)∈Qm}.
To formulate a control problem for G, we first ad-

join a control mechanism by whichGmay be actuated
to affect its behavior; that is, determine the strings
it is permitted to generate. To this end we assume
that a subset of events Σc⊆Σ, called the controllable
events, are capable of being enabled or disabled by an
external controller. The complementary event subset
Σu :=Σ \Σc is uncontrollable; events in Σu cannot
be externally disabled and must be considered per-
manently enabled.

Consider a control specification given as a lan-
guage E⊆Σ∗, describing desired behaviors to be en-
forced. Write E := {s∈Σ∗ | (∃s′ ∈Σ∗)ss′ ∈E} for the
set of all prefix strings of E. A fundamental concept
of supervisory control is the following: The language
E is controllable (with respect to G) provided

for all s∈E and for all σ ∈Σu,

if sσ ∈L(G) then sσ ∈E. (2)

The basic result of supervisory control then is: The
specification language E being controllable is neces-
sary and sufficient for the existence of a supervisor S
that disables only controllable events in Σc such that

Lm(S)=Lm(G)∩E.

The supervisor S is also an automaton, which con-
trollably restricts the plant G’s behavior to realize
the imposed specification E.

Even if E fails to be controllable, we can still de-

– 22 –

Cai: Data-Driven Supervisory Control of Discrete-Event Systems 361

Observed strings in L(G) Membership in Lm(G)

s1 =αββ +
s2 =αβαα +
s3 =α −

s4 =βαβ +
s5 =ββ −

Table 1 Running example: observed data with labels

sign a maximally permissive supervisor S∗ that op-
timally approximates E. Let K := Lm(G)∩E and
define the family of controllable sublanguages of K:

C(K) := {K ′ ⊆K |K ′ is controllable (wrt. G)}.
This C(K) contains a unique supremal element, writ-
ten supC(K) (owing to the fact that the language
controllability is closed under arbitrary set unions),
which is the largest controllable sublanguage of K.
Hence, whenever supC(K) �=∅ there exists an optimal
supervisor S∗ such that

Lm(S∗)= supC(K)⊆Lm(G)∩E.

The above is all the basic supervisory control the-
ory that is needed in this article. The theory is model-
based. In the following sections, by contrast, we con-
sider the alternative where the plant model is un-
known but certain relevant data observed from the
plant are available.

3. Automata Learning

Consider a plant whose automaton model G is
unknown (i.e. internal working unknown), but whose
behaviors can be externally observed. As a running
example, consider five strings generated by G are ob-
served and recorded in Table 1.

Denote by D the set of all observed strings, and
call this set the observation dataset. Since each string
in D is observed from G, the dataset is a subset of
the closed behavior of G: i.e. D⊆L(G).

Moreover, suppose that each string in the dataset
D is labeled according to whether or not it belongs
to the marked behavior Lm(G). Thus this is a set-
ting of supervised learning, where an expert exists for
correctly labeling the ‘raw data’. For the example in
Table 1, the + label means that the observed string
is in Lm(G), while the − label means the opposite.

Write D+ (resp. D−) for the set of observed
strings with the + label (resp. with the − label).
Precisely

D+ = {s∈D | s∈Lm(G)}
D− = {s∈D | s /∈Lm(G)}.

Then D=D+∪D− and

D+ ⊆Lm(G), D−∩Lm(G)= ∅.
The problem of automata learning is to construct

an estimate automaton Ĝ based on the labeled dataset

α

T

β

x0

x7x6

β
−

+

x1

−
x2

β
x3

α
x4

α
+

β

x5

+

x8

α

β x9

Fig. 2 Running example: prefix tree automaton

D, such that

D⊆L(Ĝ), D+ ⊆Lm(Ĝ), D−∩Lm(Ĝ)= ∅. (3)
In words, the constructed Ĝ should (i) be capable
of generating all observed strings, (ii) contain all the
‘positive data’ (strings belong to Lm(G)) in its marked
behavior, and (iii) contain no ‘negative data’ in its

marked behavior. In this sense, Ĝ is consistent with
the true but unknown G.

In general there exist many Ĝ consistent with G.
Of particular interest is Ĝ with the minimum num-
ber of states. This is the minimum-state automata
learning problem, which (unfortunately) turns out to
be NP-hard. To derive sub-optimal (wrt. state num-

ber) automaton Ĝ, many approaches have been pro-
posed[8,1,14]. In the following we illustrate a widely
used approach based on state merging.

The approach consists of two steps. The first step
is construction of a prefix tree automaton T. This T
is constructed by going through each string in the
dataset D, and adding states to T for generating all
the prefix strings. Then label each state of T reached
by a string in D+ with the + symbol, whereas each
state reached by a string in D− with the − symbol,
and all the other states unlabled. For the running
example whose dataset is in Table 1, the constructed
prefix tree automaton T is displayed in Fig. 2.

Two comments are immediate. First, the prefix
tree automaton T contains no loops. Second, T itself
is already a solution to the automaton learning prob-
lem (i.e. conditions in (3) are satisfied). However,
T is a trivial solution in that it simply enumerates
states, the number of which is unnecessarily large (es-
pecially for large datasets). Hence the second step of
the approach is to suitably merge the states of T to
achieve as much state reduction as possible.

When merging states, two levels of consistency
need to be respected. The first is label consistency.
It is possible to merge a state labeled + with another
state labeled either + or not labeled. Similarly, it is
also possible to merge a state labeled − with another
state labeled either − or not labeled. In other words,
it is (only) not possible to merge a + state with a −
state. For example in Fig. 2, states x7 and x9 cannot
be merged.

The second consistency that needs to be respected

– 23 –

362 システム/制御/情報　第 66 巻　第 9 号　 (2022)

α

Ĝ

αβ

q0 = {x0, x4, x5, x9}

β

+
q0

−

q1 = {x1, x3, x7}

q1

q2 = {x2, x8}

q3 = {x6}

q3

α

β

β

α

q2

Fig. 3 Running example: state reduced automaton

is the transitional relation. Two label-consistent states
may be merged if their common future states reached
by the same strings can also be merged. That is, state
merging must respect the dynamics of the automaton.
This is to ensure that the resulting (state-reduced)
automaton is deterministic. As an example, in Fig. 2
although states x6 and x8 are label consistent (both
are not labeled), they have a pair of common future
states x7,x9 (reached by β) which cannot be merged.
As a result, states x6 and x8 cannot be merged. If
they were merged, the resulting automaton is nonde-
terministic: from the merged state containing x6,x8,
it is possible to reach two different states (one con-
taining x7, the other containing x9) by β, i.e. the
destination state is not unique.

Respecting the above mentioned two levels of con-
sistency, a valid state merging scheme for the example
in Fig. 2 is given by the partition P={C1,C2,C3,C4}:

C1 = {x0,x4,x5,x9}, C2 = {x1,x3,x7},
C3 = {x2,x8}, C4 = {x6}.

The resulting state-reduced automaton Ĝ is displayed
in Fig. 3. Observe that while T is loopless, Ĝ con-
tains loops and is deterministic. More importantly, it
is easily verified that Ĝ is a valid solution to the au-
tomata learning problem: all five strings are in L(Ĝ),

s1,s2,s4 ∈ Lm(Ĝ), and s2,s5 /∈ Lm(Ĝ). For this ex-

ample, in fact, the 4-state Ĝ is the minimum-state
solution that can be achieved.

4. Model Identification based Super-
visory Control

With the method of automata learning, a straight-
forward approach to data-driven supervisory control
is to first identify a plant model from observation
data, and then design a supervisor based on the iden-
tified model.

We state the problem formally.
Problem: data-driven supervisory control (DDSC)
Consider a plant whose model G=(Q,Σ,δ,q0,Qm) is
unknown, and an observation dataset D ⊆ L(G) is
available. Moreover D is labeled such that D=D+∪
D− where

D+ = {s∈D | s∈Lm(G)}
D− = {s∈D | s /∈Lm(G)}.

Given a control specification E⊆Σ∗, design a super-
visor Ŝ based on the labeled dataset D such that

∅ �=Lm(G)∩Lm(Ŝ)⊆Lm(G)∩E.

The last line means that the supervisor Ŝ designed
based on the dataset D is nontrivial (i.e. the con-
trolled behavior is nonempty) and satisfies the im-
posed specification.

To solve this problem, the following approach com-
bines the methods introduced in Sections 2 and 3.

Approach: model identification based supervi-
sory control design (MISCD)
Step 1. Apply the method of automata learning to
derive from the labeled dataset D an estimate plant
model Ĝ=(Q̂,Σ̂,δ̂,q̂0,Q̂m).
Step 2. Apply the method of supervisory control to
derive a supervisor Ŝ, which enforces the specification
E for the estimate plant Ĝ.

Several facts follow directly from the results of su-
pervisory control (Section 2). First, the derived su-

pervisor Ŝ from MISCD satisfies

Lm(Ŝ)=Lm(Ĝ)∩E

if and only if E is controllable wrt. Ĝ. Second, when-
ever supC(Lm(Ĝ)∩E) �= ∅, there exists an optimal

supervisor Ŝ∗ such that

Lm(Ŝ∗)= supC(Lm(Ĝ)∩E)⊆Lm(Ĝ)∩E.

The above assertions mean that if we treat the iden-
tified plant model Ĝ as the true plant and consider
that the specification E is imposed on Ĝ, then the
derived supervisor Ŝ (or the optimal Ŝ∗) is valid for

Ĝ as a direct consequence of supervisory control.
The identified Ĝ, however, is not the true plantG.

There is a gap between Ĝ and G, and how closely Ĝ
approximates G depends on the quality and/or rich-
ness of the labeled dataset D. Since the formulated
problem DDSC seeks a supervisor to impose the spec-
ification E on the true plant G, a relation between Ĝ
and G is needed.

We know from the result of automata learning
that the learned plant model ensures that Ĝ satisfies
(3). Based on this knowledge, the following condition
is key:

D+∩E is nonempty and controllable wrt. G and Ĝ

(4)

If (4) holds and we know D+ ⊆ Lm(Ĝ), it follows

that the family C(Lm(Ĝ)∩E) contains at least one
nonempty element which is controllable wrt. G (i.e.
D+∩E). Hence the supemal element satisfies

supC(Lm(Ĝ)∩E)⊇D+∩E �= ∅.
Accordingly there exists an optimal supervisor Ŝ∗ such
that Lm(Ŝ∗)= supC(Lm(Ĝ)∩E); hence

– 24 –

Cai: Data-Driven Supervisory Control of Discrete-Event Systems 363

α

G

β

−− β α α
+

β

+−

Fig. 4 Running example: true plant model

E

α

α

β

α

Fig. 5 Running example: control specification

Ŝ

α

α

β

α

β β

Fig. 6 Running example: estimated supervisor

Lm(G)∩Lm(Ŝ∗) =Lm(G)∩supC(Lm(Ĝ)∩E)

⊇D+∩E �= ∅.
On the other hand, it follows from

Lm(G)∩Lm(Ŝ∗) =Lm(G)∩supC(Lm(Ĝ)∩E)⊆E

Lm(G)∩Lm(Ŝ∗)⊆Lm(G)

that

Lm(G)∩Lm(Ŝ∗)⊆Lm(G)∩E.

In conclusion, if the key condition (4) holds,
then the MISCD approach solves the DDSC
problem.

For the running example in Section 3, suppose
that the true (unknown) plant model is the automa-
ton displayed in Fig. 4 and the imposed specification
E=Lm(E) where the automaton E is in Fig. 5. Also
let α be an uncontrollable event while β a controllable
event. First compute

D+∩E= {αβαα}.
It is verified that D+∩E is controllable wrt. both
the true plant G (Fig. 4) and the estimated plant Ĝ
(Fig. 3). Therefore condition (4) holds. Hence by the
MISCD approach, we derive the estimated supervisor
Ŝ as displayed in Fig. 6. Observe that in Ŝ the con-
trollable event β is disabled at two states so that the
specification E is enforced on Ĝ. Since

Lm(G)∩Lm(Ŝ)=D+∩E= {αβαα}

we conclude that this estimated supervisor Ŝ con-
structed from the observed dataset D satisfies the
requirement of the DDSC problem.

5. Data Informativity

In this section we briefly outline another data-
driven approach that directly designs control laws
from observation data. In contrast with the approach
in Section 4, this one circumvents the step of (explic-
itly) identifying automaton models.

Consider a plant whose modelG=(Q,Σ,δ,q0,Qm)
is unknown, and an observation dataset D⊆L(G) is
available. For simplicity assume that Qm =Q, i.e.
all states are marked; hence Lm(G) =L(G). Given
a control specification E ⊆Σ∗, the goal is to design
based on D a supervisor that satisfies E.

To this end, define the family of all automata that
can generate the dataset D:

M(D)= {G′ |D⊆L(G′)}.
It is evident that the true G ∈M(D). Call M(D)
the model family wrt. D. The idea is: if a supervi-
sor can be designed to make every automaton in the
model family M(D) satisfy the imposed specification
E, then this supervisor is also valid for the true, un-
known plant model G.

For this to be possible, consider the following con-
dition:

(∀G′ ∈M(D)) D∩E is nonempty and

controllable wrt. G′. (5)

This means that the dataset D needs to be ‘rich’
enough such that the language D∩E is nontrivial
and controllable for the whole model family. We say
that D satisfying this condition (5) is informative.

Suppose that (5) holds. Then for an arbitrary au-
tomaton G′ ∈M(D), the supemal controllable sub-
language

∅ �=D∩E⊆ supC(L(G′)∩E)⊆E.

Accordingly there exists an optimal supervisor S∗ such
that

L(G′)∩L(S∗)= supC(L(G′)∩E).

Therefore this supervisor S∗ is valid for the model
family, and in particular, for the true plant model G.

In conclusion, if the data-informativity con-
dition (5) holds, then a valid supervisor can be
designed based on dataset D for the unknown
plant G to satisfy an imposed specification E
(without explicitly identifying the model of G).

6. Concluding Remarks

In this article, a model identification based data-
driven supervisory control approach has been intro-
duced. The model identification part leverages au-
tomata learning methods to construct a model from a

– 25 –

364 システム/制御/情報　第 66 巻　第 9 号　 (2022)

labeled observation dataset; then the identified model
is used to synthesize a supervisor to enforce an im-
posed specification for the original unknown plant. A
second data-driven supervisory control approach that
does not explicitly identify automaton models has also
been briefly outlined.

The key conditions (4) and (5) can impose strong
requirements on the observation datasets; whether
or not such datasets are practically available or col-
lectable is case dependent. Hence an important di-
rection along this line of research is to find weaker (or
practically more reasonable) conditions for enforcing
control specifications (that may need to be suitably
downgraded). An alternative direction is to design
data collection strategies such that datasets satisfy-
ing the imposed requirements can be made available.

(2022年 3月 24日受付)

References

[1] M. Bugalho and A. Oliveira: Inference of regular lan-
guages using state merging algorithms with search.
Pattern Recognition, 38(9):1457–1467, 2005.

[2] K. Cai and W. M. Wonham: Supervisory control of
discrete-event systems. Encyclopedia of Systems and
Control, 2nd ed., Springer, 2020.

[3] J. Cury, B. Krogh and T. Ninomi: Synthesis of su-
pervisory controllers for hybrid systems based on ap-
proximating automata. IEEE Trans. Autom. Con-
trol, 43(4):564–568, 1998.

[4] A. Farooqui, F. Hagebring and M. Fabian: MIDES:
A tool for supervisor synthesis via active learning. In
IEEE Int. Conf. on Automation Science and Engi-
neering, page 792–797, 2021.

[5] M. Gevers, A. S. Bazanella, X. Bombois and
L. Miskovic: Identification and the information ma-
trix: How to get just sufficiently rich? IEEE Trans.
Autom. Control, 54(12):2828–2840, 2009.

[6] M. Konishi, T. Sasaki and K. Cai: On efficient safe
control based on supervisory control theory and deep
reinforcement learning. In Japan Joint Automatic
Control Conference, page 388–393, 2021.

[7] S. Mukherjee, H. Bai and A. Chakrabortty: On
model-free reinforcement learning of reduced-order
optimal control for singularly perturbed systems.
In IEEE Conf. on Decision and Control, page
5288–5293, 2018.

[8] J. Oncina and P. Garcia: Inferring regular languages
in polynomial update time. Pattern Recognition and
Image Analysis, World Scientific, 1:49–61, 1992.

[9] P. J. Ramadge and W. M. Wonham: Supervisory
control of a class of discrete event processes. SIAM
J. Control and Optimization, 25(1):206–230, 1987.

[10] P. J. Ramadge and W. M. Wonham: The control
of discrete event systems. Proc. IEEE, 77(1):81–98,
1989.

[11] B. Steffen, F. Howar and M. Isberner: Active au-
tomata learning: from dfas to interface programs
and beyond. In Int. Conf. on Grammatical Inference,
page 195–209, 2012.

[12] P. Tabuada and G. J. Pappas: Linear time logic
control of discrete-time linear systems. IEEE Trans.
Autom. Control, 51(12):1862–1877, 2006.

[13] H. J. van Waarde, J. Eising, H. L. Trentelman and
M. K. Camlibel: Data informativity: A new per-
spective on data-driven analysis and control. IEEE
Trans. Autom. Control, 65(11):4753–4768, 2020.

[14] S. Verwer, M. de Weerdt and C. Witteveen: Identi-
fying an automaton model for timed data. In Proc.
of the 15th Annual Machine Learning Conference of
Belgium and the Netherlands, pages 57–64, 2006.

[15] S. Verwer, M. de Weerdt and C. Witteveen: Effi-
ciently identifying deterministic real-time automata
from labeled data. Machine learning, 86(3):295–333,
2012.

[16] S. Verwer, R. Eyraud and C. de la Higuera: Pau-
tomac: a probabilistic automata and hidden markov
models learning competition. Machine learning,
96(1):129–154, 2014.

[17] W. M. Wonham and K. Cai: Supervisor Control of
Discrete-Event Systems. Communications and Con-
trol Engineering, Springer, 2016.

[18] W. M. Wonham, K. Cai and K. Rudie: Supervisory
control of discrete-event systems: A brief history. An-
nual Reviews in Control, 45:250–256, 2018.

[19] W. M.Wonham and P. J. Ramadge: On the supremal
controllable sublanguage of a given language. SIAM
J. Control and Optimization, 25(3):637–659, 1987.

Author
Kai CAI

Kai CAI received the B.Eng. degree

in Electrical Engineering from Zhejiang

University, Hangzhou, China, in 2006;

the M.A.Sc. degree in Electrical and

Computer Engineering from the Univer-

sity of Toronto, Toronto, ON, Canada,

in 2008; and the Ph.D. degree in Systems Science from

the Tokyo Institute of Technology, Tokyo, Japan, in 2011.

He is currently a Professor at Osaka Metropolitan Univer-

sity. Previously, he was an Associate Professor at Osaka

City University (2014–2020), an Assistant Professor at the

University of Tokyo (2013–2014), and a Postdoctoral Fel-

low at the University of Toronto (2011–2013). Dr. Cai’s

research interests include distributed control of discrete-

event systems and cooperative control of multi-agent sys-

tems. He is the co-author (with W.M. Wonham) of Super-

visory Control of Discrete-Event Systems (Springer 2019)

and Supervisor Localization (Springer 2016). He is serv-

ing as the Chair for the IEEE CSS Technical Committee

on Discrete Event Systems and an Associate Editor for

the IEEE Transactions on Automatic Control. He was

the recipient of the Pioneer Award of SICE in 2021, the

Best Paper Award of SICE in 2013, the Best Student Pa-

per Award of the IEEE Multi-Conference on Systems and

Control, and the Young Author’s Award of SICE in 2010.

– 26 –

	Cai

