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In this paper we study structural controllability and time-to-control of directed scale-free networks,
and propose algorithms to guarantee these properties with the minimum number of driver nodes.
Structural controllability is a qualitative (i.e. topological) measure of the ability to steer the network
to a desired state from an arbitrary initial state; while time-to-control measures how fast the above
steering can be done. First, we develop an algorithm that generates directed scale-free networks which
are provably structurally controllable with only one driver node. Moreover, considering the tradeoff
between control cost (number of driver nodes) and control performance (time-to-control), we propose
another algorithm that constructs directed scale-free networks which can be steered to a desired state
within a prescribed time bound and with the minimum number of driver nodes.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recently, the scale of many real networks has grown larger
nd their topologies become more complex. In response, many
etwork models [1–5], including small-world networks [2] and
cale-free networks [3] have been suggested to analyze the topo-
ogical properties of real complex networks.

Control properties of complex networks have also attracted
uch attention [6–10]. In particular, much work has been de-
oted to revealing fundamental aspects of evaluating controlla-
ility of complex networks, including exact controllability [6],
ontrol energy [7,9], network centrality [8], and network aggre-
ation [10]. While these approaches are effective in quantitatively
haracterizing the difficulty of control tasks and designing prac-
ical controllers, they require knowledge of concrete values of
nterconnection parameters of the whole network.

If only topological information of complex networks is avail-
ble and generic properties are sought for, one may resort to
raph-based methods from structural control theory [11–15] to
nalyze network controllability of almost all networks that share
common topology. In [16], the structural controllability of both
eal and theoretic complex networks has been investigated. In
rder to steer a network to a desired state, input signals need
o be injected into certain nodes, which are called driver nodes. It
is shown in [16] that complex networks in the real world often
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require many driver nodes to be able to fully control them. This
indicates that real complex networks are costly to control.

Since [16], many extensions of structural controllability of
complex networks have been investigated, including input/output
node selection [17,18], node classification [19], structural target
controllability [20], and strong structural controllability [21,22].
A particularly well-studied topic is how to reduce the number of
driver nodes (thereby control cost) for structural controllability.
Several approaches have been developed by changing the net-
work topology, e.g. adding the minimum number of edges [23,24],
rewiring redundant edges [25], and assigning the direction of
edges [26,27].

Our first goal in this paper is along this line of reducing the
number of driver nodes. In particular, we focus on directed scale-
free networks, which are more general than the undirected (sym-
metric) counterparts and have been shown to typically require a
large number of driver nodes [16]. Our inquiry is, is it possible to
control a directed scale-free network by a single driver node?

Our special focus on directed scale-free networks, among
other complex networks, is motivated by two main reasons.
First, the scale-free property has been identified in a number
of real networks, including the WWW, the Internet, the E. coli
metabolic networks, social networks, and citation networks [5].
Thus scale-free networks represent a wide and important class of
complex networks to study their fundamental properties (in this
case structural controllability). Second, the observations made
in [16] that scale-free networks appear to need large portions of
their nodes to be driver nodes and that hubs1 are typically not

1 Conceptually defined in the literature of complex networks (e.g. [5]), a hub
is a node connected with a large number of other nodes.
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river nodes indicate the extraordinary difficulty to control such
etworks as compared to other types of complex networks. Hence
esigning an effective way to reduce the number of driver nodes
or scale-free networks is of particular interest and significance.

Beyond mere structural controllability, from the control per-
ormance point of view it is important to steer a network to
desired state within an acceptable time bound. However, the

tudies in [23–27] do not consider reducing the time-to-control
arameter of networks [28], which measures how long it takes to
teer a network to a desired state. In [28,29] both real and theo-
etic complex networks are investigated, and it is demonstrated
hat networks which have a handful of driver nodes typically have
ong time-to-control, while networks have short time-to-control
end to require a large number of driver nodes. This reflects a
undamental tradeoff in classical optimal control (e.g. LQR).

For many real networks, it is desirable to steer them to a
esired state with low control cost (measured by number of
river nodes) and within a reasonably short time (measured by
ime-to-control). Thus our second goal in this paper is to reduce
he number of driver nodes for an imposed time-to-control. In
articular, we again focus on directed scale-free networks and
sk the question: given a time bound T , is it possible to find the
inimum number of driver nodes by which the network can be
teered to a desired state within T?
In this paper we address the above posed questions from the

heoretic point of view, and our main contributions are stated
s follows. First, we set aside time-to-control and consider only
tructural controllability. We propose an algorithm that generates
directed network, and prove that the network not only has

cale-free property but also is structurally controllable with only
ne driver node. In particular, the driver node is a hub node; this
s in contrast with the observation made in [16]. Second, we con-
ider time-to-control and a specified time bound T . We develop
nother algorithm that generates a directed scale-free network,
nd prove that the network needs the minimum number of driver
odes to be steered to a desired state within time bound T . In this
ase, driver nodes consist of both hubs and non-hubs. The issue
f reducing the number of driver nodes to meet the requirement
f time-to-control is not addressed in [28]; in this sense our work
xtends [28]. Summarizing from the above, the contributions of
his work are:

• a new algorithm that provably generates a directed scale-
free network that is structurally controllable with a single
driver node;

• another new algorithm that provably generates a directed
scale-free network that is T -structurally controllable with
the minimum number of driver nodes.

We note that in the literature, there are many works that
ropose methods to analyze and/or ensure certain properties of
iven networks (e.g. [16,25,28]), whereas there are also many
orks that propose models to generate networks with certain
roperties (e.g. [4,30,31]). Our approach is the same as the latter.
hile results derived from this approach do not directly address

iven (real) networks, such results can often reveal insights of the
etwork properties of interest and thereby provide indications of
ealing with given networks. In our case, the algorithmic mecha-
isms of generating both scale-free and structurally-controllable
roperties shed light on plausible strategies to ensure given net-
orks to have these properties (say) by edge addition or rewiring.
e leave thorough investigation on this issue to future work, and
elieve that this paper is an essential step with theoretical results
f interest in their own right.
The rest of the paper is organized as follows. In Section 2, we

tudy pure structural controllability. We first introduce the struc-
ural controllability theory and scale-free networks, and then
2

present an algorithm for constructing structurally controllable di-
rected scale-free networks with a single driver node. In Section 3,
we further consider time-to-control and develop an algorithm
that generates directed scale-free networks which can be steered
into a desired state within a prescribed time bound by using the
minimum number of driver nodes. Finally, our conclusions are
stated in Section 4.

2. Structurally controllable scale-free networks with a single
driver node

2.1. Preliminaries

2.1.1. Structural controllability
Consider a linear discrete-time dynamic network given by

x[t + 1] = Ax[t] + Bu[t] (1)

where x[t] ∈ RN represents the state vector of N nodes at time t ,
∈ RN×N is the state matrix, B ∈ RN×M is the input matrix, and

u[t] ∈ RM represents the input vector of M signals at time t . The
network (1) is controllable if the controllability matrix

C = [B AB A2B · · · AN−1B]

satisfies rank C = N . Controllability indicates that one can steer
the network to a desired state from an arbitrary initial state by
appropriate selecting M input signals.

However, for real complex networks we might have access
only to the topological information. In other words, we are often
unable to know the precise entries in A,B, but knowing only
whether each element is nonzero or not. For this, we use the
concept of structural controllability [11], which can be checked
based on the network topology.

Consider a linear time-invariant network described by a pair
of structural matrices (Ā, B̄), where Ā ∈ {0, ∗}

N×N and B̄ ∈

{0, ∗}
N×M . Here, {0, ∗}

N×M is the set of matrices of the size N×M
whose elements are either nonzero ∗ (unknown values) or 0.
This network can be represented by a digraph D(Ā, B̄) = (V , E),
referred to as the system digraph, where V = VA ∪ VB is the
node set which includes both the state nodes VA = {x1, . . . , xN}

and the input nodes VB = {u1, . . . , uM}, and E = EA ∪ EB is
the edge set which includes both EA = {(xi, xj) | Āji ̸= 0} and
EB = {(um, xi) | B̄im ̸= 0}. In addition, we define the state digraph
D(Ā) = (VA, EA).

The network (Ā, B̄) is said to be structurally controllable if we
can find a pair of real-valued matrices (A′,B′) which is control-
lable with the same structural pattern as (Ā, B̄) (i.e. the same
zero/non-zero locations). Especially, if such a pair (A′,B′) exists
then almost all possible pairs with the same structural pattern as
(Ā, B̄) are controllable.

It is shown in [11] that one can determine whether the net-
work is structurally controllable from the topology of system
digraph. A stem S = (V , E) (Fig. 1(a)) is an elementary directed
path, i.e. V = {s0, s1, . . . , sl} (l is the length of S) and E =

{(si, si+1) | 1 ≤ i ≤ l − 1}. The initial (resp. terminal) node
of a stem is called the root (resp. top) of the stem. A bud B =

(V , E) (Fig. 1(b)) is an elementary directed cycle of size n with
an additional edge e that begins at an external node v and ends
at one node on the cycle, i.e. V = {v, c1, . . . , cn} and E =

{(v, c1), (c1, c2), . . . , (cn−1, cn), (cn, c1)}. This additional edge e is
called the distinguished edge. A cactus (Fig. 1(c)) is a subgraph
defined as follows. Given a stem S0 and buds B1, B2, . . . , Bl, the
union graph S0 ∪ B1 ∪ B2 ∪ · · · ∪ Bl is a cactus if for every
i (1 ≤ i ≤ l) the starting node of the distinguished edge of Bi
is (i) the only node of Bi that also belongs to the node set of
S0∪B1∪B2∪· · ·∪Bi−1; and (ii) also the starting node of a directed
edge in the edge set of S ∪B ∪B ∪· · ·∪B . With the notion of
0 1 2 i−1
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Fig. 1. Classification of specific subgraphs. Nodes and edges are denoted by
circles and arrows, respectively.

cactus, the following lemma allows us to determine whether the
network is structurally controllable from the topology of system
digraph.

Lemma 1 ([11]). A network (Ā, B̄) is structurally controllable if and
nly if the system digraph D(Ā, B̄) is spanned by cacti, i.e. there exists
set of disjoint cacti rooted at input nodes (one cactus for each input
ode) that contains all state nodes.

emark 1. It follows from Lemma 1 that if a network is struc-
urally controllable, the number of driver nodes (where control
nputs are injected) is equal to the number of cacti that span the
etwork. In the special case where the network is spanned by a
ingle cactus, then exactly one driver node is sufficient to make
he network structurally controllable. Moreover, this single driver
ode is the root of the cactus (equivalently the root of the stem
0 of the cactus).

.1.2. Scale-free networks
Next, we introduce the scale-free property, which is found to

e a common feature in many real networks [3]. This property
eans roughly that many nodes are connected with only a hand-

ul of other nodes, while some (hub) nodes with a large number
f nodes. Let kin (resp. kout ) be the in-degree (resp. out-degree)
f a node, namely the number of in-edges (resp. out-edges) of
hat node. Also let P(kin), P(kout ) be the in-degree distribution and
he out-degree distribution, respectively; these are the ratios of
he number of nodes with in-degree kin or out-degree kout with
espect to the total number of nodes in the network. The scale-
ree property of directed networks refers to that P(kin), P(kout )
ollow the power laws [32]:

(kin) ∼ kin−γin , P(kout ) ∼ kout−γout

here ∼ means ‘‘proportional to’’ and γin, γout are called the ex-
ponents of the in-degree distribution and the out-degree distribu-
tion, respectively. As an example, the in/out-degree distributions
of WWW follow power laws with γ ≃ 2.1, γ ≃ 2.7 [32].
in out

3

Barabasi and Albert introduced an algorithm to generate undi-
rected scale-free networks [3]. This algorithm has two essential
ingredients: ‘‘growth’’ and ‘‘preferential attachment’’. First, the
network grows by adding one new node at each iteration. Second,
the probability that the new node is connected to an existing
node is proportional to the latter’s degree. It was shown [3]
that the degree distribution of undirected scale-free networks
generated by their algorithm follows a power law. Extending this
model, an algorithm for constructing directed scale-free networks
has been proposed in [33]; it is shown that both the in-degree and
out-degree distributions of the generated networks follow power
laws.

Although the algorithm in [33] can generate directed scale-
free networks, it is shown in [16] that for such networks a
large number of driver nodes are typically needed for ensuring
structural controllability. Thus networks generated in [33] may be
too costly to be fully controlled. To reduce control cost, we will
design an algorithm to generate directed scale-free networks that
require just one driver node.

2.2. Algorithm and main result

First, we present the algorithm to generate structurally con-
trollable directed scale-free networks of N (state) nodes, where
N is typically a large positive number. The design is an extension
of that in [33].

Algorithm 1 (Constructing Structurally Controllable Directed Scale-
free Networks with a Single Driver Node).

(1) Initially let D0 be a directed graph with m0(> 1) nodes that
is spanned by a stem. Also number the nodes in D0 from 1
to m0 from the root to the top of the stem.

(2) At each iteration h (m0 + 1 ≤ h ≤ N), add one new
node (numbered h) and establish for node h one in-edge
from the node h − 1. Moreover, establish for node h in-
edges from min ∈ [1,m0] existing nodes and out-edges to
mout ∈ [1,m0] existing nodes. Here, the probability Πi,in
(resp. Πi,out ) that an existing node i ∈ [1, h − 1] with in-
degree ki,in (resp. out-degree ki,out ) obtains an in-edge from
(resp. out-edge to) the new node is

Πi,in =
ki,in∑h−1
j=1 kj,in

, (2)

resp. Πi,out =
ki,out∑h−1
j=1 kj,out

. (3)

No multiple edges are allowed.
(3) Advance h to h + 1. If h ≤ N then go to Step 2). Otherwise

stop.

In the above algorithm, we initialize the directed graph D0
such that it is spanned by a stem, which contains all them0 nodes.
oreover, at each iteration we always add an in-edge to the new
ode from the existing node which is added to the network in the
revious iteration. In this way, the generated network contains
stem from the node 1, the root of stem in the initial directed
raph D0, all the way through to the final node N; namely,

spanned by a stem. Since a stem is a special case of a cactus, the
resulting network is spanned by a cactus, and thus is structurally
controllable if we inject a control input to the root node. That
is, the root node is the only driver node. Moreover, it can be
shown that the network generated from Algorithm 1 has scale-
free properties of both in-degree and out-degree distributions.
Summarizing, we present the following main result.
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heorem 1. The network generated by Algorithm 1 is structurally
ontrollable with a single driver node and has scale-free properties
s follows:

(kin) ∼ kin−γin , P(kout ) ∼ kout−γout

here γin = 2 +
min+1
mout

, γout = 2 +
mout+1

min
. Moreover, the single

river node is the root of the stem in the initial directed graph D0.

We postpone the proof of Theorem 1 to the next subsection.
ere we provide several remarks and an illustrating example.
Theorem 1 asserts that theoretically, one may effectively gen-

rate directed networks that are both scale-free and structurally
ontrollable with a single driver node. This driver node is the
irst node and thus a hub (inasmuch as it is one of the oldest
odes in the network and has the longest time to establish new
dges). These conclusions are in contrast with observations of real
cale-free networks, as well as previously studied theoretic scale-
ree networks [16]. While networks generated by Algorithm 1
re theoretic ones and thus different from real networks, this
lgorithm design suggests a strategy if one wishes to fully control
real scale-free network by a single driver node: i.e. establish a
tem throughout by adding new edges or rewiring existing edges.
The power exponents γin and γout in Theorem 1 are deter-

ined by network parameters min and mout . However, as com-
pared to [33], both the in-degree power exponent γin and the
out-degree power exponent γout are different (in [33] they are
respectively 2+

min
mout

and 2+
mout
min

). Specifically, if the parameters

in,mout are such that min = mout , then γin and γout still depend
n the values of min,mout in Theorem 1, while they are always
qual to 3 in [33].
In Fig. 2, we provide an example to illustrate the process of

lgorithm 1. Let m0 = 4,min = mout = 2. First, the initial directed
raph D0 is a cycle; thus we can find a stem spanning D0. Then
e number each node as shown in Fig. 2(a). Second, we add the
ew node 5 and establish an in-edge (colored in red) from the
ode 4. After that, we calculate the probabilities Πi,in (resp. Πi,out )

for each existing node by (2) (resp. (3)). As a result, we obtain
Π1,in = Π2,in = Π3,in = Π4,in =

1
4 and Π1,out = Π2,out =

3,out =
1
5 , Π4,out =

2
5 . According to these probabilities, we select

in (= 2) nodes which give an out-edge to and mout (= 2) nodes
hich is given an in-edge from the node 5, respectively, as shown

n Fig. 2(b). At the next iteration, a new node 6 is added and
ets an in-edge from the node 5. Calculating each probability, we
btain Π1,in = Π2,in =

1
4 , Π3,in = Π4,in =

1
8 , Π1,in =

1
4 and

1,out = Π2,out =
1
9 , Π3,out = Π4,out =

2
9 , Π5,out =

1
3 , and add

ew edges as shown in Fig. 2(c). After adding new edges, it is clear
hat there is a stem with node set {1, 2, 3, 4, 5, 6}. We continue
hese iterations until the network size becomes N . In Fig. 2(d), we
llustrate an example of the generated network of size N = 100.
ote that there is a long stem which starts from node 1 (colored
n red) and ends at node 100; the stem is emphasized by red
dges. In other words, this network can be controlled by a single
nput signal injected into the root of the stem.

.3. Proof of Theorem 1

We provide the proof of Theorem 1. First, we show that
lgorithm 1 generates a directed scale-free network. In Step (1),
here are initially m0 nodes in the network, and in Step (2) a
ew node is added to the network at each iteration. Let node i
e the node that is newly added at iteration hi, and we focus on
ow its in-degree and out-degree change with respect to h(≥ hi).
et ki,in(h) and ki,out (h) be in-degree and out-degree of node i at
teration h(≥ hi), respectively. In Step (2) of Algorithm 1 and
teration h , for the newly added node i, in addition to establishing
i t

4

Fig. 2. Example illustrating the process of generating a directed scale-free
network by the Algorithm 1. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

in-edges from min distinct nodes, we also add an in-edge from the
node hi −1. Thus node i has min +1 in-edges and mout out-edges,
i.e.

ki,in(hi) = min + 1, (4)
ki,out (hi) = mout .

t each iteration h > hi, a new node is added to the network;
n addition to the in-edge from the node added at the previous
teration, the new node establishes an in-edge from min distinct
odes and an out-edge tomout distinct nodes. The probability Πi,in
hat each new node establishes an in-edge from node i and the
robability Πi,out that each new node establishes an out-edge to
ode i are expressed in (2) and (3), respectively. Hence, at each
tep the expectation of the increase of the in-degree (resp. out-
egree) of node i is moutΠi,in (resp. minΠi,out ). When h is large,
.e. h − hi ≫ 0, one may regard h as a continuous variable. With
his approximation, the temporal variations of k and k are
i,in i,out
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epresented as
dki,in
dh

= moutΠi,in =
moutki,in∑

j kj,in
, (5)

dki,out
dh

= minΠi,out =
minki,out∑

j kj,out
. (6)

In the following we focus on the derivation of the in-degree
distribution based on (5); the out-degree distribution based on
(6) is analogous.

The denominator of the right side of (5) stands for the sum-
mation of the in-degrees of all nodes in the network at iteration
h. Since at each iteration, the network is added with min+mout +1
directed edges, we have

∑
j kj,in = K0 + (min + mout + 1)h, where

0 is the number of edges in the initial directed graph D0. For
h ≫ hi, the constant K0 can be ignored and we obtain

∑
j kj,in =

(min + mout + 1)h. Hence the probability Πi,in =
ki,in

(min+mout+1)h and
(5) becomes
dki,in
dh

=
moutki,in

(min + mout + 1)h
. (7)

By solving this differential equation, we have ki,in(h) =

h
mout

min+mout+1 , where A denotes an integration constant. Using the
nitial condition (4), we obtain

=
min + 1

hi

mout
min+mout+1

.

ence the solution of (7) is

i,in(h) = (min + 1)
(

h
hi

) mout
min+mout+1

.

By fixing ki,in(h) := kin and replacing hi by hkin , we have

hkin =

(
min + 1

kin

)1+ min+1
mout

h.

his equation represents the iteration when the node with in-
egree kin at h is added to the network. Let N<kin be the number

of nodes whose in-degrees are lower than kin at iteration h; then
his number is equal to the number of nodes which are added
fter the iteration hkin and is represented as

<kin = h −

(
min + 1

kin

)1+ min+1
mout

h.

On the other hand, let P(k′

in) be the in-degree distribution; then
P(k′

in) represents the ratio of nodes with in-degree kin. Thus N<kin
also has the form N<kin = N(h)

∫ kin
min+1 P(k

′

in)dk
′

in, where N(h)
enotes the number of nodes. If h ≫ m0, we can ignore m0, so
e have N(h) = m0 + h ≈ h. Thus we obtain∫ kin

min+1
P(k′

in)dk
′

in = h −

(
min + 1

kin

)1+ min+1
mout

h.

ividing both sides by h, we have∫ kin

min+1
P(k′

in)dk
′

in = 1 −

(
min + 1

kin

)1+ min+1
mout

. (8)

hus we can obtain the power distribution by differentiating (8)
ith respect to kin:

(kin) ∼ k
−

(
2+ min+1

mout

)
in ∼ k−γin

in

here the exponent γin = 2 +
min+1
mout

. By a similar derivation, the
out-degree distribution follows the power law:

P(k ) ∼ k
−

(
2+ mout+1

min

)
∼ k−γout
out out out w

5

where the exponent γout = 2 +
mout+1

min
. Therefore, it follows that

the generated networks have the scale-free property.
It is left to show that the generated network is structurally

controllable with a single driver node, which is the root of the
stem in the initial directed graph D0. By the setup of Step (1)
in Algorithm 1, the initial network D0 is spanned by a stem. We
assume that the network Dh is spanned by a stem at iteration
(≥ 1). At iteration h + 1, a new node establishes an in-edge

rom the existing node added at iteration h. Thus Dh+1 is also
panned by a stem. By induction we conclude that the generated
etwork is spanned by a single long stem, whose root is the node
. Since a stem is a special cactus, it follows from Lemma 1 that
he network is structurally controllable. Moreover, by Remark 1
e conclude that a single driver node is sufficient to make the
etwork structurally controllable, and this driver node is always
he root of a stem in the initial directed graph D0. □

. T -structurally controllable scale-free networks with mini-
um driver nodes

So far we have considered pure structural controllability. In
his section, we further consider control performance in the sense
f steering networks to a desired state within a specified time
ound. For this, we introduce the concept of time-to-control [28],
nd then extend Algorithm 1 to generate structurally controllable
irected scale-free networks which can be steered to a desired
tate with the minimum number of driver nodes and within a
rescribed time bound.

.1. Time-to-control

Consider again the linear discrete-time dynamic network (1).
iven T ∈ [1,N], the partial controllability matrix is:

(A,B; T ) = [B,AB,A2B, . . . ,AT−1B].

efine controllability index as the minimum value of T such that
(A,B; T ) is of full rank, i.e.

(A,B) = min{T ∈ [1,N] : rank(C(A,B; T )) = N}.

As with structural controllability, however, one may only have
ccess to the topological information of real networks. For this
eason, the structural controllability index is introduced to inves-
igate the time-to-control of the network without knowing the
recise entries of A,B [28]. Given a pair of structural matrices
Ā, B̄), the network (Ā, B̄) is structurally controllable with index
if there exists a pair of real matrices (A,B), with the same

tructural pattern as (Ā, B̄), such that the controllability index of
A,B) is equal to T . This means that we can find a network with
system digraph associated with (Ā, B̄) such that the network
an be steered to a desired state within T time steps. Then the
inimum value of T over all possible pairs of real matrices (A,B)

s called the structural controllability index, which is denoted by
¯ (Ā, B̄) := min(A,B)∈{0,∗} τ (A,B). We say that the network (Ā, B̄)
is T-structurally controllable if the structural controllability index
of (Ā, B̄) is equal to T . Similar to the structural controllability,
it is shown in [28] that we may determine the T -structural
controllability by a graph-theoretical approach.

Lemma 2 ([28]). Consider a network (Ā, B̄) with N state nodes and
et T ∈ [1,N]. The network is T -structurally controllable if and only
f the system digraph D(Ā, B̄) associated with (Ā, B̄) is spanned by
acti, i.e. there exists a set of disjoint cacti that contains all N nodes,

here every cactus contains at most T nodes.
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Although directed scale-free networks generated by Algo-
rithm 1 needs only one driver node, from the viewpoint of
time-to-control, it takes a long time to steer the generated net-
works to a desired state. Indeed, since the root of the stem, which
starts from node 1 and ends at node N , is the only driver node,
t follows from Lemma 2 that the networks generated by Algo-
ithm 1 are N-structurally controllable. In many real situations,
t is desirable not only to fully control networks with as few
river nodes as possible, but also to steer networks to a desired
tate within as short time as possible. In the next subsection, we
ill extend Algorithm 1 to generate directed scale-free networks
hich can be steered into a desired state within prescribed time
ounds.

.2. Algorithm and main result

First, we present the algorithm. Let T be the time bound
pecified a priori.

lgorithm 2 (Constructing T-structurally Controllable Directed
cale-free Networks with Minimum Driver Nodes).

(1) Initially let D0 be a directed graph with m0(1 < m0 < T )
nodes that is spanned by a stem. Also number the nodes in
D0 from 1 to m0 from the root to the top of the stem.

(2) At each iteration h (m0 + 1 ≤ h ≤ N), add one new node
(numbered h). If h ̸= jT + 1 (where j is an integer such
that 1 ≤ j ≤ ⌈

N
T ⌉ − 1), then establish for node h one

in-edge from node h − 1. Moreover, establish for node h
in-edges from min ∈ [1,m0] existing nodes and out-edges
to mout ∈ [1,m0] existing nodes. Here, the probability Πi,in
(resp. Πi,out ) that an existing node i ∈ [1, h − 1] with in-
degree ki,in (resp. out-degree ki,out ) obtains an in-edge from
(resp. out-edge to) the new node h is (the same as (2), (3))

Πi,in =
ki,in∑h−1
j=1 kj,in

, (9)

resp. Πi,out =
ki,out∑h−1
j=1 kj,out

. (10)

No multiple edges are allowed.
(3) Advance h to h + 1. If h ≤ N then go to Step 2). Otherwise

stop.

In Fig. 3, we provide an example to illustrate Algorithm 2. Let
= 100,m0 = 4,min = mout = 2, and set the time bound

o be T = 20. As shown in Fig. 3(a), each newly added node h
5 ≤ h ≤ 20) acquires an in-edge from the existing node h − 1.
hus there is a stem (red path) from node 1 to node 20, and node
colored in red is the driver node. When node 21 is added, which
ill become the next driver node (Fig. 3(b)), node 20 need not
rovide an edge to node 21 (because 21 = T + 1). Finally in
ig. 3(c), the resulting network is illustrated. There are five (20-
ode) stems whose roots are nodes 1, 21, 41, 61, and 81 (colored
n red). Therefore, these five nodes are the driver nodes to ensure
hat the network is T -structurally controllable.

In the network generated by Algorithm 2, there are ⌈
N
T ⌉ stems;

the jth stem starts from node jT + 1 and ends at node (j + 1)T
0 ≤ j ≤ ⌈

N
T ⌉−1). Thus if we select nodes jT +1(0 ≤ j ≤ ⌈

N
T ⌉−1)

as driver nodes, the input signals can reach all the nodes in each
stem within the given time bound T . This means that the network
is spanned by stems of length T . Therefore, by Lemma 2 the
network is T -structurally controllable.

Note that the algorithm proposed in [33] and Algorithm 1
in Section 2 are in fact two special cases of Algorithm 2. When
T = 1, the edge from the node h − 1 to node h need not be
added (for all h). This reduces to the algorithm in [33]. On the
 n

6

Fig. 3. Example illustrating the process of generating a directed scale-free
network by the Algorithm 2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

other hand, if T = N , every newly added node is given an in-
edge from the node added at the previous iteration. This means
that in the generated networks there is a long stem which starts
from node 1 and ends at node N . Therefore, this is the same as
Algorithm 1.

The following is the main result of this section.

Theorem 2. Given a time bound T (1 ≤ T ≤ N), the network
generated by Algorithm 2 has scale-free properties as follows:

P(kin) ∼ kin−γin , P(kout ) ∼ kout−γout

here γin = 2 +
min+1− 1

T
mout

, γout = 2 +
mout+1− 1

T
min

. Moreover, the
generated network is T -structurally controllable with the minimum
⌈
N
T ⌉ driver nodes.

The proof of Theorem 2 follows similar derivations to those in
the proof of Theorem 1. In particular, from the probability point
of view, for a time bound T (1 ≤ T ≤ N) a new edge is established
(resp. is not established) from node h− 1 to node h (h ≥ m0 + 1)
with probability 1 −

1
T (resp. 1

T ). Thus the expectation of the in-
degree of a newly added node, as in (4) in the proof of Theorem 1,
is (min+1) · (1−

1
T )+min ·

1
T = min+1−

1
T . Therefore, carrying out

the same calculations as those on p. 5, the power exponents γin
and γout of the network generated by Algorithm 2 are obtained.

Theorem 2 asserts that for an arbitrary time bound T (1 ≤ T ≤

N), Algorithm 2 generates directed scale-free networks which are
T -structurally controllable with the minimum ⌈

N
T ⌉ driver nodes.

These drive nodes are numbered 1, T + 1, . . . , (⌈N
T ⌉ − 1)T + 1.

The first few nodes are hubs (older ones in the network) while
the last few are non-hubs (newer ones); thus the set of driver
nodes consists of both hubs and non-hubs.

In addition, note that while the power exponents γin, γout of
etworks generated from Algorithm 1 are determined only by
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arameters min,mout , Algorithm 2 generates networks in which
the time bound T also influences the power exponents. Finally,
while networks generated by Algorithm 2 are theoretic ones and
thus different from real networks, this algorithm design suggests
a strategy if one wishes to control a real scale-free network to
meet a given time bound using the minimum number of driver
nodes: i.e. establish ⌈

N
T ⌉ stems by adding new edges or rewiring

xisting edges.

. Conclusions and future work

In this paper, we have proposed an algorithm to generate
irected scale-free networks which need only one driver node
o ensure structural controllability. Moreover, we have developed
nother algorithm that constructs directed scale-free networks
hich can be steered to a desired state within a required time
ound as well as with the minimum number of deriver nodes.
The designs of these algorithms have suggested plausible

trategies of ensuring scale-free, structurally-controllable, and
ime-to-control properties. In future work, we aim to investigate
he problem of, for given real networks (whether scale-free or
ot), how to reduce the number of driver nodes by suitable topo-
ogical changes (as in [23–27]) while meeting desired time con-
traints. Moreover, we also aim to extend these ideas to the case
here the quantitative network information is available (as in
6–10]), and therein study the relations/tradeoffs between con-
rollability with time-to-control constraint and network central-
ty and/or control energy.
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