
Online Multi-Agent Supervisory Control for Warehouse Automation:
Heterogeneous Payloads

Moeto Kasahara and Kai Cai

Abstract— In this paper we consider a problem of controlling
multi-agent discrete-event systems to serve tasks dynamically
appearing in the environment, where the agents generally
have different capacities (or heterogeneous payloads) to serve
different numbers of tasks. To solve this problem, we propose
an effective online supervisory control approach combined with
optimal task assignment which minimizes the total weighted
distances from the heterogeneous agents to multiple tasks.
The weighted distance takes into account a realistic aspect
that traveling the same distance may take different times
depending on whether the agents are purely moving straight
or involving making turns. We then apply this online control
scheme to model and control a warehouse automation system
using multiple mobile robots with heterogeneous payloads; the
effectiveness of this scheme is demonstrated on a case study.

I. INTRODUCTION

In [1], [2], [3], [4], [5], we have introduced a problem
of controlling multi-agent discrete-event systems (DES) to
serve multiple tasks, and extended supervisory control theory
(SCT) [6], [7] to provide effective solutions. The study of this
problem is motivated by logistic automation systems using a
team of autonomous robots. A prominent application is Kiva
systems in Amazon’s warehouses and distribution centers [8].

The tasks considered in [1], [2], [3] are static: the infor-
mation of the tasks is completely known at the outset, and
no newly added tasks are considered. Moreover, which task
is assigned to which robot is assumed to be given a priori.
For this static setup, [1] shows that the standard SCT may
be adapted to compute a safe and deadlock free solution
for multiple agents to accomplish multiple tasks. To relieve
computational burden, [2], [3] further adapt an online SCT
based on a limited-lookahead strategy [9]. In this online
approach, a supervisor is recomputed at the occurrence of
every event.

In [4], [5], a more realistic setup is considered in which
tasks can appear dynamically; when and where the tasks
appear are unknown at the outset. An extended online
supervisory control approach is proposed that recomputes a
supervisor when (and only when) there are unassigned tasks
and available agents. This online scheme is thus distinct from
that in [2], [3], [9], and allows the recomputed supervisor
to be adaptive to newly appeared tasks. Furthermore, [5]
combines the online approach with optimal task assignment
[10] to improve efficiency of serving dynamic tasks: the sum
of (unweighted) distances from agents to tasks is minimized.

This work was supported in part by JSPS KAKENHI Grant no.
21H04875. The authors are with Department of Electrical and Information
Engineering, Osaka City University. Emails: kasahara@c.info.eng.osaka-
cu.ac.jp (M. Kasahara), kai.cai@eng.osaka-cu.ac.jp (K. Cai)

In this paper, we build on and further extend [5] in
twofolds, both addressing realistic aspects in warehouse
automation systems served by multiple robots. First, we
differentiate the time that a robot needs to execute a “go
straight” action from a “turn left/right” action. In particular,
when turning a robot typically needs to first decelerates, then
makes the turn, and accelerates again; hence, a turning action
is more time-consuming than a going-straight action. As a
result, among multiple paths consisting of similar numbers of
actions (similar distances), the one with the fewest number of
turning actions is likely the most time efficient. This issue is
addressed by introducing to optimal task assignment a weight
for encouraging moving straight, and thereby minimizing the
sum of weighted distances.

Second, we consider the general case where robots may
have different payloads, so that they can be assigned with
different numbers of tasks. This case is addressed by intro-
ducing virtual robots to optimal task assignment to match
up the number of robots’ payloads and the number of tasks.
Moreover, when a robot is assigned to serve multiple tasks,
the order of serving these tasks may be optimized to further
improve efficiency. This latter optimization is addressed by
solving a traveling salesman’s problem.

In the sequel, we present the extended online supervisory
control approach that effectively address the above two new
issues, and illustrate the approach by a warehouse automation
case study.

II. PRELIMINARIES

A. Supervisory control basics

In SCT [6], [7], the plant to be controlled is modeled by
a finite state automaton

G := (Q,Σ,δ ,q0,Qm)

where Q is the finite state set, q0 ∈Q the initial state, Qm⊆Q
the set of marker states, Σ the finite event set, and δ : Q×Σ→
Q the (partial) state transition function. We extend δ such
that δ : Q×Σ∗→ Q, and write δ (q,s)! to mean that δ (q,s)
is defined. The event set Σ is partitioned into a subset Σc of
controllable events and a subset Σu of uncontrollable events;
only controllable events can be enabled or disabled by an
external entity, called supervisor, introduced below.

The closed behavior of G is the set of all strings that can
be generated by G:

L(G) := {s ∈ Σ
∗|δ (q0,s)!} ⊆ Σ

∗.

On the other hand, the marked behavior of G is the subset
of strings that can reach a marker state:

Lm(G) := {s ∈ L(G)|δ (q0,s) ∈ Qm} ⊆ L(G).

G is nonblocking if L(G) = Lm(G) (· means prefix closure),
namely every string in the closed behavior may be completed
to a string in the marked behavior.

A language E ⊆ Σ∗ is said to be controllable (with respect
to G) if E Σu∩L(G)⊆ E. Let K ⊆ Lm(G) be a specification
language imposed on the plant G. Denote by C(K) the family
of controllable sublanguages of K, i.e.

C(K) := {K′ ⊆ K|K′Σu∩L(G)⊆ K′}.

Then the supremal controllable sublanguage of K exists and
is given by supC(K) = ∪{K′|K′ ∈ C(K)}. Let SUP be a
(nonblocking) automaton such that Lm(SUP) =supC(K). We
call SUP the supervisor for plant G that enforces supC(K).
The control action of SUP after an arbitrary string s ∈ L(G)
is to enable an event in the following set

γ(s) := {σ ∈ Σu|sσ ∈ L(G)}∪{σ ∈ Σc|sσ ∈ L(SUP)}. (1)

B. Optimal task assignment

The task assignment problem is an optimization problem
of finding a one-to-one correspondence between an agent and
a task so as to minimize the sum of the costs included in
the assignment. Consider n agents, n tasks, and ci, j for each
pair of i, j ∈ {1, . . . ,n} is the cost when agent i is assigned to
serve task j. Then the task assignment problem is formulated
as follows.

minimize z = ∑
n
i=1 ∑

n
j=1 xi, jci, j

subject to (∀ j ∈ {1, . . . ,n})∑
n
i=1 xi, j = 1 &

(∀i ∈ {1, . . . ,n})∑
n
j=1 xi, j = 1 &

(∀i, j ∈ {1, . . . ,n})xi, j ∈ {0,1}

The (indicator) variable xi, j is equal to 1 when agent i is
assigned to serve task j and 0 otherwise.

To find the optimal task assignment is NP-hard, although
there are many polynomial time algorithms available to
compute approximate solutions. We shall employ the well-
known Hungarian algorithm (or Kuhn-Munkres algorithm)
whose time complexity is O(n3) [10].

Remark 1. While the above formulation of the task as-
signment requires that the number of agents be the same
as the number of tasks, the more general case where the
numbers are different can be easily addressed. If (without
loss of generality) the number of agents is greater than the
number of tasks, we simply need to add ‘dummy’ tasks to
match up the numbers and these ‘dummy’ tasks should have
significantly high costs so that they will never be chosen.

III. ONLINE MULTI-AGENT SUPERVISORY CONTROL FOR
HETEROGENEOUS PAYLOADS

Consider N agents and each agent i(∈ {1, . . . ,N}) has
payload pi(≥ 1). View each agent i as having pi copies of
itself, thus each copy being of payload 1. Think of these

Fig. 1. Warehouse grid enviroment: items to be picked up are stored in
black-rectangle areas

copies as virtual agents; then there are n := ∑
N
i=1 pi virtual

agents each having payload 1. As mentioned in Remark 1,
it is without loss of generality to consider that there are also
n tasks to be assigned.

Now we present the new online supervisor control ap-
proach that addresses heterogeneous agents’ payloads.
(1) Use the Hungarian algorithm [10] to compute an optimal
task assignment such that each agent i(∈ {1, . . . ,N}) obtains
a number of tasks equal to its payload.

(1-1) Compute the costs ci, j for all i, j ∈ {1, . . . ,n} (here
we consider virtual agents).

(1-2) Compute an optimal task assignment such that each
virtual agent i(∈ {1, . . . ,n}) obtains one task.

(1-3) Designate for each real agent the tasks assigned to
its virtual copies.
(2) Compute for each agent i(∈ {1, . . . ,N}) the shortest paths
for accomplishing the assigned tasks. This is done by solving
for each agent i a traveling salesman’s problem.
(3) Create the finite state automata G1, . . . ,GN based on the
shortest paths of each agent.
(4) Create a control specification model SPEC (also a finite
state automaton) that imposes a behavioral constraint on the
multi-agent system.
(5) Based on the agent models G1, . . . ,GN and the speci-
fication model SPEC, compute by the standard SCT [7] a
supervisor SUP. This SUP ensures safe (i.e. the specification
is satisfied) and nonblocking controlled behavior.
(6) Return to (1) whenever there are (newly appeared)
unassigned tasks and available agents (currently serving no
tasks) for assignment.

IV. CASE STUDY

We demonstrate how to apply the proposed online multi-
agent supervisory control procedure to model and control
a warehouse logistic system automated by multiple mobile
robots with heterogeneous payloads.

A. Warehouse Environment

Different warehouses have different configurations. For
a concrete case study, we consider the grid-type layout as
displayed in Fig. 1. Mobile robots are assumed to be initially
waiting for tasks at the top area, items to be picked up stored
on storage shelves in the black-rectangle areas, and item-
delivery destination locations at the bottom.

Fig. 2. Warehouse grid assigned with numbers

The occurrence of tasks is uncontrolled: when and where
they occur are completely random, and tasks are managed by
a queue structure. We assume that the number of tasks never
exceeds the capacity of the queue (or otherwise discarded),
and that each robot can be assigned with a number of
tasks (with the same delivery destination) not exceeding its
payload.

All robots initially wait in the top waiting area and only
move when they are assigned tasks. Robots are allowed to
enter the storage areas only when they are fetching their
assigned items. After retrieving the items, the robots move
to their designated delivery destination areas at the bottom.

If a robot completes all its assigned tasks, it will be either
assigned to serve new tasks (if those have appeared and not
yet served) or controlled to return to the top waiting area.

B. Automata Models of Robots

We start by assigning sequential (state) numbers to the
warehouse as shown in Fig. 2. Specifically, we assign 0 to
the waiting area, and the other areas (or cells) are natural
numbers starting from the top left corner. When tasks are
assigned to a robot, one of the delivery areas numbered
61, . . . ,70 will be the marker (or goal) state. In the case
where no task is assigned to a robot (number of tasks
is relatively small as compared to number of robots with
different payloads), 0 is the robot’s marker state. Each robot
shall move in one of the four directions: up, down, left and
right. All robots are assumed to be initially located in the
waiting area and eventually return to the waiting area after
finishing all assigned tasks.

Consider N(> 1) robots serving the warehouse. Each of
these N robots is modeled by a finite state automaton Gi
(i ∈ {1, . . . ,N}):

Gi = (Qi,Σi,δi,q0,i,Qm,i).

Here Qi is a set of states on the paths of robot i (using the
numbers assigned to the warehouse as in Fig. 2). Σi is a
set of four events, given in Table I. All events are assumed
to be controllable. δi is the state transition function defined
according to the paths of robot i; q0,i is the initial state (i.e.
the starting point of the robot’s paths); and Qm,i is the set of
marker states (i.e. the ending points of the robot’s paths).

The paths needed to obtain the automaton model Gi are
computed as follows. There are two cases.

(Case 1) When robot i is assigned with several tasks,
compute the shortest paths from its current location to

TABLE I
EVENT NUMBERS OF EACH ROBOT i ∈ {1, ...,N}

go up i×10+1
go right i×10+3
go down i×10+5
go left i×10+7

each of the task locations exactly once and finally to the
destination. This is done by solving a traveling salesman’s
problem. In this case, q0,i is the state number of the robot’s
current location, and Qm,i is the singleton subset of state
numbers 61, . . . ,70, which is the destination area of the
items’ delivery.

(Case 2) When a robot finishes all of its assigned tasks
and is not assigned with any new task, compute the shortest
paths from the robot’s current position to the top waiting
area. In this case, q0,i is the state number of the robot’s
current location, and Qm,i is the singleton set {0}.

C. Example of Three Robots
Consider six tasks T1, . . . ,T6 to be assigned and three

robots R1,R2,R3 with payloads 3, 2, and 1 respectively. The
initial arrangement of the robots and tasks is shown in Fig. 3.
All robots are initially in state 0, and the tasks are located
at 12, 16, 33, 36, 52, and 59.

The first step of the proposed online supervisory control is
to optimally assign the six tasks to the three robots according
to their respective payloads. For this, we consider six virtual
robots (three for R1, two for R2, one for R3) and generate
the 6×6 cost matrix C as follows:

C =


c1,1 c1,2 c1,3 c1,4 c1,5 c1,6
c2,1 c2,2 c2,3 c2,4 c2,5 c2,6
c3,1 c3,2 c3,3 c3,4 c3,5 c3,6
c4,1 c4,2 c4,3 c4,4 c4,5 c4,6
c5,1 c5,2 c5,3 c5,4 c5,5 c5,6
c6,1 c6,2 c6,3 c6,4 c6,5 c6,6



=


2 8 11 12 12 17
2 8 11 12 12 17
2 8 11 12 12 17
9 5 10 7 13 10
9 5 10 7 13 10
8 2 11 10 14 13


The entries of C are the weighted distances between the
robots and the items, where a go-straight action has weight
1 and a turn action has weight 2. Note that depending on
the orientation (or direction of movement) of each robot,
any of its four events can be a moving-straight action or a
turning action; thus the weight considered here is not directly
associated with the events. Having matrix C, we apply the
Hungarian algorithm to derive

C∗ =


0 6 0 4 0 6
0 6 0 4 0 6
0 6 0 4 0 6
8 4 0 0 2 0
8 4 0 0 2 0
6 0 0 2 2 2



Fig. 3. Initial arrangement of the three robots (colored discs: red R1,
blue R2, green R3) and the six tasks (yellow squares: items; yellow circles:
destinations)

Fig. 4. Shortest paths for the three robots to serve all assigned tasks

Observe that in C∗ one can select 0 from each
row and each column without duplication: namely
(1,1),(2,3),(3,5),(4,4),(5,6),(6,2). These 0-entries yield
an optimal task assignment: T1, T3, T5 are assigned to the
three virtual copies of R1 (hence to R1); T4, T6 to the two
virtual copies of R2 (hence to R2); and T2 to R3.

The second step is to compute the shortest paths for each
of the three robots from its initial location to all the item
locations and finally to the destination. These shortest paths
are computing by solving a traveling salesman’s problem for
each robot,1 and the resulting paths are displayed in Fig. 4.

In Step 3, we create the automata models for the three
robots based on the above computed shortest paths. Let the
automaton of R1 be G1, the automaton of R2 be G2, and the
automaton of R3 be G3, respectively.

As the control specification, in Step 4 we impose mutual
exclusion on each cell of the grid so that the robots do not
collide with one another (i.e. safety). One exception is the
waiting area state 0: we assume that this area is large enough

1We note that the traveling salesman’s problem considered here is a
variation of the standard one, in that we require that the destination area be
the last location to visit. This variation may be readily solved using standard
algorithms by appropriately choosing the weight between the initial waiting
area and the destination.

Fig. 5. Robot R1 (red disc) finishes its assigned three tasks and two new
tasks appear (yellow squares); while the other two robots are still en route
to finish their assigned tasks

such that multiple robots can be at state 0 at the same time.
In Step 5, we employ the standard SCT to compute a

supervisor that satisfies the safety control specification. The
resulting supervisor is guaranteed to be not only safe but also
nonblocking (the latter ensures that no deadlock ever occurs
and all tasks are eventually accomplished).

The computed supervisor executes its control decisions
online according to (1). When robot R1 finishes delivering
its assigned three items to the destination, as shown in Fig. 5,
it becomes available again to serve new tasks. Suppose that
there have appeared two new task at cells 15 and 39; then
the online procedure will return to Step 1 and compute a
new supervisor to respond to these newly appeared tasks (in
this case assigning them both to robot R1, as the other two
robots are still en route to accomplish their assigned tasks).

REFERENCES

[1] Y. Tatsumoto, M. Shiraishi, and K. Cai, “Application of supervisory
control theory with warehouse automation case study,” Trans. ISCIE,
vol. 62, no. 6, pp. 203–208, 2018.

[2] M. Shiraishi, Y. Tatsumoto, K. Cai, and Z. Lin, “Online supervisory
control of multi-agent discrete-event systems with warehouse automa-
tion case study,” in Proceedings of the SICE Annual Conference, 2018,
pp. 1059–1062.

[3] Y. Tatsumoto, M. Shiraishi, K. Cai, and Z. Lin, “Application of online
supervisory control of discrete-event systems to multi-robot warehouse
automation,” Control Engineering Practice, vol. 81, pp. 97–104, 2018.

[4] K. Cai, “Warehouse automation by logistic robotic networks – a cyber-
physical control approach,” Frontiers of Information Technology &
Electronic Engineering, vol. 21, pp. 693–704, 2020.

[5] M. Kasahara and K. Cai, “Online supervisory control with optimal
task assignment for efficient and adaptive warehouse automation,” in
Proc. the 63rd Japan Joint Automatic Control Conf., 2020, pp. 90–93.

[6] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control and Optimization, vol. 25,
no. 1, pp. 206–230, 1987.

[7] W. M. Wonham and K. Cai, “Supervisory Control of Discrete-Event
Systems,” Springer, 2019.

[8] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI Magazine,
vol. 29, no. 1, pp. 9–19, 2008.

[9] S.-L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in
supervisory control of discrete event systems,” IEEE Transactions on
Automatic Control, vol. 37, no. 12, pp. 1921–1935, 1992.

[10] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

