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Abstract: Safe control has recently attracted much attention due to its applications in safety-critical
cyber-physical systems. Supervisory control theory (SCT) is a formal control method that provides correct-
by-construction safety certificates, but is computationally inefficient when the number of system compo-
nents is large. On the other hand, deep reinforcement learning (DRL) provides a toolbox of efficient
algorithms to compute control decisions even for very large state space, but does not always guarantee
safety. In this paper, we propose to synergize SCT and DRL into a new efficient safe control approach.
Specifically, we first employ DRL algorithms to efficiently compute sub-optimal solutions which may be
unsafe; then we convert the obtained solutions into a standard supervisory control problem with an au-
tomaton (plant model) and a set of unsafe states (safety specification); finally we use SCT to synthesize a
supervisor with a safety certificate. A case study of multi-robot warehouse logistic automation is conducted
to demonstrate the efficiency of this proposed approach.
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1 Introduction

In recent years, safe control has received increasing
attention in the field of systems and control engineer-
ing, because it has many applications in safety-critical
cyber-physical systems such as self-driving cars, traf-
fic networks, and multi-robot systems. One impor-
tant safe control method is based on control barrier
functions [1], which is effective for avoiding collisions
with static or dynamic objects (obstacles or other
system components). Another main approach is to
first create a (bi)simulation based discrete abstraction
(aka. symbolic model) for a continuous dynamic sys-
tem, and then employ formal methods from computer
science to satisfy safety properties specified using (lin-
ear) temporal logics [2].

A control native formal method is supervisory con-
trol theory (SCT) for discrete-event system (DES)
[3, 4]. Given a plant modeled by an automaton (equiv-
alently formal language), and a safe control specifica-
tion in terms of either an automaton or a logical for-
mula, SCT automatically synthesizes a safe (satisfy-
ing the specification), deadlock-free (trajectory never
halts at an undesired state), and maximally permis-
sive supervisor (allowing as much system behavior as
possible). In [5]–[9], SCT has been applied to multi-
robot warehouse automation, where item pickup and
delivery tasks are automated using a network of mo-
bile robots. For this application, SCT provides safe
(collision-free among robots and environment obsta-
cles) and deadlock-free certificates (all robots always
complete their tasks without halting in the middle).

However, a shortcoming of SCT when applied to
multi-agent systems is computational scalability. For
an environment displayed in Fig. 1 (a 9 × 10 grid),
standard SCT can compute a valid supervisor for at
most 4 robots [5, 8, 9]. In fact, the supervisor syn-

thesis problem is known to be NP-hard in that the
total state space grows exponentially in the number
of component agents [3]. This so-called state explo-
sion problem also exists in all core problems addressed
by formal methods, which limits their applicability to
large-scale systems in practice.

On the other hand, the problem of multi-agent path
planning in an environment like Fig. 1 may be for-
mulated as a (discrete) reinforcement learning prob-
lem [10], and there exist a number of well-tested deep
reinforcement learning (DRL) algorithms, e.g. deep
Q networks (DQN) and proximal policy optimization
(PPO), that may efficiently find sub-optimal solutions
even if the total state space is large. However, solu-
tions being sub-optimal here mean that there may still
exist collision or deadlock states. Consequently such
sub-optimal solutions cannot be directly used as safe
controllers. On the other hand (as we will show from
our experiment results in Section 3 below), running
DRL algorithms until we obtain perfect solutions (no
collisions or deadlocks) is possible but takes exceed-
ingly long time, which defeats the efficiency expected
from such algorithms.

In this work, aiming to take advantage of both
SCT (safety guarantee) and DRL (computational effi-
ciency), we propose to combine the two in the follow-
ing manner to provide efficient safe control solutions.
First, we use a DRL algorithm to efficiently compute a
sub-optimal solution which may contain unsafe states.
Then, we convert the sub-optimal solution into an au-
tomaton (plant model) and identify the unsafe states
therein (safety specification). This automaton gener-
ally has much fewer states than the initial total state
number before the DRL computation. Finally, we use
SCT to synthesize a provably safe supervisor, which
effectively prune the sub-optimal solution by remov-
ing all unsafe states. We apply this new safe control



Fig. 1: Warehouse Environment

approach to the same multi-robot warehouse automa-
tion in Fig. 1, and report the improved efficiency of
computing safe controllers.

The rest of this paper is organized as follows. In
Section 2 we present our proposed safe control method
by synergizing SCT and DRL. In Section 3 we apply
the new method to multi-robot warehouse automation
and present derived results. Finally in Section 4 we
state our conclusions.

2 Problem Formulation and Proposed
Method

Consider a multi-agent DES modeled by automata:

Gi = (Qi,Σi, δi, q0,i, Qm,i), i = 1, . . . , N.

Here Qi is a finite set of states of agent i, Σi is a
finite set of events (or actions), δi : Qi × Σi → Qi is
a (partial) state transition function, q0,i ∈ Qi is the
initial state, and Qm,i ⊆ Q is the set of marker states
(or goal states).

The global DES model is formed by taking the syn-
chronous product, denoted by ||, of all N component
automata [3]:

G = G1|| · · · ||GN = (Q,Σ, δ, q0, Qm). (1)

Here the state set Q = Q1 × · · · × QN , namely the
cartesian product of the N component state sets.
Thus the size |Q| =

∏N
i=1 |Qi|, i.e. it is exponential

in N . The event set Σ = Σ1 ∪ · · · ∪ ΣN , the initial
state q0 = (q0,1, · · · , q0,N ), and the marker state set
Qm = Qm,1 × · · · × Qm,N . Finally the state transi-
tion function δ : Q × Σ → Q is defined based on the
component functions δi; for the precise definition, the
reader is referred to [3].

Now let Qus ⊆ Q be a set of unsafe states, which
denote those states corresponding to collision or dead-
locks. Consider a (supervisory) control U : Q → 2Σ,
which specifies for each state q ∈ Q a subset of events
Γ ∈ 2Σ to be disabled. Then the safe control problem
we consider is stated as follows:

Given G = (Q,Σ, δ, q0, Qm) as in (1) and a (proper)
subset Qus ⊆ Q of unsafe states, design a control

U : Q→ 2Σ such that

(i) Qus is never reached (safety)

(ii) Qm is always reachable (nonblocking).

To solve this problem, the well-established SCT [3]
is effective in principle, but often computationally in-
feasible since the state size |Q| grows exponentially in
the number of agents. To tackle the large state space,
we propose to exploit and leverage the efficiency of
state-of-the-art DRL algorithms. Specifically, we pro-
pose a new safe control approach consisting of the
following three steps.

Step 1. Convert the safe control problem into
a reinforcement learning problem, and apply
DRL algorithms to compute sub-optimal solu-
tions.

First we construct a Markov decision process
(MDP) M = (S,A, T, s0, R) as follows. From G in
(1), let the finite state set S = Q, the finite action
set A = Σ, the initial state s0 = q0, and specify
the elements of the transition probability matrix T
by assigning probabilities to transitions defined by δ.
Moreover, design the reward function R : S×A×S →
R based on the set of marker states Qm (with posi-
tive rewards) and the set of unsafe states Qus (with
negative rewards).

With the MDP M constructed, we convert the safe
control problem into a reinforcement learning problem
which finds a policy to maximize reward. By the de-
sign of R, maximizing reward corresponds tendency of
visiting Qm while avoiding Qus. Let π : S×A→ [0, 1]
be a stochastic (or nondeterministic) policy. Then the
reinforcement learning problem is to design π such
that the following function (state value function) is
maximized [10]:

Vπ(s) = Eπ

[ ∞∑
t′=0

γt
′
rt+t′+1

∣∣∣∣∣ st = s

]
. (2)

Here Eπ denotes the expectation under the transition
probability matrix T and a policy π, γ is a discount
factor satisfying 0 ≤ γ < 1, and rt+t′+1 ∈ R is the
reward obtained at time t + t′ + 1 according to the
reward function R.

Owing to the large size of the state set S, we employ
efficient (model-free) DRL algorithms to compute
sub-optimal solutions. The basic idea of DRL is to
approximate the function Vπ(s) or a relevant variant
(e.g. Q function) by a deep neural network, and use
well-tested heuristics to speedup computation. Well-
known baseline DRL algorithms include deep Q net-
works (DQN)[11], advantage actor critic (A2C)[12],
and proximal policy optimization (PPO)[13].

Step 2. Convert the computed sub-optimal so-
lutions into a supervisory control problem

Once we obtain a sub-optimal policy π : S × A →
[0, 1], convert π to a deterministic one by greed-
ily selecting the action with the highest probability.



Namely define πg : S → A according to

πg(s) := argmina∈Aπ(s, a), s ∈ S.

Then this deterministic policy πg gives rise to the fol-
lowing trajectory:

s0
πg(s0)−−−−→ s1 −→ · · ·

πg(sk−1)−−−−−−→ sk.

Note, in general, that the states in the trajectory need
not be distinct; hence loops may exist. If this tra-
jectory happens to contain no unsafe states and the
final state sk ∈ Qm, then we have found a solution
to our safe control problem. In general, however, a
trajectory generated from a sub-optimal solution by
DRL algorithm does not provide such a certificate.
Therefore, for a provably safe solution, we resort to
SCT [3]. Based on the above trajectory, we define a
supervisory control problem by defining a plant au-
tomaton P = (X,Π, ξ, x0, Xm) and a set of unsafe
states Xus ⊆ X. For P, let

X = {s0, . . . , sk},
Π = {πg(s0), . . . , πg(sk−1)},
ξ :X ×Π → X : (si, πg(si)) 7→ si+1,

x0 = s0,

Xm = X ∩Qm.

Finally define the unsafe state set Xus := X ∩Qus.

Step 3. Apply SCT to solve the supervisory
control problem to provide safety certificate.

With the plant automaton P = (X,Π, ξ, x0, Xm)
and unsafe state set Xus constructed, standard SCT
[3] is applied to synthesize a (supervisory) control U :
X → 2Π that guarantees avoiding all states in Xus

and always reaching Xm.
Now embed P (as a subautomaton) in the global

DES model G. Since the control U keeps trajectory
inside X while avoiding Xus ⊆ Qus, no state in Qus
will be visited under U . This provides safety cer-
tificate. Moreover, since U keeps Xm reachable and
Xm ⊆ Qm, U also ensures nonblocking. Therefore,
we have shown that the derived control U solves the
safe control problem.

3 Case Study: Multi-Robot Ware-
house Automation

In this section, we apply the proposed safe con-
trol method to a case study of warehouse logistic au-
tomation. Consider the warehouse environment as
displayed in Fig. 1 with a grid-type layout. The item
pickup and delivery logistics are automated by a team
of mobile robots. The top area is where the robots are
waiting for tasks, the black-rectangle areas are where
items to be picked up are stored, and the bottom area
is the item-delivery destination.

A task assigned to a robot (at a start location) con-
sists of an item location and a goal location. Once

being assigned a task, a robot should travel first to
the item location (shown as ‘relay point’ in Fig. 1),
pick up the item, and then deliver the item to the
goal location. Treating the positions (denoted by 2D
integer coordinates) of the robot as its states, and the
movements between neighboring cells as events, an
automaton model of the robot may be defined.

When multiple robots (modeled by multiple au-
tomata) concurrently serving tasks in the same envi-
ronment, the safe control problem in this case study
requires (i) the robots never collide with each other
or with the walls/shelves (safety); (ii) all robots finish
their tasks at designated goal locations (nonblocking
or deadlock-free).

Now we apply the proposed method in Section 2
step-by-step.

Step 1. Convert the safe control problem into
a reinforcement learning problem, and apply
DRL algorithms to compute sub-optimal solu-
tions.

Owing to large state size, we employ model-free
DRL algorithms. Namely, we do not explicitly write
down the MDP model, but only specify the rewards
for different scenarios where we want to impose incen-
tives or penalties. For this case study, with trial-and-
errors we use the following reward for every robot:

r =



1 (Reaching goal or relay point)

−1 (Colliding with another robot)

−0.5 (Colliding with wall/shelf)

−0.2 (At start point)

−0.01× d (Moving along aisle)

,

where d is the Manhattan distance between the robot
and the coordinate of the goal or relay point. The first
three scenarios are straightforward: encourage the be-
havior of reaching goal or relay point, and discourag-
ing collisions. The fourth scenario is to discourage
robots to stay at the starting points, and the last sce-
nario is to encourage the robots to take as short path
towards goal or relay point as possible.

To experiment with DRL algorithms for this case
study, the warehouse environment is created in
Python with an OpenAI Gym [14] compatible API.
Among well-tested DRL algorithms, after trial-and-
errors we adopt PPO which is emprically best-suited
for this case study. Accordingly we use Ray RLLib
[15], and the parameters set in RLLib are shown in
Table 1. The parameters that have significant impact
on the results are learning rate and clip size. Learning
rate is a parameter that adjusts how fast the learning
is progressed. Clip size is a parameter that indicates
the tolerance of the difference accepted when updat-
ing from an old policy to a new one. The smaller
values of both parameters are, the more stable the
learning becomes, but the longer the learning time
becomes.

The neural network model used in PPO is a feed-
forward neural network (multi-layer perceptron), and



Table 1: Hyperparameters used in PPO
parameter value

GAE parameter(λ) 0.9
SGD batch size 4096
SGD minibatch size 64
SGD epoch 15
discount rate(γ) 0.99
learning rate(α) 5× 10−5

entropy coefficient(β) 0.01
clip size(ε) 0.1

Table 2: Neural network model used in PPO

input layer
current position, target

position, current positions
other robots

hidden layer 2 layers 256 parameters

output layer
probability of movement

in 5 directions
(up, right, down, left, stop)

activation func tanh

the settings are shown in Table 2.

The experiment results are given in Tables 3 and 4.
Each table presents 17 results for 4 to 20 robots, with
computation time and training steps. “NG” means
the algorithm did not finish within 2000 trials of learn-
ing. A trial means collecting data for the number of
steps of the SGD batch size and training of the model
using it.

Table 3 shows the case where the algorithm is termi-
nated until a solution with no collision is found. Such
solutions are already valid solutions for the safe con-
trol problem. However, we point out that it is very
time consuming to compute these safe solutions by
PPO, and there are 4 “NG” cases in this experiment.
On the other hand, Table 4 shows the case where the
algorithm is terminated when a solution with no more
than 5 collision states is computed. This way notably
reduces computation time and “NG” cases, but the
solutions are not yet safe.

Considering the efficiency obtained by terminating
DRL algorithms when a reasonable sub-optimal solu-
tion is obtained, we adopt the results in Table 4 and
resort to SCT to further provide safety certificate.

Step 2. Convert the computed sub-optimal so-
lutions into a supervisory control problem

To determine if a sub-optimal solution is ‘reason-
able’ and thereby set a criterion to terminate the DRL
algorithms is case-dependent. For this case study, we
consider using the criterion of the number of colli-
sion occurrences contained in sub-optimal solutions,
and conduct tests of algorithm execution times as dis-
played in Fig. 2. We use bar graphs to compare the
execution times for collision numbers 0, 5, 10, 15, 20,
as well as for robot numbers from 4 to 18.

Observe that the times needed to achieve 0 collision

Table 3: PPO learning results (0 collisions)
No. of robots Learning time

4 robot 5.4[min]
5 robot 8.0[min]
6 robot 21.1[min]
7 robot 59.1[min]
8 robot NG
9 robot NG
10 robot 46.5[min]
11 robot 22.5[min]
12 robot 149.7[min]
13 robot 118.7[min]
14 robot 86.7[min]
15 robot NG
16 robot 145.3[min]
17 robot 136.4[min]
18 robot 79.9[min]
19 robot NG
20 robot 145.8[min]

Table 4: PPO learning results (≤ 5 collisions)
No. of robots Learning time

4 robot 4.6[min]
5 robot 5.5[min]
6 robot 8.2[min]
7 robot 9.8[min]
8 robot 11.6[min]
9 robot 13.4[min]
10 robot 16.0[min]
11 robot 19.8[min]
12 robot 21.2[min]
13 robot 27.0[min]
14 robot 28.8[min]
15 robot NG
16 robot 118.8[min]
17 robot 52.0[min]
18 robot 40.7[min]
19 robot 54.0[min]
20 robot 54.1[min]

are notably longer (from 6 robots); this shows that
to use only DRL algorithms to achieve perfectly safe
solutions is inefficient. Further, the rest cases of col-
lision numbers 5, 10, 15, 20 do not exhibit significant
differences in execution times, though the tendency is
the more collisions allowed the shorter times needed
(which matches intuition).

Based on the observation from Fig. 2, we choose to
set the criterion of (maximum) 5 collisions to termi-
nate the algorithm execution. The results, as already
stated above, are displayed in Table 4 for up to 20
robots.

On each termination, a sub-optimal stochastic pol-
icy π is obtained, which is generally unsafe. Namely
using π, robots may collide with one another or with
wall/shelf up to 5 times. To provide safety guarantees,



Fig. 2: Comparisons of PPO execution times for dif-
ferent numbers of collisions and robots

πg(s0)

s0
si = si+2

(collision)

πg(si−1) πg(si+2)

sk

πg(sk−1)

πg(si)

si+1

πg(si+1) = ε (silent transition)

Fig. 3: Plant automaton constructed from policy

we resort to SCT. To that end, we define a supervisory
control problem based on π.

Following the procedure outlined in Section 2, we
first convert π to a deterministic policy πg by a greedy
heuristic: at each state selecting the action with the
highest probability. Under this πg, we construct a
trajectory

s0
πg(s0)−−−−→ s1 −→ · · ·

πg(sk−1)−−−−−−→ sk.

For this case study, the initial state s0 is where all
robots are at their starting locations, while the final
state sk is where all robots are at their goal locations.
Some states in the middle may represent collisions,
where at least two robots have the same coordinates,
or a robot has the same coordinate as wall/shelf. In
our simulation environment, if a collision occurs due
to a robot’s action, the robot does not actually exe-
cute that action and its coordinate does not change.
To reflect this in the trajectory, we add a dummy col-
lision state and a dummy silent transition to form a
‘virtual selfloop’.

An illustration is displayed in Fig. 3. Consider that
a collision occurs at state si when action πg(si) is
taken. We add a collision state si+1 (even though in
the simulation the robot does not actually move), and
then add a silent transition denoted by ε from si+1

back to si but now relabeled to si+2 (as a successor
state of si+1). Thus we create a dummy loop with an
explicit collision state.

With the trajectory constructed above, we maps it
to the plant automaton P, and define the set of unsafe
states Xus to include all the dummy collision states
(like si+1 in Fig. 3).

Step 3. Apply SCT to solve the supervisory

πg(s0)

s0
si = si+2

(collision)

πg(si−1) πg(si+2)

sk

πg(sk−1)

πg(si)

si+1

Fig. 4: Supervisory control that disables actions to
unsafe states

control problem to provide safety certificate.

Finally we apply the standard SCT to provide
safety certificate. With the plant automaton P and
define the set of unsafe states Xus as inputs, SCT dis-
ables all actions that potentially lead to unsafe states.
For the illustration given in Fig. 3, the corresponding
supervisory control is to disable action πg(si) which
leads to collision (see Fig. 4). In this way, all unsafe
states will never be visited.

In addition, since the final state sk is the desired
marker state (as it represents all robots at their goal
locations), the supervisory control also ensures non-
blocking. Therefore, we have obtained valid solutions
to the safe control problem for this case study.

Regarding efficiency, as compared to previous work
on the same case study [5, 8, 9] where at most 4
robots are computationally feasible, we have success-
fully obtained solutions for 20 robots in reasonable
time thanks to DRL.

4 Conclusion

In this paper, we have proposed a new safe control
approach by combining the correct-by-construction
SCT and the computationally efficient DRL algo-
rithms. Safety certificate of this approach is estab-
lished, and a case study on multi-robot warehouse au-
tomation is conducted to show notable improvement
of efficiency as compared to previous work.

In our ongoing work, we continue to experiment
with larger numbers of robots than reported in this
paper. Another intriguing direction is to directly
explore the stochastic policies obtained by DRL (in
step 2 of our approach). This is because DRL al-
gorithms only generate sub-optimal solutions, non-
greedy selections of actions may possibly lead to bet-
ter solutions. They may lead also to worse solutions,
with more collisions and deadlocks, but these can all
be correctly removed by SCT at the final step. Lastly
we will aim to apply this approach to other safety-
critical cyber-physical systems such as connected au-
tonomous vehicles and traffic networks.
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