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Abstract

State explosion problem is a major challenge for supervisory control synthesis of large-scale discrete-event systems (DES). In this paper,
we address this challenge by proposing a fully automated nonblocking heterarchical supervisory control scheme. We integrate a clustering
method and an abstraction-based approach into a streamlined procedure to automatically perform horizontal decomposition and vertical
aggregation of the overall system. Horizontal decomposition partitions the plant components and specifications into subsystems, while
vertical aggregation renders the plant to be controlled by a hierarchy of decentralized supervisors and coordinators. We first synthesize a
decentralized supervisor for each imposed control specification. Then we develop a method based on the Markov Clustering Algorithm to
cluster the decentralized supervisors into modular subsystems and design coordinators to remove the blocking states (whenever they exist) in
each subsystem. Moreover we employ an abstraction-based approach to create an abstraction for each subsystem, cluster these abstractions
into higher level subsystems, and correspondingly synthesize higher level coordinators to remove any blocking states. This process proceeds
until there remains a single higher level cluster, for which a top-level coordinator is synthesized to ensure nonblockingness of the global
controlled behavior. Such a heterarchical synthesis approach based on multi-layer clustering and abstraction does not require or needs to rely
on engineering insight of the system structure. It is shown that our obtained decentralized supervisors and hierarchical coordinators jointly
achieve global optimality and nonblockingness. Our proposed synthesis scheme is demonstrated by two benchmark case studies.

Key words: Supervisory control; Decentralized and hierarchical supervisory control; Clustering; Abstraction-based approach; Large-scale
discrete-event systems.

1 Introduction

The supervisory control theory (SCT) [25,26] plays a fundamental role in controlling large-scale DES. Examples include auto-
mated guided vehicles in logistic systems, multi-robot in manufacturing cells, and wireless sensor networks in communications
system. Despite the great practical significance, one of the major drawbacks of supervisory control synthesis for large-scale
DES is state-space explosion [5,10–12].

To reduce such computational difficulty, a variety of modular control architectures have been proposed. One is concerned with
controlling the system by a hierarchy of decentralized supervisors and coordinators, called heterarchical architecture [2,25].
Heterarchical synthesis is given by combining horizontal decomposition and vertical clustering, where horizontal decompo-
sition partitions the plant components and specifications into subsystems, and vertical clustering represents that the plant is
controlled by a hierarchy of decentralized supervisors and coordinators to ensure overall nonblocking [8,14,16,18] . The cen-
tral technique of heterarchical synthesis is model abstraction, with special conditions imposed on natural projections ensuring
that the heterarchical controlled behavior is identical to the monolithic controlled behavior. There are several model abstraction
techniques that are provided to synthesize supervisors and coordinators by abstracted models, where the coordinators achieve
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the overall nonblocking [17,20,27]. Based on the model abstraction techniques, the conditions that make the controlled behav-
ior to be maximal permissive is introduced [7,18,24]. However, the decomposition method in abstraction-based approaches is
non-automatic. That is to say, an automatic synthesis process for the decomposition is lacking.

To address the above issue, in this paper we extend the abstraction-based approach into a streamlined algorithm to automatically
synthesize heterarchical supervisor control while guaranteeing global nonblocking as follows.We first synthesize decentralized
supervisors to enforce each specification. Then by employing a markov clustering (MCL) algorithm [4] the synthesized de-
centralized supervisors are algorithmically clustered. To this end, we use dependency structure matrix (DSM) [9] to encode
the relationship between each plant component and specification. We then check if there exist conflicts in each cluster. If so,
we design a supervisor, called coordinator, to remove the conflicts. After ensuring each cluster is nonblocking, we employ the
model abstraction technique to compute an abstract model for each nonblocking cluster. The clustering, conflicts removing,
and model abstraction steps are repeated until the number of clusters is no more than two. Finally, it is checked if conflicts exist
among the abstractions in the top-level cluster(s). If so, a coordinator is synthesized to ensure the top-level nonblockingness. A
set of decentralized supervisors and hierarchical coordinators are generated by above procedure, which is shown to collectively
guarantee the overall nonblocking of the entire system.

We note that in [10] a systematic approach is proposed to transform a set of plant components and a set of specifications
modeled as extended finite automata into a tree-structured multilevel DES to which multilevel supervisory control synthesis
[15] can be applied. The authors in [10] cluster plant components into a tree structure, so the DSM in [10] encodes the number of
specifications that shares events with plant components. The output of MCL algorithm thus is the plant component clusters. In
contrast, we record the number of plant components that share events with specifications because we synthesize a decentralized
supervisor for each specification before clustering, and find clusters for these decentralized supervisors. Moreover, we conduct
model abstraction in vertical aggregation to ensure the global nonblockingness, which is not guaranteed in [10].

To address nonblockingness the authors in [21] present an approach to synthesize a deterministic coordinated distributed
supervisor under partial observation and provide a sufficient condition to ensure the maximal permissiveness of a coordinated
distributed supervisor generated by the proposed synthesis approach. A collection of deterministic local nonblocking state-
normal supervisors is computed such that the global requirement satisfaction and nonblockingness can be achieved. The authors
in [21] give a procedure, called Sequential Abstraction over Product, to obtain an abstraction of the plant in a sequential way,
which avoids computing the plant explicitly that may be prohibitively large for systems of industrial size. In contrast, we extend
the abstraction-based approach into a streamlined algorithm to achieve the global nonblocking without losing the information
of the plant and reduce the computational cost.

The authors in [27] integrate supervisory control theory and a model-based deep reinforcement learning method to synthesize
a nonblocking coordinator for the modular supervisors. The deep reinforcement learning method significantly reduces the
computational complexity by avoiding the computation of synchronization of multiple modular supervisors and the plant
models. The supervisory control function in [27] is represented by the deep neural network instead of a large-scale automaton
or a state-based lookup table. In contrast, we avoid to compute the synchronous product of multiple local modular supervisors
and plant models by heterarchical architecture.

In summary the contribution of this paper is threefold. First, compare to the abstraction-based approach, system decomposition
in our method based on MCL is automatic. Second, compare to the existing techniques of clustering, model abstraction in our
method guarantees global nonblocking. Finally, we propose a streamlined algorithmic solution for the nonblocking heterar-
chical supervisory control problem, which does not require engineering insight of the system structure. The obtained results,
in particular the state size of the coordinators for global nonblocking, are comparable with the existing approaches that need
detailed analysis of the system structure.

The remainder of the paper is organized as follows. Section 2 introduces preliminaries. Algorithmic approach for heterarchical
supervisor synthesis and the theoretical results are provided in Section 3. In Section 4, the proposed method is demonstrated
with two examples. We then draw conclusions in the last section, Section 5.

2 PRELIMINARIES

The DES plant to be controlled is modeled by a generator G = (Q,Σ,δ ,q0,Qm), where Q is the finite state set, Σ = Σc∪̇Σu is
the finite event set which is partitioned into two subsets – the controllable event subset Σc and the uncontrollable event subset
Σu. The event set Σ also can be partitioned into a set of observable events Σo and a set of unobservable events Σuo due to partial
observation of a system, i.e., Σ = Σo∪̇Σuo . The natural projection is defined as P : Σ → Σo and can be extended in a usual way
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P : Σ∗ → Σ∗
o. The inverse projection of P is defined as P−1 : Σ∗

o → 2Σ∗ with P−1(ω) = {λ ∈ Σ∗|P(λ ) = ω}, where ω ∈ Σ∗
o.

δ : Q×Σ → Q is the (partial) state transition function, q0 ∈ Q is the initial state, and Qm ⊆ Q is the set of marker states. In the
usual way, we extend δ such that δ : Q×Σ∗ → Q, and write δ (q,s)! to mean that δ (q,s) is defined, where q ∈ Q and s ∈ Σ∗. A
string s1 ∈ Σ∗ is a prefix of another string s ∈ Σ∗, written s1 ≤ s, if there exists s2 ∈ Σ∗ such that s1s2 = s. The prefix closure of
L, written L, is L := {s1 ∈ Σ∗ | (∃s ∈ L)s1 ≤ s}. A language L is closed if L = L.

The closed behavior of G is the set of all strings that can be generated by G: L(G) := {s ∈ Σ∗|δ (q0,s)!}. As defined L(G)
is closed. On the other hand, the marked behavior of G is the subset of strings that can reach a marker state: Lm(G) := {s ∈
L(G)|δ (q0,s) ∈ Qm} ⊆ L(G). As in the case of an automaton, a state q ∈ Q is reachable if (∃s ∈ Σ∗)δ (q0,s)!&δ (q0,s) = q; G
itself is reachable if q is reachable for all q ∈ Q. A state q ∈ Q is coreachable if (∃s ∈ Σ∗)δ (q,s) ∈ Qm; G itself is coreachable
if q is coreachable for all q ∈ Q. G is nonblocking if every reachable state is coreachable, or equivalently

L(G) = Lm(G),

namely every string in the closed behavior may be completed to a string in the marked behavior. G is trim if it is both reachable
and coreachable. A language L is controllable with respect to G if L̄Σu ∩L(G) ⊆ L̄. We employ C(L) to denote the family of
all controllable sublanguages of L, which contains a (unique) supremal element supC(L) := ∪{L′|L′ ∈ C(L)} [25,26].

Let G be the plant to be controlled, consisting of N (> 1) component agents Gk = (Qk,Σk,δk, q0,k,Qm,k), k = 1,2, . . . ,N.
Write N for the set of integers {1,2, . . . ,N}. Then the closed and marked behaviors of G are L(G) = ∥{L(Gk)|k ∈ N} and
Lm(G) = ∥{Lm(Gk)|k ∈ N}, respectively, where ∥ denotes synchronous product ([26]). Each agent’s event set Σk is partitioned
into two subsets – a controllable subset Σc,k and an uncontrollable subset Σu,k, i.e., Σk = Σc,k∪̇Σu,k. Hence the plant G is defined
over Σ := ∪{Σk|k ∈ N}, with controllable subset Σc := ∪̇{Σc,k|k ∈ N} and uncontrollable subset Σu := ∪̇{Σu,k|k ∈ N}.

In this paper, we consider the plant G consisting of N component agents Gk = (Qk,Σk,δk,q0,k,Qm,k), k = 1, ...,N. The behavioral
constraint is imposed through (local) specification languages Ei ⊆ Σ∗

Ei
(i ∈ I) where ΣEi ⊆ Σ is the alphabet of Ei and the I is an

index set. For each specification Ei, the decentralized plant GEi is synthesized from the agents that share events with ΣEi :

GEi := ||{Gk|Σk ∩ΣEi ̸= /0} (1)

Then we synthesize an optimal and nonblocking decentralized supervisor SUPi:

Lm(SUPi) = supC(Lm(Ei)||Lm(GEi)), (2)

In general, the joint behavior of the decentralized supervisors fails to be nonblocking, i.e. ||i∈IL(SUPi)
⊃
̸=||i∈ILm(SUPi). An

additional supervisor CO, called the coordinator, needs to be designed to resolve conflicts among supervisors:

Lm(CO) := supC(||i∈ILm(SUPi))||Σ∗) (3)

||i∈IL(SUPi)||L(CO) = ||i∈ILm(SUPi)||Lm(CO) (4)

The joint behavior of the supervisors and the coordinator is identical to the monolithic controlled behavior [25,26].

However, checking conflicts and designing the coordinator as above may not be feasibly computable since the synchronous
product of all SUPi is required. We are motivated to improve the computation efficiency by developing a streamlined algorith-
mic solution for the nonblocking heterarchical supervisory control problem.

3 Algorithmic Approach for Heterarchical Supervisor Synthesis

In this section we propose a streamlined algorithm to conduct horizontal decomposition and vertical aggregation for large-scale
DES, and achieve global nonblocking. We first synthesize decentralized supervisors to enforce each imposed control specifica-
tion. Then we propose a method based on the Markov Cluster Algorithm [22] to automatically perform system decomposition
without requiring engineering insight. Finally, we ensure the nonblockingness of global controlled behavior by computing a
coordinator that resolves conflicts among decentralized supervisors at the abstraction level. Before presenting our architec-
tural approach to heterarchical supervisor synthesis, we recall some essential previous results and definitions necessary for the
synthesis procedure.
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Firstly, we recall Markov Clustering Algorithm (MC Algorithm) [22], which is a graph clustering method that identifies clusters
by generating Random Walk on the graph. The input of MC algorithm described in [6] is a stochastic matrix M wherein the
column elements sum up to one. An entry Mi j in M represents the probability of a random walk from column element i to row
element j. In this paper, we apply the MC Algorithm to automatically partition the decentralized supervisors given by (2) into
clusters without requiring engineering insight. The input of MC Algorithm M is determined through the following three steps,
which are originally from [8].

(S1) Consider a set of plant models and a set of specification models. First generate a binary matrix P called Domain Mapping
Matrix (DMM) [4] to record whether a plant and a specification have shared events. P(i, j) = 1 if specification i and plant j
have shared events; otherwise P(i, j) = 0.

(S2) Multiply P with its tranpose matrix P⊤ to get a square matrix, called Dependency Structure Matrix (DSM)[8,19],

PD = P×P⊤. (5)

PD(i, j) = k means that there exist k plant models that have shared events with both specification models Ei and E j.
(S3) Convert PD into stochastic matrix M by normalizing the columns of PD:

Mij =
PDij

∑
i

PDij
. (6)

The MC Algorithm is an iterative algorithm that consists of two steps, namely expansion and inflation. The expansion is the
powers of matrix M meaning the random walker does α jumps in each iteration k, i.e.,

Mk+1 = Mα
k . (7)

Typically, a value of α = 2 is used for the stability of the algorithm [23]. However, other values of α can also be tried. When
α = 1, the clustering may diverge, while when α = 3, the clustering may have less influence on the results. The M0 is the input
of MC Algorithm matrix M. The inflation aims to strengthen the probability Mi j in M after each expansion step. It is updated
by

(Mk+1)ij :=
(Mk+1)

β

ij
N
∑

i=1
(Mk+1)

β

ij

(8)

After the inflation step, the transition probabilities for high values are increased while those for low values are decreased. By
repeating the expansion and inflation steps given above, the matrix M will eventually converge to a stable matrix.

Next, we recall two definitions that will be employed to construct models for verifying the nonblockingness of the system.

Definition 1 A natural projections Pi is said to be a natural observer for a language L ⊆ Σ∗ if

(∀s ∈ L, ∀to ∈ Σ
∗
o) P(s)to ∈ P(L) (9)

⇒ (∃t ∈ Σ
∗) P(t) = to & st ∈ L

In plain words, P is a natural observer for L if that P(s) can be extended to P(L) by an observable string to implies that s can
be extended to L by a string t with P(t) = to.

Definition 2 A language L is said to be Output Control
Consistency (OCC) [28] if for every string s = s′σ1 · · ·σk,k ≥ 1 ∈ L, where s′ is either the empty string ε or terminates with an
event in Σo, the following holds

((∀i ∈ {1,k−1})σi ∈ Σ\Σo) & σk ∈ Σo ∩Σu

⇒ ((∀ j ∈ {1,k})σ j ∈ Σu) (10)
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This property shows that if the prefix of a string in L terminates with an observable event or is an empty string, and this string
terminates with an observable and uncontrollable event, then all immediately preceding unobservable events of the prefix must
be uncontrollable.

3.1 Algorithmic Approach for Heterarchical Supervisor Synthesis

Now we are ready to consider the global nonblocking problem of a large-scale DES based on the heterarchical architecture.
We first synthesize decentralized supervisors for each specification. Then by employing a MC algorithm [4] the synthesized
decentralized supervisors are clustered. We check if there are conflicts in each cluster and, if so, design a supervisor called
a coordinator to remove them. After ensuring that each cluster is nonblocking, we employ the model abstraction approach to
compute an abstract model for each nonblocking cluster. The clustering, conflicts removing, and model abstraction steps are
repeated until there are no more than two clusters. Finally, it is checked if conflicts exist among the abstractions in the top-level
cluster(s). If so, a coordinator is synthesized to ensure the nonblockingness. This procedure generates a set of decentralized
supervisors and hierarchical coordinators that collectively guarantee the overall nonblockingness of the entire system.

In this paper, we consider the system modeled as J component agents G1, . . . ,GJ and I specification automata E1, . . . ,EI(J, I ∈
N+). Our proposed approach to the heterarchical supervisory control includes the following six steps.

Step 1 Synthesize optimal and nonblocking decentralized supervisors SUPi for each Ei by (1) and (2), i.e.,

Lm(SUPi) = supC(Lm(Ei)||Lm(GEi)).

Step 2 Compute the stochastic square matrix M by Steps (S1)-(S3) given above and set the expansion parameter α to 2 and adjust
the inflation parameter β obtain varying clustering outcomes. Employ the MC algorithm to partition the decentralized
supervisors into N clusters {1, . . . ,N}, thereby designing modular subsystems.

Step 3 Let Xl (l ∈ {1, . . . ,N}) be a set of indices of the decentralized supervisors in cluster l. The subsystem SUBl is the
synchronous product of all decentralized supervisors in the same cluster, i.e.

SUBl = ||{SUPi|i ∈ Xl} (11)

Check if there exists blocking in the subsystem SUBl . If so, a coordinator COl will be designed to remove the blocking
states by (3). Then the nonblocking subsystem is obtained by

SUBl = ||i∈Xl (SUPi)||COl .

Step 4 Synthesize an abstraction ABSl for the subsystem SUBl by

ABSl = Pl(SUBl),

where Pl : Σ∗
SUBl

→ Σ∗
ABSl

is a natural projection from the event set of SUBl , written as ΣSUBl , to the event set of ABSl :
ΣABSl := Σo ∩ΣSUBl with a shared event set Σo := {σ ∈ Σ|(∃n1,n2 ∈ {1, . . . ,N}) n1 ̸= n2 & σ ∈ ΣSUBn1

∩ΣSUBn2
}. The

event set ΣABSn is extended to make Pn satisfy both natural observer and OCC properties. Abstractions ABS1, ...,ABSN
thus are obtained.

Step 5 Repeat the Step 2 to Step 4 until there are no more than two clusters.
Step 6 Check if there are any conflicts among the abstractions in the top-level cluster(s). If such conflicts exist, generate a

coordinator to guarantee nonblockingness.

Note that if the result of clustering remains the same as before, i.e., if the number of clusters has not decreased compared to
the previous clustering, we will reduce the inflation value β . Additionally, after the first round of clustering, we partition the
set of abstractions (rather than the set of decentralized supervisors as in the first time). Hence the binary matrix P in Step 2
is constructed by P(l, j) = 1 if the event set ΣABSl of abstraction ABSl and the event set ΣG j of plant component G j are not
disjoint; otherwise P(l, j) = 0.

3.2 Theoretical results

By the above procedure, we obtain I decentralized supervisors SUP1, ...,SUPI and H coordinators CO1, . . . ,COH (the number
of coordinators is case-dependent). We conclude that the synchronized behavior of these supervisors and coordinators is iden-
tical to the behavior of the monolithic supervisor SUP and the global nonblocking is ensured by the obtained supervisors and
coordinators.
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Theorem 1 Suppose that the proposed procedure terminates after L(≥ 1) levels of clustering/abstraction, and in each level l ∈
{1, . . . ,L} there are Nl clusters SUBnl (nl ∈ {1, . . . ,Nl}). Assume that the procedure generates I decentralized supervisors SUPi
(i ∈ {1, . . . , I}) and H coordinators COh (h ∈ {1, . . . ,H}). If for every l ∈ {1, . . . ,L},nl ∈ {1, . . . ,Nl}, Pnl is an Lm(SUBnl )-
observer and OCC for Lm(SUBnl ), then

(||i∈{1,...,I}L(SUPi))||(||h∈{1,...,H}L(COh))||L(G) = L(SUP)
(||i∈{1,...,I}Lm(SUPi))||(||h∈{1,...,H}Lm(COh))||Lm(G) = Lm(SUP)

To prove Theorem 1, we need the following proposition from [7].

Proposition 1 ([7]) Consider I decentralized supervisors SUPi (i ∈ {1, . . . , I}) and H coordinators COh (h ∈ {1, . . . ,H})
based on abstractions. If for every i, Pi is an Lm(SUPi)-observer and OCC for Lm(SUPi), then

(||i∈{1,...,I}L(SUPi))||(||h∈{1,...,H}L(COh)) =

(||i∈{1,...,I}Lm(SUPi))||(||h∈{1,...,H}Lm(COh))

(||i∈{1,...,I}L(SUPi))||(||h∈{1,...,H}L(COh))||L(G) = L(SUP)
(||i∈{1,...,I}Lm(SUPi))||(||h∈{1,...,H}Lm(COh))||Lm(G) = Lm(SUP)

Proof of Theorem 1. Consider a system with I specification models.

Level 1: By step 1, we get I decentralized supervisors SUP1, ...,SUPI which are partitioned into N1 clusters by step 2. Suppose
there are Xn1 (n1 ∈ {1, . . . ,N1}) decentralized supervisors in cluster n1. A subsystem SUBn1 (n1 ∈ {1, . . . ,N1}) is synthesized
for cluster n1 by SUBn1 = ||{SUPi|i ∈ Xn1}. The subsystem is updated by SUBn1 = (||i∈Xn1

(SUPi))||COn1 to remove the
blocking states in ||{SUPi|i ∈ Xn1}. At this level, each abstraction ABSn1 (n1 ∈ {1, . . . ,N1}) is obtained by projecting SUBn1
as described in step 4, i.e.,

L(ABSn1) = Pn1L(SUBn1),Lm(ABSn1) = Pn1Lm(SUBn1).

Since the projection Pn1 in step 4 is an Lm(SUBn1)-observer and OCC for Lm(SUBn1), by Proposition 1 we have

(||i∈{1,...,I}L(SUPi))||n1∈{1,...,l1≤N1}L(COn1) =

(||i∈{1,...,I}Lm(SUPi))||n1∈{1,...,l1}Lm(COn1)

(||i∈{1,...,I}L(SUPi))||n1∈{1,...,l1}L(COn1)||L(G) = L(SUP)
(||i∈{1,...,I}Lm(SUPi))||n1∈{1,...,l1}Lm(COn1)||Lm(G) = Lm(SUP)

Level 2: When the number of clusters is greater than two, we do further clustering for abstractions ABS1, . . . ,ABSN1 . Suppose
that we get N2 clusters at the second level and there are Xn2 (n2 ∈ {1, . . . ,N2}) abstractions in cluster n2. For each cluster
a corresponding subsystem SUBn2 = ||{ABSn1 |n1 ∈ Xn2}(n2 ∈ {1, . . . ,N2}) is formed by step 3. Similarly, the subsystem is
updated to remove the blocking states in ||{ABSn1 |n1 ∈ Xn2} by

SUBn2 = (||n1∈Xn2
(ABSn1))||COn2 .

Then, an abstraction ABSn2 (n2 ∈ {1, . . . ,N2}) as in step 4 is synthesized by natural projection Pn2 for SUBn2 , i.e.,

L(ABSn2) = Pn2L(SUBn2), Lm(ABSn2) = Pn2Lm(SUBn2)
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By Proposition 1, the projection Pn2 in step 4 is an Lm(SUBn2)-observer and OCC for Lm(SUBn2), so we obtain that

(||i∈{1,...,I}L(SUPi))||n1∈{1,...,l1≤N1}L(COn1)||n2∈{1,...,l2≤N2}L(COn2) =

(||i∈{1,...,I}Lm(SUPi))||n1∈{1,...,l1}Lm(COn1)||n2∈{1,...,l2≤N2}Lm(COn2)

(||i∈{1,...,I}L(SUPi))||n1∈{1,...,l1}L(COn1)||n2∈{1,...,l2≤N2}L(COn2)

||L(G) = L(SUP)(||i∈{1,...,I}Lm(SUPi))||n1∈{1,...,l1}Lm(COn1)

||n2∈{1,...,l2≤N2}Lm(COn2)||Lm(G) = Lm(SUP)

Level L: Consider that the procedure ends with clustering L(≥ 1) times. At the top level L, suppose there are XnL (nL ∈
{1, . . . ,NL}) abstractions in cluster nL. Here NL ≤ 2 by step 5. For each cluster a subsystem SUBnL (nL ∈ {1, . . . ,NL}) is
formed by SUBnL = ||{ABSn(L−1) |n(L−1) ∈ XnL} and updated by

SUBnL = (||n(L−1)∈XnL
(ABSn(L−1)))||COnL

to remove the blocking states in step 3. Then, an abstraction ABSL (nL ∈ {1, . . . ,NL}) is synthesized by natural projection PnL
for SUBnL , i.e.,

L(ABSn(L)) = Pn(L)L(SUBn(L))

Lm(ABSn(L)) = Pn(L)Lm(SUBn(L)).

Since for every l ∈ {1, . . . ,L},nl ∈ {1, . . . ,Nl}, Pnl is an Lm(SUBnl )-observer and OCC for Lm(SUBnl ), by proposition 1 we
obtain that

(||i∈{1,...,I}L(SUPi))||n1∈{1,...,l1≤N1}L(COn1) . . . ||nL∈{1,...,lL≤NL}L(COnL) =

(||i∈{1,...,I}Lm(SUPi))||n1∈{1,...,l1}Lm(COn1) . . . ||nL∈{1,...,lL≤NL}Lm(COnL)

(||i∈{1,...,I}L(SUPi))||n1∈{1,...,l1}L(COn1) . . . ||nL∈{1,...,lL≤NL}L(COnL)

||L(G) = L(SUP)(||i∈{1,...,I}Lm(SUPi))||n1∈{1,...,l1}Lm(COn1) . . .

||nL∈{1,...,lL≤NL}Lm(COnL)||Lm(G) = Lm(SUP)

which implies that

(||i∈{1,...,I}L(SUPi))||h∈{n1,...,nL}L(COh) =

(||i∈{1,...,I}Lm(SUPi))||h∈{n1,...,nL}Lm(COh)

(||i∈{1,...,I}L(SUPi))||h∈{n1,...,nL}L(COh)||L(G) = L(SUP)
(||i∈{1,...,I}Lm(SUPi))||h∈{n1,...,nL}Lm(COh)||Lm(G) = Lm(SUP)

where n1 +n2 + · · ·+nL = H. ⋄

Theorem 1 asserts that decentralized supervisors and coordinators designed by our proposed method jointly achieve global
optimal and nonblocking controlled behavior. Thereby, the computational effort of the supervisor synthesis for large-scale
DES is reduced.

4 Case studies

In this section, the proposed method is demonstrated with two cases, where the first case is a control problem for automatic
guided vehicles (AGVs)[13] and the second case is a large-scale system Production Cell [1]. For the AGV systems, the mono-
lithic supervisor is computable, therefore it can be confirmed that the joint behavior of decentralized supervisors by our method
is identical to the monolithic controlled behavior.
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Fig. 1. AGVs system, taken from [3]

Fig. 2. Plant components of AGV, taken from [3]

4.1 Automatic Guided Vehicles

The AGV system consists of five automatic guided vehicles AGV1, ...,AGV5 serving a manufacturing workcell described in
[13] [3].

As displayed in Fig.1 the workcell consists of two input stations IPS1, IPS2; three workstations WS1, WS2, WS3; one
completed parts station CPS; and four shared zones for the AGVs. The generator models of the AGVs are displayed in Fig.2,
and Table 1 lists the interpretation of events.
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Table 1
Interpretation of events

Event AGV Interpretation
11 1 Leaves WS2 and enters Zone 1
10 Exits Zone 1 and loads from IPS1
13 Re-enters Zone 1
12 Exits Zone 1, unloads to WS2 and parks
21 2 Leaves WS3 and enters Zone 3
18 Exits Zone 3 and enters Zone 2
20 Exits Zone 2 and enters Zone 1
22 Exits Zone 1 and loads from IPS2
23 Re-enters Zone 1
24 Exits Zone 1 and re-enters Zone 2
26 Exits Zone 2 and re-enters Zone 3
28 Exits Zone 3, unloads to WS3 and parks
33 3 Leaves WS1 and enters Zone 2
34 Exits Zone 2 and loads from WS2
31 Re-enters Zone 2
32 Exits Zone 2, unloads to WS1 and parks
41 4 Leaves WS1 and enters Zone 3
40 Exits Zone 3 and enters Zone 4
42 Exits Zone 4 and loads from WS3
43 Re-enters Zone 4
44 Exits Zone 4 and re-enters Zone 3
46 Exits Zone 3, unloads at WS1 and parks
51 5 Leaves CPS and enters Zone 4
50 Exits Zone 4 and loads from WS1
53 Re-enters Zone 4
52 Exits Zone 4, unloads to CPS and parks

For this system, the control specifications imposed on the plant are as follows:

• Each of the four shared zones should be occupied by at most one AGV at a time.
• Only one of AGV1, AGV2 can be loaded at a time in two input stations IPS1, IPS2.
• Only one part can be processed at a time by each of WS2, WS3, while WS1 can assemble just two parts (a Type1 and a

Type2) at a time into a complete part. Three workstations must be protected against overflow and underflow.

These specifications are modeled by nine automata shown in Fig.4.1 :

Z1,Z2,Z3,Z4,WS13,WS14,WS2,WS3,IPS

In the following, we employ this case to illustrative the steps of our proposed method.

By Step 1: We synthesize decentralized supervisors for these nine specifications in the following. Let the event set of the
specification Z1 be ΣZ1 . Firstly, we obtain the decentralized plant GZ1 which is the synchronous product of the AGVs that
share events with ΣZ1 , namely GZ1 := (AGV1||AGV2). Then we compute the decentralized supervisor SUPZ1 such that

Lm(SUPZ1) = supC(Z1||Lm(GZ1))

Similarly, we get nine decentralized supervisors

SUPZ1 ,SUPZ2 ,SUPZ3 ,SUPZ4 ,SUPWS13 ,

SUPWS14 ,SUPWS2 ,SUPWS3 ,SUPIPS.

By Step 2: We create a DMM P to record the dependencies between models AGV1, ..,AGV5 and nine decentralized supervi-
sors, which is shown below.

Then, we multiply P with its tranpose matrix P⊤ to get the DSM shown in Table 3.
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Fig. 3. Specifications of AGVs, taken from [3]

Table 2
The DMM P of the AGV system.

AGV1 AGV2 AGV3 AGV4 AGV5

Z1 SUPZ1 1 1 0 0 0

Z2 SUPZ2 0 1 1 0 0

Z3 SUPZ3 0 1 0 1 0

Z4 SUPZ4 0 0 0 1 1

WS13 SUPWS13 0 0 1 0 1

WS14 SUPWS14 0 0 0 1 1

WS2 SUPWS2 1 0 1 0 0

WS3 SUPWS3 0 1 0 1 0

IPS SUPIPS 1 1 0 0 0

Table 3
The DSM of the AGV system: PD = P×P⊤

SU
P Z

1

SU
P Z

2

SU
P Z

3

SU
P Z

4

SU
P W

S 1
3

SU
P W

S 1
4

SU
P W

S 2

SU
P W

S 3

SU
P I

PS

SUPZ1 2 1 1 0 0 0 1 1 2

SUPZ2 1 2 1 0 1 0 1 1 1

SUPZ3 1 1 2 1 0 1 0 2 1

SUPZ4 0 0 1 2 1 2 0 1 0

SUPWS13 0 1 0 1 2 1 1 0 0

SUPWS14 0 0 1 2 1 2 0 1 0

SUPWS2 1 1 0 0 1 0 2 0 1

SUPWS3 1 1 2 1 0 1 0 2 1

SUPIPS 2 1 1 0 0 0 1 1 2
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To turn the DSM PD into a probability matrix M for the clustering step, we do the column normalization. The result is:

M =


0.2500 0.1250 0.1111 0 0 0 0.1667 0.1111 0.2500
0.1250 0.2500 0.1111 0 0.1667 0 0.1667 0.1111 0.1250
0.1250 0.1250 0.2222 0.1429 0 0.1429 0 0.2222 0.1250

0 0 0.1111 0.2857 0.1667 0.2857 0 0.1111 0
0 0.1250 0 0.1429 0.3333 0.1429 0.1667 0 0
0 0 0.1111 0.2857 0.1667 0.2857 0 0.1111 0

0.1250 0.1250 0 0 0.1667 0 0.3333 0 0.1250
0.1250 0.1250 0.2222 0.1429 0 0.1429 0 0.2222 0.1250
0.2500 0.1250 0.1111 0 0 0 0.1667 0.1111 0.2500



This M is used as input of MCL for clustering the decentralized supervisors. For this, we set up the inflation parameter β of
MCL to different values in order to get different clustering results. For example, when we set β = 4, we obtain four clusters:

Cluster 1 Cluster 2 Cluster 3 Cluster 4

SUPWS13 SUPZ4 SUPZ3 SUPZ1

SUPWS14 SUPWS3 SUPZ2

SUPWS2

SUPIPS

By Step 3: The components of each cluster are combined using synchronous product to create the subsystem model SUB,
namely:

• SUB1 = SUPWS13
• SUB2 = SUPZ4 ||SUPWS14
• SUB3 = SUPZ3 ||SUPWS3
• SUB4 = SUPZ1 ||SUPZ2 ||SUPWS2 ||SUPIPS

We check the nonblokingness inside of each subsystem and design the coordinator supervisor if conflict exists. The subsys-
tems SUB1,SUB2,SUB3,SUB4 are nonblocking, so there is no need to design coordinator to remove the conflict inside each
subsystem.

By Step 4: Then we perform the subsystem abstraction of each subsystem and obtain ABS1,ABS2,ABS3,ABS4. We employ
the synthesis procedure of SUB1 to introduce this step. Firstly, the shared event set Σo of the four subsystems is given by

Σo := {σ ∈ Σ|σ ∈ (ΣSUB1 ∩ΣSUB2 ∩ΣSUB3 ∩ΣSUB4)},

where ΣSUBi is the event set of SUBi for i ∈ [1,4]. Let ΣABS1 be the event set of ABS1. Then we get that ΣABS1 := Σo ∩ΣSUB1 .
ABS1 thus can be generated by a natural projection P1 : Σ∗

SUB1
→ Σ∗

ABS1
. Check and extend P1 to ensure P1 satisfies the natural

observer and OCC.

Return back to Step 2: We perform the clustering again for the four abstractions ABS1, ...,ABS4 and five plant components
AGV1, ...,AGV5. Construct a new DMM P to record the dependencies between abstractions and plant components. The
matrices P, PD and M for this second level clustering are shown below.

Table 4
The DMM P of the AGVs and abstractions

AGV1 AGV2 AGV3 AGV4 AGV5

ABS1 0 0 1 0 1
ABS2 0 0 0 1 1
ABS3 0 1 0 1 0
ABS4 1 1 1 0 0
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Table 5
PD = P×P⊤

ABS1 ABS2 ABS3 ABS4

ABS1 2 1 0 1
ABS2 1 2 1 0
ABS3 0 1 2 1
ABS4 1 0 1 3

M =

 0.50 0.25 0 0.20
0.25 0.50 0.25 0

0 0.25 0.50 0.20
0.25 0 0.25 0.60



Then we apply the clustering algorithm again using the same β (= 4).

Cluster 1 Cluster 2 Cluster 3 Cluster 4

ABS1 ABS2 ABS3 ABS4

As shown above, the cluster number does not reduce compared to the previous clustering. Therefore, we reduce β value by 0.5
(i.e. β = 3.5), and show the result in the following.

Cluster 1 Cluster 2

ABS2 ABS1

ABS3

ABS4

By Step 3: After the new clustering, we get 2 new clusters in this upper layer. Specifically, there is only one abstraction in
cluster 1, so ABS2 is the new subsystem directly. For cluster 2, however, there are three abstractions ABS1, ABS3, ABS4. We
thus get a new subsystem for cluster 2 by the synchronous product of these three abstractions, i.e.,

• SUBlayer2,1 = ABS2
• SUBlayer2,2 = ABS1||ABS3||ABS4

Check possible conflict inside SUBlayer2,1,SUBlayer2,2 and get that they are nonblocking.

By Step 4: Then we abstract SUBlayer2,1 and SUBlayer2,2 again, and get two abstractions ABSlayer2,1 and ABSlayer2,2. We treat
these two abstractions as one cluster and find that there exist conflicts between these two abstractions. A coordinator supervisor
CO thus be computed to remove the conflicts. The resulting control architecture for the AGV system is shown in Fig. 4.
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Fig. 4. Control architecture resulted from our approach

Our result consists of nine decentralized supervisors SUPZ1 , SUPZ2 , SUPZ3 , SUPZ4 , SUPWS13 , SUPWS14 , SUPWS2 , SUPWS3 ,
SUPIPS, and one coordinator CO. For the initial parameter β = 4, the resulting control architecture has two abstraction levels,
in which the coordinator CO has 10 states.

β
Cluster numbers of

decentralized supervisor
The number of

abstraction levels
Coordinator

(state numbers)
4 4 2 CO (10)

For this AGV system, the standard centralized approach is still possible. The monolithic supervisor SUP has 4406 states. So
we can confirm that the joint behavior of the supervisors and the coordinator is the same as the monolithic controlled behavior,
i.e.,

SUPZ1 ||...||SUPIPS||CO = SUP

We change the clustering inflation β and find that the number of cluster increases as β increases. The following table is
the result obtained based on the assumption 2.5 ≤ β ≤ 10, which includes the number that the decentralized supervisors are
clustered, the number of abstraction, and the state number of the coordinator.

β
Cluster numbers for

decentralized supervisor
The number of

abstraction
Coordinator

(state numbers)
2.5 2 1 CO (64)
3 3 2 CO (51)

3.5 3 2 CO (27)
4 4 2 CO (10)

4.5 4 2 CO (10)
5 4 2 CO (10)

5.5 5 3 CO (10)
6 5 3 CO (10)

6.5 5 3 CO (10)
7 5 3 CO (10)

7.5 5 3 CO (10)
8 6 3 CO (10)

8.5 6 3 CO (10)
9 6 3 CO (10)

9.5 6 3 CO (10)
10 6 3 CO (10)

Comparison of coordinators

As shown in Table 4.1, there are 13 coordinators having 10 states for inflation β = 4 to β = 10. It is verified that these 13
coordinators are isomorphic. The coordinator CO(10) is shown in Fig.6. On the other hand, relying on engineering insight for
system decomposition, it is known that the coordinator CO(7) for the same AGV system designed by the approach in [7] has 7
states which is shown in Fig.4.5. We now make a brief comparison between CO(7) and CO(10).
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Fig. 6. 10-state coordinator by our approach

The control logic of CO(7) is:
1. Disable event 11 (AGV1 leaves WS2 and enters Zone 1) if event 13 (AGV1 re-enters Zone 1) has occurred three more times
than event 23 (AGV2 re-enters Zone 1).
2. Disable event 21 (AGV2 leaves WS3 and enters Zone 3) if event 23 has occurred three more times than event 13.

The control logic of CO(10) is:
1. Disable event 11 if event 11 has occurred three more times than event 23.
This first control logic of CO(10) is the same as CO(7). The reason is that for the automaton of AGV1 shown in Fig.2, events
11 and 13 can only occur cyclically, so observing event 11 is equivalent to observing event 13 for the purpose of controlling
11.
2. Disable event 21 if event 23 has occurred three more times than event 11.

4.2 Production Cell

The Production Cell system [1],[3] consists of nine asynchronous component agents: Stock, Feed Belt, Elevating Rotary Table,
Rotary Base, Arm1, Arm2, Press, Deposit Belt, and Crane. The cell processes workpieces, called ‘blanks’, having state size of
order 107. The system is shown Fig.7.

Fig. 7. Overview of Production Cell configuration, taken from [3]

14



These nine asynchronous component agents are modeled by eleven component automata, and there are eighteen control speci-
fications. Please see Chap.5 in [3] for the detailed description of each automaton and event. We construct an abstraction based
hierarchical architecture for Production Cell system by our approach.

By Step 1: We synthesize a decentralized supervisor for each specification. Then we get eighteen decentralized supervisors.

Components Specifications Decentralized supervisors
St FB1 FB2 SUPFB1 SUPFB2
FB Ta1 Ta2 SUPTa1 SUPTa2

Ta V Ta3 Ta4 SUPTa3 SUPTa4
Ta H A1T Pr1 SUPA1T SUPPr1

Pr Pr2 A1P SUPPr2 SUPA1P
Ro A2P R1 SUPA2P SUPR1
A1 R2 R3 SUPR2 SUPR3
A2 R4 DB1 SUPR4 SUPDB1
DB DB2 DB3 SUPDB2 SUPDB3

Cr V
Cr H

By Step 2: Next we create a DMM P to record the dependencies between these eleven component models and eighteen
decentralized supervisors. The matrix P is shown below.

Table 6
The DMM P of the Production Cell system.

St FB Ta V Ta H Pr Ro A1 A2 DB Cr V Cr H
SUPFB1 1 1 0 0 0 0 0 0 0 1 1
SUPFB2 1 1 0 0 0 0 0 0 0 1 1
SUPTa1 0 1 1 0 0 0 0 0 0 0 0
SUPTa2 0 0 1 0 0 0 1 0 0 0 0
SUPTa3 0 1 0 1 0 0 0 0 0 0 0
SUPTa4 0 0 0 1 0 0 1 0 0 0 0
SUPA1T 0 0 1 0 0 1 0 0 0 0 0
SUPPr1 0 0 0 0 1 0 1 0 0 0 0
SUPPr2 0 0 0 0 1 0 0 1 0 0 0
SUPA1P 0 0 0 0 1 1 1 0 0 0 0
SUPA2P 0 0 0 0 1 1 0 1 0 0 0
SUPR1 0 0 0 0 0 1 1 0 0 0 0
SUPR2 0 0 0 0 0 1 0 1 0 0 0
SUPR3 0 0 0 0 0 1 1 0 0 0 0
SUPR4 0 0 0 0 0 1 0 1 0 0 0

SUPDB1 0 0 0 0 0 0 0 1 1 1 1
SUPDB2 0 0 0 0 0 0 0 1 1 0 0
SUPDB3 0 0 0 0 0 0 0 0 1 1 1

After this step, we multiply P with its tranpose matrix P⊤ to get the DSM shown in Table 7.
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Table 7
The DSM of the Production Cell system. PD = P×P⊤
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SU
P R

4
SU
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1
SU
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2
SU
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SUPFB1 4 4 1 0 1 0 0 0 0 0 0 0 0 0 0 2 0 2
SUPFB2 4 4 1 0 1 0 0 0 0 0 0 0 0 0 0 2 0 2
SUPTa1 1 1 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
SUPTa2 0 0 1 2 0 1 1 1 0 1 0 1 0 1 0 0 0 0
SUPTa3 1 1 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0
SUPTa4 0 0 0 1 1 2 0 1 0 1 0 1 0 1 0 0 0 0
SUPA1T 0 0 1 1 0 0 2 0 0 1 1 1 1 1 1 0 0 0
SUPPr1 0 0 0 1 0 1 0 2 1 2 1 1 0 1 0 0 0 0
SUPPr2 0 0 0 0 0 0 0 1 2 1 2 0 1 0 1 1 1 0
SUPA1P 0 0 0 1 0 1 1 2 1 3 2 2 1 2 1 0 0 0
SUPA2P 0 0 0 0 0 0 1 1 2 2 3 1 2 1 2 1 1 0
SUPR1 0 0 0 1 0 1 1 1 0 2 1 2 1 2 1 0 0 0
SUPR2 0 0 0 0 0 0 1 0 1 1 2 1 2 1 2 1 1 0
SUPR3 0 0 0 1 0 1 1 1 0 2 1 2 1 2 1 0 0 0
SUPR4 0 0 0 0 0 0 1 0 1 1 2 1 2 1 2 1 1 0

SUPDB1 2 2 0 0 0 0 0 0 1 0 1 0 1 0 1 4 2 3
SUPDB2 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 2 2 1
SUPDB3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 3

To turn the DSM PD into a probability matrix M for the clustering step, we do the column normalization. The result is given
by:

M =



0.2857 0.2857 0.1429 0 0.1667 0 0 0 0 0 0 0 0 0 0 0.1176 0 0.1818
0.2857 0.2857 0.1429 0 0.1667 0 0 0 0 0 0 0 0 0 0 0.1176 0 0.1818
0.0714 0.0714 0.2857 0.1111 0.1667 0 0.1000 0 0 0 0 0 0 0 0 0 0 0

0 0 0.1429 0.2222 0 0.1250 0.1000 0.1000 0 0.0588 0 0.0769 0 0.0769 0 0 0 0
0.0714 0.0714 0.1429 0 0.3333 0.1250 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0.1111 0.1667 0.2500 0 0.1000 0 0.0588 0 0.0769 0 0.0769 0 0 0 0
0 0 0.1429 0.1111 0 0 0.2000 0 0 0.0588 0.0588 0.0769 0.0769 0.0769 0.0769 0 0 0
0 0 0 0.1111 0 0.1250 0 0.2000 0.1000 0.1176 0.0588 0.0769 0 0.0769 0 0 0 0
0 0 0 0 0 0 0 0.1000 0.2000 0.0588 0.1176 0 0.0769 0 0.0769 0.0588 0.1111 0
0 0 0 0.1111 0 0.1250 0.1000 0.2000 0.1000 0.1765 0.1176 0.1538 0.0769 0.1538 0.0769 0 0 0
0 0 0 0 0 0 0.1000 0.1000 0.2000 0.1176 0.1765 0.0769 0.1538 0.0769 0.1538 0.0588 0.1111 0
0 0 0 0.1111 0 0.1250 0.1000 0.1000 0 0.1176 0.0588 0.1538 0.0769 0.1538 0.0769 0 0 0
0 0 0 0 0 0 0.1000 0 0.1000 0.0588 0.1176 0.0769 0.1538 0.0769 0.1538 0.0588 0.1111 0
0 0 0 0.1111 0 0.1250 0.1000 0.1000 0 0.1176 0.0588 0.1538 0.0769 0.1538 0.0769 0 0 0
0 0 0 0 0 0 0.1000 0 0.1000 0.0588 0.1176 0.0769 0.1538 0.0769 0.1538 0.0588 0.1111 0

0.1429 0.1429 0 0 0 0 0 0 0.1000 0 0.0588 0 0.0769 0 0.0769 0.2353 0.2222 0.2727
0 0 0 0 0 0 0 0 0.1000 0 0.0588 0 0.0769 0 0.0769 0.1176 0.2222 0.0909

0.1429 0.1429 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1765 0.1111 0.2727



This M is used as input of MCL for clustering the decentralized supervisors. Note that in this Production Cell system, the
computation is feasible only when in f lation β = 20. After first clustering, the eighteen decentralized supervisors are grouped
into five clusters:
Cluster1 :SUPDB1, SUPDB2, SUPDB3.
Cluster2 :SUPPr2, SUPA2P, SUPR2, SUPR4.
Cluster3 :SUPTa2, SUPTa4, SUPA1T, SUPPr1, SUPA1P, SUPR1, SUPR3.
Cluster4 :SUPTa1.
Cluster5 :SUPFB1, SUPFB2, SUPTa3.

By Step 3: We synchronize the automata in the same cluster, and obtain five subsystems SUBlayer1,1,..., SUBlayer1,5:

• SUBlayer1,1 = SUPDB1||SUPDB2||SUPDB3.
• SUBlayer1,2 = SUPPr2||SUPA2P||SUPR2||SUPR4.
• SUBlayer1,3 = SUPTa2||SUPTa4||SUPA1T||SUPPr1||SUPA1P
||SUPR1||SUPR3.

• SUBlayer1,4 = SUPTa1.
• SUBlayer1,5 = SUPFB1||SUPFB2||SUPTa3.

Check conflicts inside each subsystem and find that there are two subsystems with conflicts, so we design the coordinators
CO1 and CO2 to remove conflicts in SUBlayer1,2 and SUBlayer1,3, respectively.

By Step 4: We abstract the subsystems and get five abstraction models ABSlayer1,1, ...,ABSlayer1,5.
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Return back to Step 2: Construct a new DMM P to record the dependencies between abstractions and plant components. The
matrices P, PD and M for this second level clustering are shown below.

Table 8
The DMM P of abstractions on layer 1.

St FB Ta V Ta H Pr Ro A1 A2 DB Cr V Cr H
ABSlayer1,1 0 0 0 0 0 0 0 1 1 1 1
ABSlayer1,2 0 0 0 0 1 1 0 1 0 0 0
ABSlayer1,3 0 0 1 1 1 1 1 0 0 0 0
ABSlayer1,4 0 1 1 0 0 0 0 0 0 0 0
ABSlayer1,5 1 1 0 1 0 0 0 0 0 1 1

Table 9
The DSM of of abstractions on layer 1. PD = P×P⊤
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ABSlayer1,1 4 1 0 0 2
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ABSlayer1,4 0 0 1 2 1
ABSlayer1,5 2 0 1 1 5

M =


0.5714 0.1667 0 0 0.2222
0.1429 0.5000 0.2222 0 0

0 0.3333 0.5556 0.2500 0.1111
0 0 0.1111 0.5000 0.1111

0.2857 0 0.1111 0.2500 0.5556



By Step 3: By clustering these five abstractions, we get 3 clusters as shown below.

Cluster 1 Cluster 2 Cluster 3

ABSlayer1,5 ABSlayer1,2 ABSlayer1,1

ABSlayer1,3

ABSlayer1,4

The components of each cluster are combined using synchronous product to create the subsystems SUBlayer2,1, . . . ,
SUBlayer2,3. Since cluster 1 and cluster 3 only have one abstraction, abstractions ABSlayer1,1 and ABSlayer1,5 are already the
new subsystems respectively:

• SUBlayer2,1 = ABSlayer1,5
• SUBlayer2,2 = ABSlayer1,1||ABSlayer1,3||ABSlayer1,4
• SUBlayer2,3 = ABSlayer1,1

The second subsystem SUBlayer2,2 has conflicts, so a coordinator CO3 is designed to make SUBlayer2,2 nonblocking.

By Step 4: These three subsystems SUBlayer2,1, ..,SUBlayer2,3 in layer 2 are further abstracted into three abstractions ABSlayer2,1,
ABSlayer2,2, ABSlayer2,3.

Return back to Step 2: For this upper layer, we also construct a new DMM P to record the dependencies between abstractions
ABSlayer2,1, ABSlayer2,2, ABSlayer2,3 and plant components. The matrices P, PD and M for this third level clustering are shown
below.
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Table 10
The DMM P of abstractions on layer 2.

St FB Ta V Ta H Pr Ro A1 A2 DB Cr V Cr H
ABSlayer2,1 1 1 0 1 0 0 0 0 0 1 1
ABSlayer2,2 0 1 0 1 0 0 0 1 0 0 0
ABSlayer2,3 0 0 0 0 0 0 0 1 1 1 1

Table 11
The DSM of of abstractions on layer 2. PD = P×P⊤

ABSlayer2,1 ABSlayer2,2 ABSlayer2,3

ABSlayer2,1 5 2 2
ABSlayer2,2 2 3 1
ABSlayer2,3 2 1 4

M =

(0.5556 0.3333 0.2857
0.2222 0.5000 0.1429
0.2222 0.1667 0.5714

)

By Step 3: Perform the clustering again for these three abstractions and we obtain two clusters:

Cluster 1 Cluster 2

ABSlayer2,1 ABSlayer2,3

ABSlayer2,2

For cluster 1, we perform synchronous product of these two abstractions to obtain a new subsystem SUBlayer3,1. There is only
one abstraction in cluster 2, so ABSlayer2,3 already is the new subsystem SUBlayer3,2.

• SUBlayer3,1 = ABSlayer2,1||ABSlayer2,3
• SUBlayer3,2 = ABSlayer2,2

Each of these two subsystems SUBlayer3,1,SUBlayer3,2 is checked to be nonblocking, so no new coordinator is designed.

By Step 4: We further abstract SUBlayer3,1 and SUBlayer3,2 to get abstractions ABSlayer3,1 and ABSlayer3,2. We treat these two
abstractions as one cluster. In this cluster, the two abstractions are conflicting, so CO4 is designed to remove the conflicts.

The design procedure ends here since the number of clusters is no more than two. There are eighteen decentralized supervisors
and four coordinators CO1, ...,CO4. The state number of the coordinators is shown Table 12. We also give the models of
CO1, ...,CO4 which are shown in Fig.8 and Fig.9. The system construct obtained by our approach is shown in Fig.10.

Table 12
Four coordinators are computed

β = 20 CO1 CO2 CO3 CO4

State numbers 3 3 2 16

Fig. 8. Coordinators CO1, CO2, CO3 by our approach
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Fig. 10. System construct by our approach

Fig. 9. Coordinator CO4 by our approach

Comparison of coordinators Here we compare the coordinators CO01 and CO02 designed by the approach in [7] and our
obtained coordinators CO1, ...,CO4, where CO01 and CO02 are shown in Fig.11 and Fig.12.

Fig. 11. Coordinator CO01 by approach in [7]
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Fig. 12. Coordinator CO02 by approach in [7]

The control logic of CO01 shows that the event A2 F80 (Arm2 extends its length to 80) is disabled before event Pr B occurs
(Press descends back to bottom and prepares to unload the forged blank to Arm2), to make Arm2 to stay at its initial state
during the first work cycle of Press.

The control logic of CO02 is to disable event St add (adding a blank into the cell) if and when there are 7 blanks. The reason
is that the total capacity of the production cell is eight and the whole cell contains a loop with material feedback: faulty
blanks are transported by Crane from DBelt back to FBelt. Moreover, the feedback event DB n (the blank fails the check) is
uncontrollable, so at least one empty slot must be maintained in the cell.

For the four coordinators CO1, ...,CO4 synthesized by our approach, the control logic and the comparison with CO01 and
CO02 are given in the following.

The control logic of CO1:
1. When event Ro C occurs (RBase turns clockwise back to 40 degrees), the event A2 F80 is disabled before the event Pr B
occurs. Since event Ro C occurs, Press is not in its first work cycle. Therefore, the difference between CO01 and CO1 is that:
CO1 ensures that if RBase is at 40 degrees, Arm2 can extend its length to 80 only when Press descends back to bottom to avoid
the collision, instead of forcing Arm2 to stay put at its initial state during the first work cycle of Press by CO01. Note that this
control logic is in fact redundant because this collision prevention is already ensured by supervisor SUPA2P.
2. Disable event Ro C when Arm2 has extended its length to 80 (event A2 F80) but not placed a blank onto DBelt yet. This
control logic is not contained in CO01 and CO02. Note that this second control of CO1 is also redundant because supervisor
SUPR4 already has this control logic.

Next, the control logic of CO2:
1. Disable event Ro CC (RBase turns clockwise to 90 degrees) when Arm1 has extended its length to 65 (event A2 F65), for
preventing the collision.
2. Disable event A2 F65 to avoid the collision circumstances that RBase is at 90 degrees (event Ro CC occurs) and the length
of Arm1 is longer than 37 (A2 S52 occurs).
These two control logic prevent Arm1 from collision, which are also contained in supervisor SUPA1P.

As shown in Fig.8, the control logic of CO3 is same as CO01 which disables event A2 F80 before event Pr B occurs.

The control logic of CO4:
When DBelt already holds two blanks (event A2 O f f occurs twice) and ERTable already holds one blank (event FB s1O f f
occurs), disable event St add if there exists a new blank in Fbelt (event FB s1On occurs).

This control logic is similar to CO02 that CO4 ensures that Fbelt has one empty slot at least such that the faulty blanks can be
transported by Crane from DBelt back to FBelt. The difference is that CO02 only observes how many blanks are added in the
PC and how many blanks are passed the test (event DB y) or outputted from the system (event DB O). There are eight states
in CO02 to execute its control logic. However, the CO4 (16 states) needs to observe the blank number in Fbelt, ERTable, and
DBelt to determine if the event St add needs to be disabled to prevent the system from being ‘chocked’.

5 Conclusions

This paper has considered the nonblocking heterarchical supervisory control problem of large-scale DES. A streamlined algo-
rithm has been proposed to solve this problem, which automatically conducts horizontal decomposition and vertical aggregation
of the system and achieves the global nonblocking. There are three inputs of the algorithm: plant component models, specifica-
tions models, and a clustering parameter. Without any engineering insight into system structure, the outputs are decentralized
supervisors and coordinators whose joint behavior has been proved to be globally nonblocking and maximal permissive. More-
over, we have demonstrated our proposed approach by two large-scale benchmark examples. In the future, we aim to generalize
our approach to finite state machine models and systems under partial observations.
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