
0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

1

Optimal Secret Protections in Discrete-Event
Systems

Ziyue Ma, Member, IEEE, Kai Cai, Senior Member, IEEE

Abstract—In this paper we study a security problem of pro-
tecting secrets in discrete-event systems modeled by deterministic
finite automata. In the system some states are defined as secrets,
each of which is associated with a security level. The problem is
to design an event-protecting policy such that any event sequence
from the initial state that reaches a secret state contains a number
of protected events no less than the required level of security. To
solve this secret securing problem, we first develop a layered
structure called the security automaton. Then we show that the
problem is transformed to a supervisory control problem in
the security automaton. We consider two criteria of optimality
on protecting policies: (1) disruptiveness, i.e., protecting policies
with a minimum degree of disturbance to legal users’ normal
operations; (2) cost, i.e., protecting policies with a minimal cost.
For the optimality on disruptiveness, we prove that a minimally
disruptive protecting policy is obtained by using the classical
supervisory control theory in the security automaton. For the
optimality on cost, we develop a method to obtain a protecting
policy with minimal cost by finding a min-cut in the security
automaton.

Index Terms—Secret protection, security, discrete-event sys-
tems, cyber-physical systems, automata

I. INTRODUCTION

Security issues of cyber-physical systems have drawn much
attention in recent years [1], [2], [3], [4]. A system in reality
usually contains some secrets that are not expected to be
exposed or hacked by unauthorized external intruders. To
protect the secrets, a system must be meticulously designed
to guarantee that any user who wishes to access some crucial
states to obtain these secrets must go through certain security
checking steps — such as password check and SMS code
verification. For example, a user of a mobile phone must pass
a two-step verification to prove his/her identity, before getting
access to some sensitive information such as the numbers
of credit cards. In other words, an operational sequence that
allows a user to reach a secret state must contain a number of
protected events for which a user must perform an identity
verification to pass the security check. In such a case, an
unauthorized intruder, who wants to infiltrate the system but
cannot prove his/her identity, must pay some efforts to hack
through those protected event, e.g., hacking the password or

This work was supported in part by the National Natural Science Foundation
of China under Grant No. 61703321, Shaanxi Provincial Natural Science
Foundation under Grant No. 2019JQ-022, the Fundamental Research Funds
for the Central Universities under Grant JB210413, and JSPS KAKENHI
Grant no. 21H04875.

Z. Ma is with the School of Electro-Mechanical Engineering, Xidian
University, Xi’an 710071, China (Email: maziyue@xidian.edu.cn).

K. Cai is with the Department of Electrical and Information Engineering,
Osaka City University, Osaka 558-8585, Japan (Email: kai.cai@eng.osaka-
cu.ac.jp).

forging identity tokens. If the effort of hacking these protected
events is high enough, then an attack towards the secrets can
be considered practically preventable.

Theoretically, a designer of a system may protect as many
events as possible to prevent potential intruders. However, it
is practically infeasible to protect too many events for two
reasons. First, protecting an event usually incurs a cost due
to the deployment of new verification protocols or purchasing
expensive biometric detectors. Second, protecting too many
events may degrade the experience of legal users. For example,
requesting password verification for each click may be able
to prevent any intruders, but will surely annoy a legal user.
Hence, a system designer should carefully decide which events
at which situation should be protected.

In the literature, a closely related notion in cyber-security,
called opacity, is also extensively studied in discrete-event
systems (e.g., see [4], [5], [6], [7], [8]). Opacity is a property
such that an intruder cannot infer a given set of secrets by
observing the behavior of a system. We point out that the
problem of opacity (and its enforcement) is different from the
problem of secret protection studied in this paper. In brief,
opacity assumes that an intruder passively observes some
events and infers some secrets based on the observation. In
our problem, however, we consider the situation where an
intruder can disguise as a legal user to access the system,
which may not be recognized by an administrator. Moreover,
opacity requires that each secret trace has the same projection
as some non-secret traces. Hence, for a non-opaque system,
one may modify the dynamics and/or the observation structure
[9], [10], [11], [12], [13] to ensure the secret not leaked. In
our case, since we require that the system be usable to legal
users, the dynamics and the output of a system are not allowed
to be modified. For example, we cannot disable an event in
the system using supervisory control [14], [15], [16], [17],
since legal users may still need the event. Instead of blocking
or altering the events, we set protective measures on the
operational routines to increase the difficulty of unauthorized
access to the secrets, which may practically prevent potential
intruders.

Another related notion is intrusion detection [18], [19], [20],
[21]. There the aim of the administrator of a system is to detect
the invasion of an intruder by detecting the abnormal behavior
in the system: by doing so an alarm can be issued before some
bad result (e.g., the system reaches a critical state) occurs. By
contrast, in this paper we do not try to detect the existence
of intruders, because an intruder may disguise as a legal user
such that no abnormal behavior can be observed. Instead, we
set protective barriers that prevent a potential intruder from

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

2

accessing the secret states.
In this paper we study the secret protecting problem based

on the above motivations. We consider systems (a.k.a., plants)
modeled by deterministic finite automata that are fully observ-
able (i.e., no a priori knowledge of which events are or are not
observable by the intruder). In a plant automaton, some states
are considered as secrets, and each of them is associated with a
security level meaning the minimal number of security checks
required before reaching the secret. In the plant, some events
are protectable, i.e., on which we can set security checks. Each
protectable event is associated with a nonnegative number
indicating the cost of implementing the security check for this
event. We say that a protectable event is protected if a check
has been set on the event. Our aim is to design an event-
protecting policy such that any event sequence from an initial
state and reaching a secret state contains a number of protected
events no less than the required security level. Moreover, we
consider two criteria of optimality that evaluate protecting
policies: (1) disruptiveness, which means the minimum degree
of disturbance to the normal operations of legal users; (2)
cost, which means to minimize the physical expenditure on
implementing the protecting policy. The method developed in
this work can be applied to the management and supervisory
levels of automated systems to enforce safety requirements
during the system design stage. The main contents of this
paper are summarized as follows.

Given a plant modeled by an automaton in which some
states are secrets with specified security levels, we first develop
a new structure called the security automaton (SA) in which
the information of protecting decisions are encoded. The SA
of a plant has a multi-layered structure, in which each layer
represents a security level of the plant. We prove that the secret
protecting problem in a plant automaton can be transformed to
a supervisory control problem in the SA. Precisely speaking,
each supervisor for the transformed control problem in the
SA corresponds to an event-protecting policy for the original
security problem. This provides a necessary and sufficient
condition for the existence of a protecting policy.

Second, we formally introduce the optimality criterion of
disruptiveness. A protecting policy is minimally disruptive if
it protects the minimal number of events for any sequences
from the initial state to a secret state. We prove that the dual
protecting policy of a maximally permissive supervisor in the
SA is minimally disruptive. Hence, a minimally disruptive
protecting policy is obtained by first computing the maximally
permissive supervisor in the SA, followed by converting it to
its corresponding protecting policy. Moreover, we also prove
that the minimally disruptive protecting policy, if it exists, is
unique.

Finally we consider the optimality criterion of cost. To
obtain a protecting policy with the minimal cost, we transform
the secret protecting problem to an s-t min-cut problem in the
s-t graph that is augmented from the SA. Intuitively, an s-
t min-cut may not necessarily be associated with an event-
protecting policy whose cost is minimal, since an event in
the plant may be associated with multiple arcs in the cut.
However, we prove that this intuition is false: in fact, each

protectable event in the plant may be associated with at most
one arc in the min-cut. Therefore, an s-t min-cut of an s-t
graph is always associated with an event-protecting policy in
the original plant whose cost is minimal. Furthermore, we note
that the complexity of all techniques developed in this paper
is polynomial in the number of states and events of the plant.

The problem of secret protection with the minimal cost
was also studied in [22], [23], [24]. The differences between
[22], [23], [24] and this work are summarized as follows.
(i) In this paper, we consider two criteria of optimality on
protection policies, namely the minimal disruption and the
minimal cost. In [22], [23], [24] only the minimal cost criterion
is considered. (ii) For the minimal cost criterion, in the work
of [22], [23], [24], the set of protectable events is partitioned
into distinct levels, and the cost to protect an event in a higher
level dominates the cost to protect all events in lower levels.
The total cost is then qualitatively defined as the maximum of
the levels of protected events, while the number of protected
events is not taken into account. In this paper we define a
cost on every transition, i.e., the cost to protect each transition
can be an arbitrary nonnegative real value, and the total
cost is quantitatively defined as the sum of the costs of all
protected transitions. As such, these two setups are generally
incomparable. (iii) In [22], [23], [24] protecting policies are
assumed to be static, that is, an event is either protected or
not protected in all situations, while in this paper we consider
dynamic protecting policies, i.e., whether an event at a state is
protected or not depends on the trajectory by which the state
is reached.

The rest of this paper is organized as follows. Basic notions
of automata are recalled in Section II. In Section III, the
problem of secret protection is formulated, and the notion
of security automaton is proposed. In Section IV, we prove
a necessary and sufficient condition for the existence of a
protecting policy, based on which we develop a method to
compute a minimally disruptive protecting policy. In Sec-
tion V, we develop an algorithm to compute a protecting policy
with minimal cost using s-t min-cut in the augmented SA.
Section VI draws our conclusions and states future directions
of this work.

II. PRELIMINARIES

A. Deterministic Finite Automaton

A deterministic finite automaton (automaton for short) is a
four-tuple

G = (Q,Σ, δ, q0),

where Q is a set of states; Σ is a set of events; δ : Q×Σ→ Q
is the partial transition function; and q0 ∈ Q is the initial state.

We use Σ∗ to denote the Kleene closure of Σ, consisting of
all finite sequences composed by the events in Σ (including the
empty sequence ε). Given a sequence s ∈ Σ∗, |s| denotes the
length of s. The transition function δ is extended to δ∗ : Q×
Σ∗ → Q by recursively defining δ∗(q, ε) = q and δ∗(q, sσ) =
δ(δ∗(q, s), σ), where s ∈ Σ∗ and σ ∈ Σ. The language of G,
denoted by L(G), is defined as L(G) = {s ∈ Σ∗ | δ∗(q0, s) ∈
Q}.

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

3

We use ΓG(q) = {σ ∈ Σ | δ(q, σ) is defined} to denote
the set of events that are enabled at state q ∈ Q, and we use
ΓG(s) = ΓG(δ∗(q0, s)) to denote the set of events that are
enabled after sequence s.

Given an automaton G = (Q,Σ, δ, q0), the accessible part
of G, denoted as Ac(G), is the automaton G′ = (Q′,Σ, δ′, q0)
obtained from G by removing all unreachable states and their
corresponding transition relations. Precisely speaking, Q′ =
{q ∈ Q | (∃s ∈ L(G)) δ∗(q0, s) = q}, and δ′ is the restriction
of δ to Q′ × Σ→ Q′.

A sequence s̄ ∈ Σ∗ is a prefix of a sequence s ∈ Σ∗ if
s = s̄s′ where s′ ∈ Σ∗. We use s̄k (where 0 ≤ k ≤ |s|) to
denote the prefix of s of length k, i.e., s = s̄ks

′ where |s̄k| = k
and s′ ∈ Σ∗. The prefix closure of a language L ⊆ Σ∗ is the
set L = {s ∈ Σ∗ | ∃s′ ∈ Σ∗, ss′ ∈ L}.

B. Supervisory Control in Discrete-Event Systems

Supervisory control theory of discrete-event systems [25],
[26] was first proposed by Ramadge and Wonham [27]. For
a plant automaton G = (Q,Σ, δ, q0), the event set Σ is
partitioned into two disjoint subsets Σ = Σc ∪ Σuc where
Σc is the set of controllable events and Σuc is the set of
uncontrollable events.

In [27], the control objective, called the (language) specifi-
cation, is defined by a regular language K ⊆ Σ∗. A supervisor
S that dynamically disables events of the plant such that the
closed-loop language of S over G is restricted within K. Here
we use S/G to denote the closed-loop system composed by
the plant G under the supervision of S, and we use L(S/G)
to denote the language of S/G. A supervisor S runs in
parallel with the plant and, when a plant generates a sequence
s ∈ L(G), make a control decision ξ(s) ⊆ Σc that is to disable
all controllable events not in ξ(s). Note that a supervisor
cannot disable any uncontrollable σ ∈ Σuc in any case. A
language K is said to be controllable with respect to L(G) if:

KΣuc ∩ L(G) ⊆ K.

If K is not controllable, a supervisor S enforces K can be
obtained by computing the supremal controllable sublanguage
[25] of L(G) with respect to K, i.e.:

L(G)↑K =
⋃
{H ⊆ L(G) | H is controllable to L(G)}.

by iterative manipulations on regular languages.
A state specification defines a set of forbidden states Ql ⊆

Q that requires that the plant does not reach any state in Ql.
A supervisor S that enforces Ql can be similarly obtained by
first converting the state specification Ql into its equivalent
language specification K = {s ∈ L(G) | δ∗(q0, s) /∈ Ql}
followed by computing the supremal controllable sublanguage
of K.

III. SECRET PROTECTION AND PROBLEM FORMULATION

In this paper, a plant is modeled by an automaton G =
(Q,Σ, δ, q0); at a subset of states some secrets, such as credit
numbers or crucial personal data, are stored. By reaching these
states, secret information may be obtained. To protect the

secrets from being accessed by unauthorized intruders, some
events of the plant should be protected such that any user
(legal or unauthorized) who accesses the plant from the entry
of the system and wants to reach a secret state necessarily
passes through a certain number of security checks. Precisely
speaking, a security requirement is a function ` : Q → N
that assigns each state a security level, i.e., `(q) means that
to reach state q from entry q0, at least `(q) protected events
must be passed. All states with positive security levels are
secret states (secrets for short), the set of which is denoted as
QS = {q ∈ Q | `(q) > 0}. We assume that `(q0) = 0, i.e.,
the initial state is not secret. The maximal security level of `
is denoted as l, i.e., l = maxq∈Q `(q).

We assume that in a plant G = (Q,Σ, δ, q0) some events
are protectable, which means that security checks such as
password verification can be set onto the physical execution
of these events. The set of events Σ is partitioned into the
set of protectable events Σp and the set of unprotectable
events Σup, i.e., Σ = Σp ∪ Σup. Hence, to enforce a security
requirement `, we need to design an event-protecting policy
ϑ (protecting policy for short) such that for each sequence
s ∈ L(G) generated, ϑ decides which protectable events
should be protected following s. This notion is formally
defined as follows.

Definition 3.1: [Protecting Policy] Given a plant G =
(Q,Σ, δ, q0), a protecting policy is a function ϑ : L(G)×Σp →
{0, 1} such that after sequence s ∈ L(G) is generated, the set
of protected events following s is ϑ(s) ⊆ Σp. ♦

Remark 1: In [23], protecting policies were considered to be
static, that is, an event is either protected or not protected for
all sequences s ∈ L(G). Here, the protecting policies defined
by Definition 3.1 is dynamic. It may happen that an event σ is
protected when a user visits state q for the first time, and event
σ is not protected for the second time of his/her visiting of
q. Such a dynamic protecting policy may be more applicable
in reality. For example, in many cases the first visit of some
webpage with a high security level requires a password check.
But re-visiting the same page does not require password again
(within a certain period of time), since the identity of the user
has been confirmed. ♦

Given a protecting policy ϑ, we define ϑ(s, σ) = 1 (resp.,
ϑ(s, σ) = 0) if σ ∈ ϑ(s) (resp., σ /∈ ϑ(s)). Given a security
requirement ` : Q → N, a protecting policy ϑ is valid if for
any sequence s ∈ L(G) that yields a state q ∈ Q, the number
of events protected by ϑ in sequence s is no fewer than `(q).
This notion is formally stated by the following definition.

Definition 3.2: Given a plant G = (Q,Σ, δ, q0) and a
security requirement ` : Q → N, a protecting policy ϑ is
valid if for any sequence s = σ1 · · ·σn ∈ L(G) such that
δ∗(q0, s) = q, there holds:

n−1∑
i=0

ϑ(s̄i, σi+1) ≥ `(q). (1)

♦
Now we are ready to formalize the secret protecting problem

(SPP) that will be studied in this paper.

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

4

𝑞0 𝑞1

𝜎1

𝑞2

𝜎2

𝑞3
ℓ 𝑞3 = 2

ℓ 𝑞4 = 1

𝜎5
𝜎3 𝜎4

𝜎6

𝑞4

Fig. 1: A plant automaton.

Problem 1: [Secret Protecting Problem] Given a plant G =
(Q,Σ, δ, Q0) and a security requirement ` : Q→ N, determine
a valid protecting policy ϑ.

Example 3.1: Consider the plant automaton shown in Fig-
ure 1 that models a computer networked system. A user who
visits the system is first initialized at state q0. The user can
connect to the server via event σ1 and then switches between
states q1 and q2 via events σ2 and σ5. From state q2 the user
may reach state q4 via event σ6 to access the general personal
information of this account, while from both states q1 and q2

the user may reach state q3 via events σ3 and σ4, respectively,
to access some crucial information of this account, e.g., credit
card numbers.

Suppose that we want to enforce a security requirement `
such that the security level of state q4 is 1 and that of q3 is 2
(i.e., `(q4) = 1 and `(q3) = 2), while the security level of all
other states is zero. In other words, to access the general per-
sonal information at least one security check is required, and
to access the crucial information at least two security checks
are required. Let us assume that events σ1, σ2, σ3, σ4, σ5 are
protectable, and event σ6 is unprotectable.

To enforce such a security requirement, a valid protecting
policy is the following: ϑ(ε) = {σ1}, ϑ(σ1(σ2σ5)n) = {σ3}
(n ∈ N), ϑ(σ1σ2(σ5σ2)n) = {σ4} (n ∈ N), and ϑ(s) = ∅ for
all other s’s. ♦

At the remaining of this section we make the following two
comments on Problem 1. First, one may have noticed that
the physical basis of Problem 1 is similar to the notion of
state opacity. However, although we know the risk that an
intruder may access the secret states, to guarantee that the
plant is usable to legal users, we cannot modify the dynamics
of the plant nor disable any events in it (while in the opacity
enforcement [14], [15], [16], [17] we can do so). For example,
disabling events σ3 and σ4 will disallow legal users to access
their data stored in q3. Instead, we set protective measures to
set barriers on the operational routines to prevent an intruder
from accessing these secrets.

Second, in theory, we can protect all protectable events in
the plant at any moment, by the following policy ϑmax:

ϑmax(s) = Σp, ∀s ∈ L(G).

It is not difficult to understand that if ϑmax is not valid then
there exists no valid protecting policy. However, such ϑmax
is typically infeasible in practice. On one hand, protecting
too many events — for example, requesting a password
verification for every click on a website — greatly degrades
the experience of legal users. On the other hand, protecting

an event usually incurs a cost, e.g., to deploy new verification
protocols or to buy expensive biometric detectors. As a result,
in the sequel of this paper two criteria of optimality on
protecting policies are considered:

1) minimal disruption: protecting policies should disturb
legal users’ operations as little as possible;

2) minimal cost: protecting policies should incur imple-
mentation cost as low as possible.

Note that these two criteria of optimality are incomparable:
in general there does not exist a protecting policy that satisfies
both. In the following sections, we will investigate Problem 1
and develop two methods to compute a valid protecting policy
from the two different criteria of optimality, respectively.

IV. SECURITY AUTOMATA AND MINIMALLY DISRUPTIVE

PROTECTING POLICIES

A. Security Automaton

In this section, we first introduce a structure called the
security automaton in which both the plant behavior and the
information of protecting requirements are encoded.

Definition 4.1: [Security Automaton] Given a plant G =
(Q,Σ, δ, q0) where Σ = {σ1, . . . , σn} and a security require-
ment ` : Q→ N such that the maximal security level of states
in Q is l, the security automaton (SA) of G (with respect to
`) is a deterministic finite automaton H = (QH ,ΣH , δH , q0,0)
where:
• QH = {qi,h | 0 ≤ i ≤ |Q|, 0 ≤ h ≤ l} is a set of states;
• ΣH = Σα ∪ Σλ is a set of events, where Σα =
{α1, . . . , αn} and Σλ = {λ1, . . . , λn} are two duplicates
of set Σ;

• q0,0 is the initial state;
• δH : QH × ΣH → QH is the partial transition function

such that for all δ(qi, σj) = qi′ , it holds:{
δH(qi,h, αj) = qi′,h, ∀h = 0, . . . , l;

δH(qi,h, λj) = qi′,h+1, ∀h ≤ l − 1;

♦
In plain words, the SA of a plant G with ` is a multi-

layered automaton whose layers are numbered 0, 1, . . . , l, each
of which is a duplicate of G. Hence, H contains no more than
|Q| · (l+ 1) states and |Q| · (2l+ 1) · |Σ| arcs. A state qi,h in
layer h of the SA means that the plant G is at state qi and
its current security level is h. In an SA, both event αj in Σα
and event λj in Σλ are duplicates of the same event σj in
the original plant G. The interpretation of an event αj is the
“unprotected event σj”, and the interpretation of an event λj
is the “protected event σj”. Note that the construction of an
SA does not encode the protectability of events yet, i.e., an
unprotectable event σj also has two duplicated events αj and
λj . Note also that not all states in QH are accessible from
the initial state q0,0. In the sequel, only the accessible part of
the SA H , i.e., Ac(H), is considered. We use the following
example to illustrate this.

Example 4.1: Again consider the plant automaton in Fig-
ure 1 with `(q4) = 1, `(q3) = 2 and `(q) = 0 for q 6= q3, q4.

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

5

𝑞0,0 𝑞1,0

𝛼1

𝑞2,0

𝛼2

𝑞3,0

𝛼5

𝛼3 𝛼4

𝑞1,1 𝑞2,1

𝛼2

𝑞3,1

𝛼5

𝛼3
𝛼4

𝑞2,2

𝑞3,2

𝛼4

𝑞1,2

𝛼2

𝛼5
𝛼3

𝛼6

𝑞4,0

𝑞4,1

𝛼6

𝑞4,2

𝜆6

𝜆1
𝜆3 𝜆1

𝜆3
𝜆1

𝜆2
𝜆4

𝜆2 𝜆4

𝛼6

𝜆6

Fig. 2: Security automaton of the plant in Figure 1 with
`(q0) = `(q1) = `(q2) = 0, `(q3) = 2, `(q4) = 1.

The corresponding security automaton H is shown in Figure 2
(inaccessible states q0,1 and q0,2 are removed). In the SA H ,
transition δH(q0,0, α1) = q1,0 means that if the plant is at
state q0, the current security level is 0, and event σ1 is not
protected, then by executing σ1 the plant moves to state q1

while the current security level remains 0 (i.e., by executing
α1 the SA reaches q1,0). Transition δH(q0,0, λ1) = q1,1 means
that if σ1 is protected, by executing σ1 the plant moves to state
q1 while the current security level increases from 0 to 1 (i.e.,
by executing λ1 the SA reaches q1,1). ♦

From Example 4.1 one can see that an SA contains the
information of both the current state of the corresponding plant
and the current security level. Moreover, an SA can be used
to simulate the evolution of a plant with a protecting policy
ϑ. In plain words, suppose that an SA is at state qi,h, which
means that the plant is at state qi while the current security
level is h, and suppose that the plant executes the next event
σj with δ(qi, σj) = qi′ :

• if σj is protected, then the SA executes event λi to reach
qi′,h+1, i.e., the plant reaches qi′ while the security level
is increased by 1;

• if σj is not protected, then the SA executes event αi to
reach qi′,h, i.e., the plant reaches qi′ while the security
level does not increase.

The following definition associates each sequence of events
in G with a protected sequence in H with respect to a
protecting policy ϑ.

Definition 4.2: Given a plant G = (Q,Σ, δ, q0) with security
requirement ` and a sequence s = σ1 · · ·σn ∈ L(G), the
protected sequence of s with respect to a protecting policy ϑ
is s′ = σ′1 · · ·σ′n ∈ (Σα ∪ Σλ)∗ such that:

σ′i =

{
αi if σi /∈ ϑ(s̄i−1)

λi if σi ∈ ϑ(s̄i−1).

This is denoted as θ(s) := s′.1 If θ(s) = s′, s is said to be the
original sequence of s′, which is denoted as θ−1(s′) := s. ♦

The following proposition shows that SA can be used to
simulate G under any protecting policies.

Proposition 4.1: Given G = (Q,Σ, δ, q0) and its SA
H = (QH ,ΣH , δH , q0,0), for any protecting policy ϑ and
sequence s ∈ L(G), it holds that θ(s) ∈ L(H) and
δ∗H(q0,0, θ(s)) = qi,j where i is the subscript of qi = δ∗(q0, s)

and j =
∑|s|
r=0 ϑ(s̄r, σr+1).

Proof: We prove this proposition by induction. First, for
|s| = 0 (i.e., s = ε), the statement holds.

Now, suppose that for all s = σ1 · · ·σk (i.e., |s| = k),
the statement holds. Consider an arbitrary sequence sσk+1

with σk+1 ∈ Σ and δ∗(q0, s) = qi, δ(qi, σk+1) = qi′ . By the
assumption above, it holds that δ∗H(q0,0, θ(s)) = qi,j ∈ QH .
By the definition of the SA, at state qi,j , event αk+1 is defined
such that δH(qi,j , αk+1) = qi′,j , and event λk+1 is defined if
j < maxq∈Q `(q) such that δH(qi,j , λk+1) = qi′,j+1. Hence,
if σk+1 ∈ ϑ(s) (which implies that j < maxq∈Q `(q)), then
at state qi,j the SA H can execute λk+1 to reach state qi′,j+1,
otherwise it executes αk+1 to reach state qi′,j . This indicates
δ∗H(q0,0, θ(sσk+1)) = qi,j ∈ QH , j =

∑k+1
r=0 ϑ(s̄r, σr+1),

which concludes the proof. �
In the following, we recall the supervisory control problem

in discrete-event systems with state specifications, and then we
show that Problem 1 can be reduced to a supervisory control
problem in the corresponding SA.

Problem 2: [Supervisory Control with State Specification]
Given a plant G = (Q,Σ, δ, q0) with Σ = Σc ∪Σuc where Σc
denotes the set of controllable events and Σuc denotes the set
of uncontrollable events, and given a state specification Ql ⊆
Q defining a set of forbidden states, determine a supervisor
ξ : L(G) → 2Σc such that G does not reach any state in Ql
when controlled by ξ.

It has been known that the supervisor ξ (if exists) can be
easily obtained from G by removing all states in Q \ Ql
and all states co-reachable to Q \ Ql via uncontrollable
sequences in Σ∗uc, resulting in a new automaton Gξ that is
a subautomaton of G [25]. Moreover, such a supervisor is
maximally permissive. The control action for a sequence s is
given by

ξ(s) = ΓGξ(q) ∩ Σc, where q = δ′(q′0, s),

i.e., all controllable events that are not defined after executing
s are disabled. Now, given a secret protection problem (i.e.,
SPP in Problem 1), we define its corresponding supervisory
control problem in the corresponding SA (SCP-SA) as follows.

Problem 3: [SCP-SA] Given a plant G = (Q,Σ, δ, q0) with
security requirement `, let H = (QH ,Σα ∪ Σλ, δH , q0,0) be
the corresponding SA. Design a supervisor in automaton H
with respect to{

Σc = {αi ∈ Σα | σi ∈ Σp}
Σuc = Σλ ∪ {αi ∈ Σα | σi ∈ Σup}

(2)

1Remind that ϑ : L(G)×Σp → {0, 1}, i.e., ϑ(s) is the protecting decision
after sequence s. On the other hand, θ is a projection from Σ∗ to (Σα∪Σλ)∗

depending on ϑ, and θ(s) denotes the protected sequence of s according to
ϑ.

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

6

and a state specification Q` = {qi,h | h < `(qi)}.
In short words, the corresponding SCP-SA of an SPP is

a supervisory control problem in the corresponding SA such
that: (i) the set of controllable events Σc consists of all events
αi in Σα whose associated events σi are protectable; (ii) the
set of uncontrollable events Σuc consists of all events λi in Σλ
and all αi in Σα whose associated events σi are unprotectable;
(iii) the set of forbidden states consists of all states qi,h whose
security level h is lower than the required level `(qi). Now we
introduce a notion of duality of the solution of an SPP and the
solution of its corresponding SCP-SA. Such a duality property
establishes the link between the solutions of the two problems.

Definition 4.3: Consider an SPP for plant G and the cor-
responding SCP-SA for the SA H . A control policy ξ of the
SCP-SA and a protecting policy ϑ of the SPP are said to be
dual if for each sequence s ∈ L(G) and each σi ∈ Σp, the
following condition holds:

σi ∈ ϑ(s) ⇔ αi ∈ ΓH(θ(s)) \ ξ(θ(s)) (3)

♦
The duality of protecting policy ϑ of an SPP and control

policy ξ of the corresponding SCP-SA means that, if we run
ϑ and ξ in parallel, the ϑ protects event σi after a sequence
s ∈ L(G) if and only if ξ disables event αi after a sequence
θ(s) ∈ L(H). Now we prove that the solutions of an SPP and
the solutions of the corresponding SCP-SA are indeed dual.

Theorem 4.1: If ϑ is a solution of an SPP, then its dual
supervisor ξ is a solution of the corresponding SCP-SA, and
vice versa.

Proof: (⇒) Let ϑ be an arbitrary valid protecting policy
that enforces `. We prove that its dual supervisor ξ is a solution
to the SCP-SA. The proof is by contradiction. Suppose that ξ
permits a sequence s′ = σ′1 · · ·σ′n in H to reach a forbidden
state qi,h with h < `(qi). Since the index of the layer
increases by one at each time an event in Σα is disabled,
the total number of disablement of events in Σα is h. Then,
according to Definition 4.3, the total number of protected
events σi in s = θ−1(s′) is also h, which indicates that∑n
i=1 ϑ(s̄i, σi+1) = h < `(q) holds. This indicates that ϑ

is not valid, which is a contradiction.
(⇐) Let ξ be a supervisor of the SCP-SA problem, whose

supervisor automaton Gξ is a subautomaton of H . We prove
that its dual protecting policy ϑ is a valid protecting policy that
enforces `. The proof is again by contradiction. Suppose that
there exists a sequence s = σ1 · · ·σn ∈ L(G) such that Eq. (1)
does not hold with respect to ϑ. It implies that in the SA by
executing s′ = θ(s) a state qi,h with h < `(qi) is reached.
Since each execution of unprotected event σi corresponds to a
control action that permits αi, it indicates that ξ permits s′ in
H , i.e., the forbidden state qi,h is reachable under the control
of ξ, which is a contradiction. �

Theorem 4.1 shows that the solution of an SPP and the
solution of the corresponding SCP-SA are dual. Then we
immediately have the following corollary.

Corollary 4.1: An SPP has a solution if and only if the
corresponding SCP-SA has a solution.

The reduction from an SPP to its corresponding SCP-SA is
clearly polynomial (since for a given plant the corresponding
SA can be constructed in polynomial time according to Defi-
nition 4.1), and the existence of solutions of SCP-SA can be
verified using existing supervisory control methods. Therefore,
existing methods [25] can be used to check the existence of
protecting policies of SPP, by checking the emptiness of the
supremal controllable sublanguage of the corresponding SCP-
SA.

Theorem 4.2: An SPP admits a solution if and only if the
supremal controllable sublanguage of the SA H with respect
to K = {s ∈ L(H) | δ∗H(q0,0, s) = qi,h, h < `(qi)} is non-
empty, where Σc and Σuc are defined by Eq. (2).

Proof: Directly from Theorem 4.1. �
Before proceeding, we remark that although we reduce the

SPP to the control problem SCP-SA, it does not mean that we
will use the supervisor of SCP-SA to disable events in the plant
to protect the secrets. Once a supervisor ξ (or its automaton
form Gξ) of the SCP-SA is obtained, ξ is converted to its dual
protecting policy according to Definition 4.3 which does not
disable any events in the plant to guarantee the usability for
normal users.

Finally, we note that given a control policy ξ, its dual
protecting policy ϑ will not necessarily be explicitly computed.
Instead, for any sequence s = σ1 · · ·σn ∈ L(G), ϑ(s) can be
computed stepwise by computing ϑ(s̄i), i = 0, 1, . . . , |s|, start-
ing from the empty sequence ε. The reason is: (i) θ(ε) = ε ac-
cording to Definition 4.2; (ii) by Eq. (3), ϑ(s̄k) = ΓH(θ(s̄k))\
ξ(θ(s̄k)) holds. In other words, the protected events after s̄k
are those α-events disabled at state qi,j = δ∗H(q0,0, θ(s̄k)) in
the SA, which means that the protecting decision after s̄k,
i.e., ϑ(s̄k), is computable. Therefore, for the next event σk+1

after s̄k in s, θ(s̄kσk+1) can be computed according to Defi-
nition 4.2 (since θ(s̄k) and ϑ(s̄k) are both known). Thus, for
any sequence s = σ1 · · ·σn ∈ L(G), all protecting decisions
made by ϑ (i.e. ϑ(ε), ϑ(σ1), ϑ(σ1σ2), . . . , ϑ(σ1 · · ·σn)) can be
computed stepwise during the execution of s. An illustrative
example can be found in the next subsection (Example 4.2).

B. Minimally Disruptive Protecting Policies

In this subsection, we solve Problem 1 for the convenience
of legal users. In plain words, a protecting policy is minimally
disruptive if it does not protect any events unless it has to.
For example, when a user is using a cell phone, in general
no security check is triggered when he/she uses the calculator
and the clock apps. Security check is required only if he/she
wants to inspect the credit cards and other private information
of the account.

Definition 4.4: [Minimal Disruptiveness] A protecting pol-
icy ϑ is minimally disruptive if for any other protecting policy
ϑ′ 6= ϑ and any sequence s = σ1 · · ·σn ∈ L(G) (i.e., |s| = n),
the following condition holds:

n−1∑
i=0

ϑ(s̄i, σi+1) ≤
n−1∑
i=0

ϑ′(s̄i, σi+1).

♦

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

7

In plain words, a protecting policy ϑ is minimally disruptive
if it protects the minimal number of events for any sequence
s. It is not difficult to understand that a minimally disruptive
protecting policy exists if and only if there exists at least
one valid protecting policy for Problem 1. We also remark
that, interestingly, the minimally disruptive protecting policy
is unique, which will be proved in the rest of this subsection.

By Theorem 4.1, for each supervisor in an SCP-SA, its dual
protecting policy is a valid protecting policy of the original
SPP. In this subsection we prove the first main result of this
paper, that is: for the maximally permissive supervisor of an
SCP-SA, its dual protecting policy is minimally disruptive.

Theorem 4.3: Given a plant G = (Q,Σ, δ, q0) with security
requirement `, let H = (QH ,Σα ∪ Σλ, δH , q0,0) be the
corresponding SA and ξmax be the maximally permissive
supervisor of the SCP-SA. The protecting policy ϑmin that
is dual to ξmax is minimally disruptive.

Proof: By contradiction, suppose that ϑmin is not
minimally disruptive. By Definition 4.4 there exists another
valid protecting policy ϑ and a sequence s = σ1 · · ·σn such
that ϑ(s̄k) = ϑmin(s̄k) holds for all k ∈ {1, . . . , n − 2},
and ϑ(s̄n−1) = ϑmin(s̄n−1) \ {σn} holds. In other words,
the protecting decisions of ϑmin and ϑ are the same for all
events in s except the last one: ϑmin protects the last event
σn while ϑ does not protect σn. This implies that, in the SA,
sequence θ(s̄n−1)αn is permitted by the dual supervisor ξ
of ϑ, which means that sequence θ(s̄n−1)αn is legal in the
SCP-SA. However, such a sequence is forbidden by ξmax.
This contradicts the fact that ξmax is the maximally permissive
supervisor of the SCP-SA. �

Corollary 4.2: The minimally disruptive protecting policy
ϑmin, if it exists, is unique.

Proof: Since ξmax is dual to the minimal disruptive
protecting policy ϑmin, by the uniqueness of the maximally
permissive supervisor ξmax (if it exists), ϑmin is unique. �

Algorithm 1 Determining a minimally disruptive protecting
policy

Input: A plant G = (Q,Σ, δ, q0) where Σ = Σp ∪ Σup, a
security requirement ` : Q→ N

Output: A minimally disruptive protecting policy ϑ :
L(G)→ 2Σ

p

1: Compute the SA H = (QH ,ΣH , δH , q0,0) of G with
respect to `, where ΣH = Σα ∪ Σλ.

2: Solve the SCP-SA in H for a maximally permissive
supervisor ξmax.

3: if ξmax is empty, then
4: output “no solution” and exit.
5: else
6: compute the dual protecting policy ϑmin of ξmax.
7: end if
8: Output ϑ = ϑmin and exit.

By Theorems 4.2, and 4.3, we summarize the procedure of
solving an SPP for a minimally disruptive protecting policy in
Algorithm 1. In short words, given an SPP, we first construct
its corresponding SA and solve the SCP-SA to obtain the

maximally permissive supervisor ξmax. If ξmax is not empty,
it is then converted to its dual protecting policy ϑmin that is
minimally disruptive by Theorem 4.3. If ξmax is empty, then
by Theorem 4.2 there does not exist a protecting policy for
the security requirement. We use the following example to
illustrate Algorithm 1.

Example 4.2: Let us consider the plant in Figure 1 with
`(q3) = 2, `(q4) = 1 and its corresponding SA in Figure 2.
Then the corresponding SCP-SA is to enforce a state specifi-
cation

Q` = {qi,h | h < `(qi)} = {q3,0, q3,1, q4,0}

in the SA with Σc = {α1, α2, α3, α4, , α5} and Σuc =
{λ1, λ2, λ3, λ4, λ5, α6, λ6}.

The maximally permissive supervisor ξmax of the SCP-
SA is depicted in Figure 3. By computing its dual protecting
policy according to Definition 4.3, the minimally disruptive
protecting policy ϑmin is

ϑmin(s) = {σi ∈ Σp | αi /∈ ξmax(θ(s))}.

For example, for a plant sequence σ1σ2σ5σ2σ4 that reaches the
secret state q3 whose required security level is 2, the control
decision made by ξmax and the protecting decision made by
ϑmin for each step is summarized in Table I. In particular, the
protecting decision of ϑmin for each step is:

ϑ(ε) = {σ1}
ϑ(σ1) = {σ3}
ϑ(σ1σ2) = {σ4}
ϑ(σ1σ2σ5) = {σ3}
ϑ(σ1σ2σ5σ2) = {σ4}
ϑ(σ1σ2σ5σ2σ4) = ∅

One can see that, after a user has reached state q1 (by passing
the first protected event σ1 at q0), no more security check is
triggered when the user switches between states q1 and q2.
The second security check is triggered only when the user is
attempting to reach state q3. ♦

V. PROTECTING POLICIES WITH MINIMAL COSTS

In this section we consider the cost of implementing pro-
tecting policies. Our aim is to find a protecting policy with
the minimal cost of implementation.

A. The Cost of Protecting Policies

In general, the costs incurred by the protection of the
transitions are separate due to the physical implementation of
the protection (e.g., by deploying a device or an encrypting
procedure). Hence, we consider a cost function that assigns
each transition a nonnegative real number or ∞:

c : ∆→ R≥0 ∪ {∞} (4)

where ∆ = {(q, e, q′) | δ(q, e) = q′} denotes all transitions in
a plant G = (Q,Σ, δ, Q0). Assigning a transition with ∞ cost
implies that it is practically unprotectable.

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

8

s δ∗(q0, s) ΓG(s) θ(s) ΓH(θ(s)) ξmax(θ(s)) ϑmin(s) Current Security Level
ε q0 σ1 ε λ1 ∅ σ1 0
σ1 q1 σ2, σ3 λ1 α2, λ2, α3, λ3 α2 σ3 1
σ1σ2 q2 σ4, σ5, σ6 λ1α2 α4, λ4, α5, λ5, α6, λ6 α5 σ4 1
σ1σ2σ1 q1 σ2, σ3 λ1α2α1 α2, λ2, α3, λ3 α2 σ3 1
σ1σ2σ1σ2 q2 σ4, σ5, σ6 λ1α2α1α2 α4, λ4, α5, λ5, α6, λ6 α5 σ4 1
σ1σ2σ1σ2σ4 q3 ∅ λ1α2α1α2λ4 σ1 ∅ ∅ 2

TABLE I: Illustration for sequence σ1σ2σ1σ2σ4 in Example 4.2.

𝑞0,0

𝛼1

𝑞1,1 𝑞2,1

𝛼2

𝛼5

𝛼3
𝛼4

𝑞2,2

𝑞3,2

𝛼4

𝑞1,2

𝛼2

𝛼5
𝛼3

𝑞4,1

𝛼6

𝑞4,2

𝜆6

𝜆1

𝜆3
𝜆1

𝜆2 𝜆4

𝛼6

Fig. 3: The maximally permissive supervisor of the SA in
Figure 2.

Since the cost to protect each transitions are separated,
for mathematical convenience, in the sequel we assume that
the protectable events in the plant are distinctly assigned to
transitions. By doing so, the costs of different transitions can
be differentiated by their labels. Note that the notion of “la-
bels” considered here is different from that in nondeterministic
automata (where a label describes how a transition looks like
from the viewpoint of an observer). Thus, such an assumption
is purely technical.

Assumption 1: All protectable events in the plant are dis-
tinctly assigned to transitions, i.e., for all σ ∈ Σp:

δ(q, σ) is defined ⇒ (∀q′ 6= q) δ(q′, σ) is not defined.

♦
By doing so, the cost function Eq. (4) can be equivalently
defined as:

c : Σ→ R≥0 ∪ {∞} (5)

that assigns each event a nonnegative cost. Then, the cost of
a protecting policy is defined as the following.

Definition 5.1: Consider a plant G = (Q,Σ, δ, Q0) that
satisfies Assumption 1 and a cost function c defined by Eq. (5).
For a protecting policy ϑ, the set of protected events of ϑ is

P (ϑ) = {σ ∈ Σp | (∃s ∈ L(G))σ ∈ ϑ(s)}. (6)

The cost of the protecting policy ϑ is:

C(ϑ) =
∑

σ∈P (ϑ)

c(σ). (7)

♦

𝑞0 𝑞1
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝑞2

𝑞3

𝑞4 ℓ 𝑞4 = 1

Fig. 4: Maximal permissive and non-maximally permissive
protecting policies.

In plain words, the cost c(σ) of event σ is counted (as part
of the cost of ϑ) if σ is protected for at least one sequence
s ∈ L(G). Note that such a cost c(σ) is irrelevant to the
number (when it is not zero) of sequences s in Eq. (6) in
which σ is protected. This setting may be useful in practice: for
example, to protect a transition one may purchase a biometric
detector once, while the cost of each subsequent usage of the
detector is comparatively negligible.

Based on Definition 5.1, the criterion of optimality of cost
we consider in this section is defined as the following.

Definition 5.2: Given an SPP and a cost function c : Σ →
R≥0∪{∞}, a protecting policy ϑ is of the minimal cost if for
any other valid protecting policy ϑ′ 6= ϑ, C(ϑ) ≤ C(ϑ′). ♦

Remark 2: We note that the definitions of the cost function
and the minimal cost in [22], [23] are different from those
in this section. In [22], [23] the set of protectable events are
partitioned into distinct levels, i.e., Σp is partitioned into n
levels Σp = Σp,1 ∪ · · · ∪Σp,n. The cost to protect an event in
level i dominates the cost to protect all events in lower levels
j < i. Moreover, the cost of a protecting policy is defined as
the maximal level of protected events, while the number of
protected events/transitions is not taken into account. In other
words, the objective on cost in [22], [23] is to minimize the
maximal index i such that P (ϑ)∩Σp,i 6= ∅. Since such notions
are incomparable to the notions of the cost function and the
cost of a protecting policy in Definition 5.1 here, the notion
of the minimal cost in this paper is also different from that in
[22], [23]. ♦

The following example shows that a minimally disruptive
protecting policy we have obtained so far does not guarantee
the minimal cost.

Example 5.1: Consider the automaton in Figure 4 where all
events are protectable and have a uniform cost for protection,
i.e., c(σ) = 1 for all σ ∈ Σ. Suppose that the security level
of state q4 is `(q4) = 1 while other states are not secret. By
computing the maximally permissive supervisor for the SCP-
SA and the corresponding dual protecting policy, we obtain
ϑmin that protects events σ4 and σ5 when the plant state is

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

9

q2 and q3, respectively. To implement ϑmin, we need to pay
2 unit price (e.g., to buy devices) for protecting events σ4

and σ5. However, one can readily verify that it is sufficient to
protect a single event σ1 at state q0 (although such a policy is
not minimally disruptive) that requires only 1 unit price. ♦

Example 5.1 shows that in general there does not exist a
protecting policy both minimally disruptive and of the minimal
cost. This fact also indicates that the method we developed in
Section IV, which was based on the maximally permissive
supervisor in the SA, cannot be used to find a protecting
policy with the minimal cost. Hence in this section we develop
a different method to solve the problem. The basic idea is
to transform a security protecting problem into an s-t min-
cut problem in the corresponding SA that can be solved with
polynomial methods. The solution of the s-t min-cut problem
is then converted to a protecting policy of the original SPP
with the minimal cost.

B. s-t Minimal-Cut Problem

Definition 5.3: [s-t Min-Cut][28] Consider a weighted di-
graph G = (V, E ,w) whose set of vertices and set of
directed edges are V and E ⊆ V × V , respectively. Function
w : E → R≥0 ∪ {∞} assigns each edge d ∈ E a nonnegative
weight w(d). Let vs, vt be two vertices in V which are called
the source vertex and the terminal vertex, respectively. A set
of edges C ⊆ E is an s-t cut if the subgraph of G induced by
(V, E \ C) does not contain any directed path from vertex vs
to vertex vt. C is an s-t minimal-cut (s-t min-cut for short) if
for any other s-t cut C′,

∑
d∈C w(d) ≤

∑
d∈C′ w(d) holds, i.e.,

the total weight of edges in C is minimal. ♦
Note that the s-t min-cut may not be unique, i.e., there may

exist multiple cuts all of which are of the same minimal cost.
Determining an s-t min-cut in a diagraph, which is called the
s-t min-cut problem, has been well studied in the literature. To
keep this paper focused, we do not introduce the details but
briefly explain how it is solved. An s-t min-cut problem can be
reduced to its dual max-flow problem using Max-Flow Min-Cut
Theorem, and the latter can be solved by various polynomial-
time algorithms, e.g., Edmonds-Karp [28] with complexity
O(|V| · |E|2), push-relabel algorithm [29] with complexity
O(|V|2 · |E|). Once a max-flow is obtained, a min-cut can
be obtained by inspecting the corresponding residue graph.
Now, given an SPP, we establish its corresponding s-t min-cut
problem as follows.

Definition 5.4: Given an SPP and a cost function c : Σ →
R≥0∪{∞}, let H = (QH ,ΣH , δH , q0,0) be the corresponding
SA. The s-t graph G = (V, E ,w) of the SA is defined as
follows:

1) let G′ = (V ′, E ′) be the underlying unweighted digraph
of the SA, i.e.{
V ′ = QH ,

E ′ = {(qi,j , qi′,j′) | (σ ∈ ΣH) δH(qi,j , σ) = qi′,j′};

2) let V = V ′ ∪ {q∞,∞};
3) let E = E ′ ∪ {(q, q∞,∞) | q ∈ Q`}, where Q` = {qi,h |

h < `(qi)} is the set of forbidden states in the SA;

𝑞0,0 𝑞1,0

2

𝑞2,0

1

𝑞3,0

2

1 3

𝑞1,1 𝑞2,1

1

𝑞3,1

2
1 3

𝑞2,2

𝑞3,2

3

𝑞1,2

1

2

1

∞

𝑞4,0

𝑞4,1

∞

𝑞4,2

∞

∞
∞ ∞

∞
∞

∞
∞

∞ ∞

∞

∞

𝑞∞,∞

source

terminal

∞

∞

∞

Fig. 5: The s-t graph G of the SA in Figure 2 with costs
2, 1, 1, 3, 1,∞, respectively for events σ1, σ2, σ3, σ4, σ5, σ6.
The “blue circles” denote the arcs in the s-t min-cut Cmin
in Example 5.2, which are different from the “red crosses”
denoting the disablement of events by supervisor ξmax in
Example 4.2.

4) the weight w(qi,j , qi′,j′) that is assigned to each arc
(qi,j , qi′,j′) ∈ E is defined as:

w(qi,j , qi′,j′) =

c(σi), if δH(qi,j , αi) = qi′,j′

∞, if δH(qi,j , λi) = qi′,j′

∨qi′,j′ = q∞,∞

Problem 4: [MCP-SA] Given an SPP and a cost function
c : Σ → R≥0 ∪ {∞}, let H be the corresponding SA. The
s-t min-cut problem in the security automaton (MCP-SA) is
to determine an s-t min-cut in the corresponding s-t graph G
with q0,0 the source vertex and q∞,∞ the terminal vertex.

We briefly explain how an s-t graph is obtained according
to Definition 5.4. Given an SPP and a cost function c, the
corresponding SA is first computed and then converted into
the underlying digraph. Then, a terminal vertex q∞,∞ is added
to the digraph, and for each vertex qi,j that corresponds to a
forbidden state in Q`, an arc is added from qi,j to q∞,∞.
Finally, the weights on arcs are defined as: (1) c(σi), if the
arc is labelled αi ∈ Σα in the SA, (2)∞, if the arc is labelled
λi ∈ Σλ in the SA, or if the arc is from a forbidden state in
Q` to q∞,∞.

Once an s-t graph G is obtained, existing methods can be
applied to find an s-t min-cut in G where q0,0 is considered
as the source vertex and q∞,∞ is considered as the terminal
vertex. We use the follow example to illustrate this.

Example 5.2: Again consider the SPP in Example 3.1 and
the corresponding SA in Figure 2. Now suppose that the cost
to protect each event is: c(σ1) = 2, c(σ2) = 1, c(σ3) =
1, c(σ4) = 3, c(σ5) = 1, and c(σ6) = ∞ (i.e., σ6 is
unprotectable). According to Definition 5.4, the corresponding
s-t graph G is depicted in Figure 5.

Let q0,0 and q∞,∞ be the source and the terminal vertices,
respectively. The s-t min-cut of the MCP-SA contains three

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

10

arcs :
{(q0,0, q1,0), (q1,1, q2,1), (q1,1, q3,1)}

marked with the “blue circles” in Figure 5. The total weight
of this min-cut is 2 + 1 + 1 = 4. ♦

Since an SA contains at most |Q| · (l+ 1) states and |Q| ×
(2l+1) · |Σ| arcs (where l is the maximal security level among
all states), the corresponding s-t graph contains at most |Q| ·
(l + 1) + 1 states and |Q| · (2l + 1) · |Σ| + |Q| · l edges (the
term |Q| · l comes from the arcs added from forbidden states
to q∞,∞). Hence, in the s-t graph, O(V) = O(|Q| · l) and
O(E) = O(|Q| · l · |Σ|). The total complexity to obtain an s-t
min-cut (using push-relabel [29]) is O(|V|2 · |E|) = O([|Q| ·
l]2 · [|Q| · l · |Σ|]) = O(|Q|3 · l3 · |Σ|).

Remark 3: The maximally permissive supervisor obtained in
Section IV is also associated with a cut in the SA: an arc in the
SA belongs to the cut if the corresponding arc is disabled in
the SA. However, the cost of such a cut is not always minimal.
For example, supervisor ϑmax in Example 4.2 corresponds to
a cut that contains three arcs:

{(q0,0, q1,0), (q1,1, q3,1), (q2,1, q3,1)}.

The total weight of this cut is 2 + 1 + 3 = 6, and thus is not
minimal. ♦

C. Converting a Min-Cut to a Protecting Policy with the
Minimal Cost

Let us first introduce the duality of a protecting policy and
an s-t cut in the s-t graph. Such a notion is analogous to the
duality of protecting policies and supervisors in Definition 4.3.

Definition 5.5: Consider an SPP for plant G and the corre-
sponding MCP-SA for the SA H = (QH ,ΣH , δH , q0,0). An
s-t cut C of the SCP-SA and a protecting policy ϑ of the SPP
are said to be dual if for each sequence s ∈ L(G) and each
σi ∈ Σp, the following condition holds:

σi ∈ ϑ(s) ⇔ (δ∗H(q0,0, θ(s)), δ
∗
H(q0,0, θ(s)σi)) ∈ C (8)

♦
In plain words, the duality of protecting policy ϑ

and cut C means that ϑ protects event σi after a se-
quence s ∈ L(G) if and only if the corresponding arc
(δ∗H(q0,0, θ(s)), δ

∗
H(q0,0, θ(s)σi)) in the s-t graph belongs to

the cut C. Similar to the result in Section IV, a protecting policy
is valid for an SPP if and only if its dual s-t cut is valid for
the corresponding MCP-SA. Note that, since an s-t cut can be
viewed as a control policy, its dual protecting policy can be
computed analogously to the procedure described at the end
of Section IV-A.

Theorem 5.1: If ϑ is a solution of an SPP, then its dual s-t
cut C is a solution of the corresponding MCP-SA, and vice
versa.

Proof: This theorem can be proved analogously to
Theorem 4.1, since an s-t graph with an s-t cut can be
transformed to its dual protecting policy by Definition 5.5 and
then to the dual supervisor in the SA. �

Now, one may have realized that, although Theorem 5.1
guarantees that each s-t cut in the s-t graph is always associated

with a valid protecting policy, that a cut is minimal in the s-
t graph does not immediately imply that its dual protecting
policy is of the minimal cost by Definition 5.2. Since each
plant event σ may be associated with more than one arcs in the
s-t graph, one may intuitively think that the cost of a protecting
policy given by Definition 5.1 could be less than the cost of
its dual s-t min-cut in the s-t graph, i.e., in equality “C(ϑ) ≤∑
d∈C w(d)” the “<” may hold. For instance, suppose that

in the s-t graph in Figure 5 we obtain a cut C that contains
both arcs (q1,0, q3,0) and (q1,1, q3,1) — two arcs associated
with the same event σ2 of the original plant. If such a cut
is coincidentally a min-cut, then C(ϑ) <

∑
d∈C w(d) holds:

since in the min-cut problem the cost c(σ2) is counted twice
to cut the two arcs, while by Definition 5.1 in C(ϑ) the cost
c(σ2) is counted only once. If this is the case, even if C is
an s-t min-cut, we may not conclude that the cost of the dual
protecting policy of C is minimal.

However, in the next subsection, we prove a key result that
shows that the above intuition is false. Precisely speaking,
given an SPP, if Cmin is a min-cut of the corresponding MCP-
SA, then C(ϑ) =

∑
d∈C w(d) always holds, and hence its dual

protecting policy, denoted as ϑminC , is necessarily a protecting
policy of the original SPP whose cost is minimal.

Remark 4: It is worth noting that a similar idea of using s-t
min-cut in discrete-event systems was dated back to 1995 by
Kumar and Garg [30]. The work of [30] studies the optimal
supervisory control problem in automata, that is, to achieve
the control goal by disabling some events with costs, and a
supervisor was designed by determining a min-cut in a graph
induced from a plant automaton. In our approach, we use s-t
min-cut to determine an optimal protecting policy, which is
developed in the following subsections. �

D. Optimality of Protecting Policies by MCP-SA

Let GSA = (V, E ,w) be the s-t graph and C ⊆ E be an
s-t min-cut of GSA. A state qi,h is said to be on the s-side if
it is reachable from q0,0 in the subgraph (V, E \ C,w), and
qi,h is said to be on the t-side if it is coreachable to q∞,∞ in
the subgraph (V, E \C,w). To prove that C(ϑ) =

∑
d∈C w(d)

always holds, we first present the following lemma.
Lemma 1: Let G be the plant and GSA be the digraph of the

corresponding SA, and let C be a cut of GSA with source vertex
q0,0 and terminal vertex q∞,∞. For each transition qi

σ−→ qi′

in the plant G, the following two statements hold in GSA:
1) if qi′,h+1 is on the t-side, then qi,h is on the t-side;
2) if qi,h is on the s-side, then qi,h+1 is on the s-side;

Proof: By the construction of the SA and the s-t graph,
qi

σ−→ qi′ in G implies that in the SA there exist an arc qi,h
α−→

qi′,h for each h = 1, . . . , l, and an arc qi,h
λ−→ qi′,h+1 for each

h = 1, . . . , l−1. Since the arc from qi,h to qi′,h+1 is labeled λ,
which implies that the corresponding arc in GSA is weighted
∞ and does not belong to the cut, then statement 1) is true.

Now we prove statement 2) by contradiction. Suppose that
in GSA, state qi,h is on the s-side while state qi,h+1 is on
the t-side. Since qi,h+1 is on the t-side, in GSA there exists
a path π = qi,h+1qi1,h1

· · · qin,hn from qi,h+1 to a forbidden

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

11

𝑄ℓ

𝑞𝑖,ℎ

𝑞𝑖,ℎ+1 𝑞𝑖1,ℎ+1

𝑞𝑖1,ℎ+2

𝑤1

∞

∞

𝑤2

∞

∞

𝑞𝑖𝑛, തℎ

𝑞𝑖𝑛, തℎ+1

𝑤𝑛

∞

∞

contradition

Fig. 6: The illustration of the contradiction in the proof of
Lemma 1 statement 2. Solid dots and hollow circles represent
s-side states and t-side states, respectively.

state qin,hn in Q` such that all states qij ,hj on the path are
on the t-side. Since qi,h is on the s-side, by statement 1),
qi1,h+1 is also on the s-side, which implies that the next state
of the path π must be qi1,h1

= qi1,h+2 that is on the t-side.
Hence, state qi1,h+1 is on the s-side and qi1,h+2 is on the t-
side (see Figure 6). This reasoning can be repeated applied,
which eventually leads to a conclusion that state qin,h̄ /∈ Q`
and state qin,h̄+1 ∈ Q`. This contradicts the fact that ` requires
that qi,h̄ /∈ Q` implies qi,h̄+1 /∈ Q`. �

Now we present a main proposition of this subsection which
states that if C is an s-t min-cut in GSA, then for each transition
in the plant G, among all arcs in GSA that are associated with
the transition, at most one such arc belongs to C.

Proposition 5.1: Given an SPP with cost function c, let
GSA be the digraph of its corresponding SA, and Cmin be
an s-t min-cut of GSA with source vertex q0,0 and terminal
vertex q∞,∞. Then, for each transition qi

σ−→ qj in the plant,
there exists at most one integer h ∈ {0, . . . , l} such that
(qi,h, qj,h) ∈ Cmin.

Proof: By the construction of the SA and the s-t graph,
the part of the s-t graph associated with qi

σ−→ qj is depicted in
Figure 7. By Lemma 1 statement 2, there necessarily exists an
nonnegative integer h̄ ≤ l such that state qj,h is on the t-side
if and only if h ≤ h̄. Now consider state qi,h. By Lemma 1
statement 1), for every h ≤ h̄ − 1, state qi,h is on the t-side,
since state qj,h̄ is on the t-side. Then we have:
• for all h < h̄, arc (qi,h, qj,h) does not belong to Cmin

since qi,h and qj,h are both on the t-side;
• for all h > h̄, arc (qi,h, qj,h) does not belong to Cmin

since qj,h is on the s-side.
Therefore, among all arcs that are associated with transition
qi

σ−→ qj , at most one arc (i.e., (qi,h̄, qj,h̄)) may belong to
Cmin. �

By Proposition 5.1, each plant event σ is only associated
with at most one arc in an s-t min-cut Cmin. Recall that
in Definition 5.1 we have assumed that each plant event
is protected separately. We immediately have the following
corollary.

Corollary 5.1: If Cmin is an s-t min-cut of an MCP-SA,
then C(ϑminC) =

∑
d∈C w(d) holds, where ϑminC is the

𝑞𝑖, തℎ−2 𝑤
𝑞𝑗, തℎ−2

𝑞𝑖, തℎ−1 𝑞𝑗, തℎ−1

𝑞𝑖, തℎ 𝑞𝑗, തℎ

𝑞𝑖, തℎ+1 𝑞𝑗, തℎ+1

𝑞𝑖, തℎ+2 𝑞𝑗, തℎ+2

𝑤

𝑤

𝑤

𝑤

∞

∞

∞

∞

Fig. 7: The illustration of the proof of Proposition 5.1. Solid
dots and hollow circles represent s-side states and t-side states,
respectively, while the side of state

⊗
is uncertain.

dual protecting policy of Cmin.
Proof: This corollary directly follows from Proposi-

tion 5.1. Since each plant event σ is associated with at
most one arc in Cmin, C(ϑminC) =

∑
σ∈P (ϑminC) c(σ) =∑

d∈C w(d) holds. �
Now we can finally state the main result of this section.
Theorem 5.2: Given an SPP that satisfies Assumption 1, let
Cmin be an s-t min-cut of the corresponding MCP-SA. The
dual protecting policy ϑminC is a protecting policy of the SPP
whose cost is minimal.

Proof: This proof is by contradiction. Suppose that
there exists a different ϑ such that C(ϑ) < C(ϑminC).
Now consider the dual cut C of ϑ in the s-t graph GSA.
By Definition 5.5, for each protected event in P (ϑ) there
exists at least one corresponding arc in GSA which belongs
to C. Following the argument in the proof of Proposition 5.1,
by removing the redundant arcs (that are associated with the
same plant transition) from C we obtain a new cut C′ whose
corresponding protecting policy ϑ′ satisfies C(ϑ′) ≤ C(ϑ).
Since C(ϑ′) ≤ C(ϑ) < C(ϑminC), and each protected event
of ϑ′ and of ϑminC is only associated with one arc in GSA,
we can conclude that∑
d∈C′

w(d) = C(ϑ′) ≤ C(ϑ) < C(ϑminC) =
∑

d∈Cmin

w(d),

i.e.,
∑
d∈C′ w(d) <

∑
d∈Cmin w(d). This contradicts the fact

that Cmin is an s-t min-cut in GSA. �
To summarize the results of this section, we present Algo-

rithm 2 that computes a protecting policy with the minimal
cost. Algorithm 2 first converts the given SPP into the corre-
sponding MCP-SA, and attempts to determine an s-t min-cut
in the s-t graph with source state q0,0 and terminal state q∞,∞.
If MCP-SA does not have an s-t min-cut, then by Theorem 5.1
there does not exist a protecting policy to enforce the security
requirement `. On the other hand, if an s-t min-cut Cmin is
found, it is then converted to its dual protecting policy ϑminC
whose cost is minimal by Theorem 5.2. We use the following
example to illustrate Algorithm 2.

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

12

Algorithm 2 Determining a protecting policy with the minimal
cost
Input: A plant G = (Q,Σ, δ, q0) where Σ = Σp ∪ Σup, a

security requirement ` : Q → N, and a cost function
c : Σ→ R≥0 ∪ {∞}

Output: A protecting policy ϑ : L(G) × Σp → {0, 1} with
the minimal cost

1: Compute the SA H = (QH ,ΣH , δH , q0,0) of G with
respect to `, where ΣH = Σα ∪ Σλ;

2: Solve the MCP-SA in H for an s-t min-cut Cmin with
source state q0,0 and terminal state q∞,∞.

3: if Cmin does not exist, then
4: output “no solution” and exit.
5: else
6: compute the dual protecting policy ϑminC of Cmin.
7: end if
8: Output ϑ = ϑminC and exit.

Example 5.3: Again consider the plant in Figure 1 with
`(q3) = 2, `(q4) = 1 and costs 2, 1, 1, 3, 1,∞ respectively
for events σ1, σ2, σ3, σ4, σ5, σ6. The corresponding SA and
s-t graph are depicted in Figures 2 and 5, respectively. As
discussed in Example 5.2, there exists a unique s-t min-cut C =
{(q0,0, q1,0), (q1,1, q2,1), (q1,1, q3,1)} in this s-t graph. Hence,
by Definition 5.5, the protecting policy ϑminC is

ϑminC(s) =

{σ ∈ Σp | (δ∗H(q0,0, θ(s)), δ
∗
H(q0,0, θ(s)σi)) ∈ C}

whose set of protected events is P (ϑminC) = {σ1, σ2, σ3},
and whose total cost is C(ϑminC) = 2 + 1 + 1 = 4 that is
equal to the cost of its dual min-cut Cmin. On the other hand,
the minimally disruptive protecting policy ϑmin obtained in
Example 4.2 protects events in P (ϑmin) = {σ1, σ3, σ4}
(protecting decisions are marked by “crosses” in Figure 5),
and whose total cost is C(ϑminC) = 2 + 1 + 3 = 6.

For a plant sequence σ1σ2σ1σ2σ4 that reaches the secret
state q4 whose required security level is 2, the protecting
decision for each step is given as follows:

ϑ(ε) = {σ1}
ϑ(σ1) = {σ2, σ3}
ϑ(σ1σ2) = ϑ(σ1σ2σ1) = ϑ(σ1σ2σ1σ2)

= ϑ(σ1σ2σ1σ2σ4) = ∅

One can see that, a security check is triggered when the user
switches from state q1 to state q2 for the first time, since the
fixed cost to protect event σ2 is less than the cost to protect
event σ4 (i.e., c(σ2) < c(σ4)). We also note that no more
security check is triggered when the user switches from state
q1 to state q2 for the second time and subsequently. ♦

At the end of this paper, we note that the complexity
of all the methods proposed in this paper are polynomial.
Given a plant G with n states, m events, and a security
requirement ` such that the maximal security level required is
l, the corresponding SA contains at most n · (l+ 1) states and
n×(2l+1)·m arcs, i.e., its structural complexity is O(n·m·l).

The conversion from an SA to its corresponding SCP-SA and
MCP-SA are both linear to r where r is the number of states
in the SA, and the complexity to solve the SCP-SA and the
MCP-SA is of O(r2) and of (r2 ·(n·m·l)), respectively. Since
O(r) = O(m·n) and in general n,m� l, the total complexity
to compute a protecting policy that is minimally disruptive is
O(m2 · n2) and that to compute a protecting policy with the
minimally cost is O(n3 ·m3 · l).

VI. CONCLUSIONS

In this paper, we have introduced a secret protection prob-
lem in discrete-event systems modeled by automata. Two
notions of optimality on protecting policies, i.e., disruptiveness
and cost, have been considered. To solve the problem, we
have proposed a new structure called the security automaton,
based on which we have developed two polynomial methods
to obtain an event-protecting policy to enforce the security
requirement. For the criterion of disruptiveness, a minimally
disruptive protecting policy has been obtained by applying the
classical supervisory control theory in the security automaton.
For the criterion of cost, a new method has been developed
based on the computation of an s-t min-cut in the security
automaton.

In future work, we would like to extend our developed
method to address cases with other criteria of optimization.
On one hand, we intend to consider situations in which some
specified tasks should be disturbed as little as possible when
protections are applied (e.g., protections should minimally
interfere reaching some non-secret states infinitely often).
Another situation we are interested in investigating is that
the protection costs are defined on packages of events, e.g.,
the protection of any number (> 0) of events in a package
incurs a constant cost. On the other hand, if the cost of
executing a protected transition is not negligible, an intruder
may repeatedly executing such transitions to exhaust the
budget of the system. How to minimize the cost under such
type of attacks will also be investigated in our future research.

REFERENCES

[1] D. Thorsley and D. Teneketzis, “Intrusion detection in controlled discrete
event systems,” in Proceedings of the 45th IEEE Conference on Decision
and Control, Dec 2006, pp. 6047–6054.

[2] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A
survey of intrusion detection techniques in cloud,” Journal of Network
and Computer Applications, vol. 36, no. 1, pp. 42–57, 2013.

[3] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems,” ACM Computing Surveys,
vol. 42, no. 1, pp. 1–31, 2009.

[4] S. Lafortune, F. Lin, and C. Hadjicostis, “On the history of diagnosability
and opacity in discrete event systems,” Annual Reviews in Control,
vol. 45, pp. 257–266, 2018.

[5] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. Ryan, “Opacity
generalised to transition systems,” International Journal of Information
Security, vol. 7, no. 6, pp. 421–435, 2008.

[6] F. Lin, “Opacity of discrete event systems and its applications,” Auto-
matica, vol. 47, no. 3, pp. 496–503, 2011.

[7] L. Li and C. N. Hadjicostis, “Least-cost transition firing sequence
estimation in labeled Petri nets with unobservable transitions,” IEEE
Transactions on Automation Science and Engineering, vol. 8, no. 2, pp.
394–403, 2011.

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3091438, IEEE
Transactions on Automatic Control

13

[8] Y. Tong, Z. W. Li, C. Seatzu, and A. Giua, “Verification of state-based
opacity using Petri nets,” IEEE Transactions on Automatic Control,
vol. 62, no. 6, pp. 2823–2837, 2017.

[9] Y. Ji, X. Yin, and S. Lafortune, “Opacity enforcement using non-
deterministic publicly known edit functions,” IEEE Transactions on
Automatic Control, vol. 64, no. 10, pp. 4369–4376, 2019.

[10] Y. Ji, X. Yin, and S. Lafortune, “Optimal supervisory control with mean
payoff objectives and under partial observation,” Automatica, vol. 123,
p. 109359, 2021.

[11] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for en-
forcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336–1348, 2014.

[12] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public
and private insertion functions,” Automatica, vol. 93, no. 7, pp. 369–378,
2018.

[13] X. Yin and S. Li, “Synthesis of dynamic masks for infinite-step opacity,”
IEEE Transactions on Automatic Control, vol. 65, no. 4, pp. 1429–1441,
2020.

[14] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Current-state opacity en-
forcement in discrete event systems under incomparable observations,”
Discrete Event Dynamic Systems, vol. 28, no. 2, pp. 161–182, 2018.

[15] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,”
IEEE Transactions on Automatic Control, vol. 61, no. 8, pp. 2140–2154,
2016.

[16] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strate-
gies via state estimator constructions,” IEEE Transactions on Automatic
Control, vol. 57, no. 5, pp. 1155–1165, 2012.

[17] J. Dubreil, P. Darondeau, , and H. Marchand, “Supervisory control for
opacity,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp.
1089–1100, 2010.

[18] L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection
and mitigation of classes of attacks in supervisory control systems,”
Automatica, vol. 97, pp. 121 – 133, 2018.

[19] R. Fritz and P. Zhang, “Modeling and detection of cyber attacks on
discrete event systems,” in Proceedings of the 14th IFAC Workshop on
Discrete Event Systems, Sorrento, Italy, 2018, pp. 285–290.

[20] M. Agarwal, “Rogue twin attack detection: A discrete event system
paradigm approach,” in Proceedings of the 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), Oct 2019, pp.
1813–1818.

[21] C. Gao, C. Seatzu, Z. Li, and A. Giua, “Multiple attacks detection on
discrete event systems,” in Proceedings of the 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), Oct 2019, pp.
2352–2357.

[22] S. Matsui and K. Cai, “Secret securing with minimum cost,” in Pro-
ceedings of the 61st Japan Joint Automatic Control Conference, 2018,
pp. 1017–1024.

[23] ——, “Secret securing with multiple protections and minimum costs,”
in Proceedings of the 58th IEEE Conference on Decision and Control,
2019, pp. 7635–7640.

[24] ——, “Application of supervisory control to secret protection in discrete-
event systems,” Journal of the Society of Instrument and Control
Engineers, vol. 60, no. 1, pp. 14–20, 2021.

[25] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems. Springer, 2019.

[26] K. Cai and W. M. Wonham, Supervisory control of discrete-event
systems. Encyclopedia of Systems and Control, 2nd ed., Springer,
2020.

[27] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of

discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[28] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” J. ACM, vol. 19, no. 2, pp. 248–
264, Apr. 1972.

[29] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum
flow problem,” in Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, New York, NY, USA, 1986, pp. 136–146.

[30] R. Kumar and V. K. Garg, “Optimal supervisory control of discrete
event dynamical systems,” SIAM Journal on Control and Optimization,
vol. 33, no. 2, pp. 419–439, 1995.

Ziyue Ma (S’-15, M’-17) received the B.Sc. degree
and the M.Sc. degree in Chemistry from Peking
University, Beijing, China, in 2007 and 2011, respec-
tively. In 2017 he got the Ph.D degree in cotutorship
between the School of Electro-Mechanical Engineer-
ing of Xidian University, China (in Mechatronic
Engineering), and the Department of Electrical and
Electronic Engineering of University of Cagliari,
Italy (in Electronics and Computer Engineering).
He joined Xidian University in 2011, where he

is currently an Associate Professor in the School of Electro-Mechanical
Engineering. His current research interests include control theory in discrete
event systems, automata and Petri net theories, fault diagnosis/prognosis,
resource optimization, and information security.

Dr. Ma is a member of Technical Committee of IEEE Control System
Society (IEEE-CSS) on Discrete Event Systems. He is serving/has served
as the Associate Editor of the IEEE Conference on Automation Science
and Engineering (CASE’17–’21), European Control Conference (ECC’19–
’21), and IEEE International Conference on Systems, Man, and Cybernetics
(SMC’19–’21). He is/was the Track Committee Member of the International
Conference on Emerging Technologies and Factory Automation (ETFA’17–
’21). In 2016 he received the Outstanding Reviewer Award from the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL.

Kai Cai (S’08-M’12-SM’17) received the B.Eng.
degree in Electrical Engineering from Zhejiang Uni-
versity, Hangzhou, China, in 2006; the M.A.Sc.
degree in Electrical and Computer Engineering from
the University of Toronto, Toronto, ON, Canada, in
2008; and the Ph.D. degree in Systems Science from
the Tokyo Institute of Technology, Tokyo, Japan, in
2011. He is currently a Professor at Osaka City Uni-
versity. Previously, he was an Associate Professor
at Osaka City University (2014–2020), an Assistant

Professor at the University of Tokyo (2013–2014), and a Postdoctoral Fellow
at the University of Toronto (2011–2013).

Dr. Cai’s research interests include distributed control of discrete-event
systems and cooperative control of networked multi-agent systems. He is the
co-author (with W.M. Wonham) of Supervisory Control of Discrete-Event
Systems (Springer 2019) and Supervisor Localization (Springer 2016). He is
serving as the Chair for the IEEE CSS Technical Committee on Discrete Event
Systems and an Associate Editor for the IEEE Transactions on Automatic
Control. He was the recipient of the Pioneer Award of SICE in 2021, the
Best Paper Award of SICE in 2013, the Best Student Paper Award of the
IEEE Multi-Conference on Systems and Control, and the Young Author’s
Award of SICE in 2010.

Authorized licensed use limited to: IEEE Associate Editors. Downloaded on September 02,2021 at 01:27:13 UTC from IEEE Xplore. Restrictions apply.

