
Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

S
a

b

S

p
s

c
l
s

(
(

Contents lists available at ScienceDirect

Nonlinear Analysis: Hybrid Systems

journal homepage: www.elsevier.com/locate/nahs

Usability aware secret protectionwithminimum cost✩

homa Matsui a, Kai Cai b,∗
Department of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
Department of Electrical and Information Engineering, Osaka City University, 3-3-138 Sugimoto,
umiyoshi-ku, Osaka 558-8585, Japan

a r t i c l e i n f o

Article history:
Received 11 February 2021
Received in revised form 15 June 2021
Accepted 15 October 2021
Available online xxxx

Keywords:
Usability
Cybersecurity
Secret protection
Supervisory control theory
Discrete-event systems
Cyber–physical systems

a b s t r a c t

In this paper we study a cybersecurity problem of protecting system’s secrets with
multiple protections and a required security level, while minimizing the associated cost
due to implementation/maintenance of these protections as well as the affected system
usability. The target system is modeled as a discrete-event system (DES) in which there
are a subset of marker states denoting the services/functions provided to regular users, a
subset of secret states, and multiple subsets of protectable events with different security
levels. We first introduce usability-aware cost levels for the protectable events, and then
formulate the security problem as to ensure that every system trajectory that reaches
a secret state contains a specified number of protectable events with at least a certain
security level, and the highest usability-aware cost level of these events is minimum. We
first provide a necessary and sufficient condition under which this security problem is
solvable, and when this condition holds we propose an algorithm to solve the problem
based on the supervisory control theory of DES. Moreover, we extend the problem to
the case of heterogeneous secrets with different levels of importance, and develop an
algorithm to solve this extended problem. Finally, we demonstrate the effectiveness of
our solutions with a network security example.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In real networked systems, risks and threats due to cybersecurity breach are increasingly prominent. Effectively
rotecting systems so that confidential information remains undisclosed to adversarial access has become an indispensable
ystem design requirement [1,2].
Recently cyber–physical systems (CPS) has emerged to be a general modeling framework for real networked systems

onsisting of both physical and computational components. CPS security issues have attracted much attention in the
iterature [3–6]. For example, [4] discusses several attack scenarios with a typical architecture of networked control
ystems.
Focusing primarily on the abstracted level of dynamic systems, the research community of discrete-event systems

DES) has actively studied a number of security related problems. An earlier and widely investigated problem is opacity
e.g. [7–10]). This is a system property under partial observation such that an intruder cannot infer a given set of secrets by
(passively) observing the system behavior. Depending on the definitions of secrets, opacity takes different forms. Recent
work extends opacity notions to networked, nondeterministic settings as well as Petri net models (e.g. [11–13]).

✩ This work was supported in part by JSPS KAKENHI Grant no. 21H04875.
∗ Corresponding author.

E-mail addresses: s.matsui@queensu.ca (S. Matsui), kai.cai@eng.osaka-cu.ac.jp (K. Cai).
https://doi.org/10.1016/j.nahs.2021.101111
1751-570X/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.nahs.2021.101111
http://www.elsevier.com/locate/nahs
http://www.elsevier.com/locate/nahs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nahs.2021.101111&domain=pdf
mailto:s.matsui@queensu.ca
mailto:kai.cai@eng.osaka-cu.ac.jp
https://doi.org/10.1016/j.nahs.2021.101111

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

s
m

o
i

T
w
u
c
m

i
b
c
a
i
I
m
A
c

f
T
a
w
r
b

Another well studied problem is fault-tolerance and attack-resilience (e.g. [14–18]). This is a design requirement that a
upervisory controller should remain (reasonably) operational even after faults occur in the system or the system is under
alicious attacks.
Intrusion detection is another problem that has recently attracted much interest (e.g. [19–23]). In this problem, the aim

f the system administrator is to detect invasion of intruders by identifying abnormal behaviors in the system; if invasion
s detected, an alarm can be set off before any catastrophic damage can be done by intruders.

From a distinct perspective, in our previous work a minimum cost secret protection problem is introduced [24–27].
his problem is concerned with the scenario that the system contains sensitive information or critical components to
hich attackers want to gain access, and attackers may be able to observe all events and disguise themselves as regular
sers without being detected. Then the system administrator is required to protect the sensitive information or critical
omponents with proper security levels, while practically balance with the costs associated with the implementation and
aintenance of the adopted protection methods.
In this paper, we make two important generalizations of the minimum cost secret protection problem. First, we take

nto account system’s usability, which means regular users’ convenience of using various services and functions provided
y the system. These services and functions for regular users are often different from sensitive information or critical
omponents that need to be protected. However, bad choices of protection points/locations may simultaneously affect
ccess to services/functions by regular users. For example, when setting up a password to protect a user’s credit card
nformation, it is not reasonable that the user has to input the same password in order to access any websites or files.
f system’s usability is significantly reduced owing to setting up too many protections at inappropriate locations, users
ay stop using the system and this can be costly (to different extents depending on specific situations/applications).
ccordingly, we formulate usability as another source of protection cost, in addition to the implementation/maintenance
ost of protection methods (considered in previous work).
The second extension to the minimum cost secret protection problem is that on top of the usability consideration, we

urther differentiate sensitive information and critical components (or simply secrets) with distinct degrees of importance.
his is a typical situation in practice; for instance, in e-commerce, customers’ email addresses and credit card numbers
re both sensitive information, but it is common that the latter are deemed more important and expected to be protected
ith stronger measures. Accordingly, we formulate heterogeneous secrets by a partition on the set of all secrets, and
equire that more important secrets be protected using more secure methods (while system usability still needs to be
alanced).
The main contributions of this work are summarized as follows.

• A novel concept of system’s usability is introduced and formulated. This notion was absent in our previous work [24–
27], and to our best knowledge is new in the DES security literature. Roughly speaking, the formulation of usability
is based on counting the number of affected services/functions provided to regular users when a protection is
implemented at a certain location, and comparing this number to a prescribed threshold to determine if such a
protection is too costly. Note that in [26] ‘‘minimal disruption’’ is considered for ‘‘protection of all secrets by
protecting as few events as possible’’; all events have the same cost/weight. Technically solving minimally descriptive
secret protection is equivalent to solving the standard maximally permissive supervisory control; secret states are
treated as unsafe states and there is no marker state. By contrast, this work explicitly considers marker states and
interpret them as services/functions that the target system provides to regular users. Thereby the new notion of
‘‘usability’’ here is to describe ‘‘protection of all secrets while minimizing the impact on the paths leading to marker
states’’; events are weighted (i.e. their costs) according to their impacts on usability.

• A new usability-aware minimum cost secret protection problem is formulated, its solvability condition characterized,
and a solution algorithm designed. In contrast to the problem without usability consideration [24–27], in our problem
less secure protection methods that significantly undermine usability may be just as costly as more secure methods
that make little impact on usability. This new feature due to usability makes our problem more challenging because
security levels and cost levels of the same protection methods are generally different, and hence need to be treated
separately (security levels and cost levels are not distinguished in [24–27] since usability is not considered).

• A new minimum cost secret protection problem featuring both usability awareness and heterogeneous secrets is
formulated, its solvability condition characterized, and an solution algorithm developed. Not only are the formulated
problem and developed solution algorithm new as compared to the existing literature, but also this problem covers
a general and practical scenario in the context of secret protection.

We note that relevant to this work is opacity enforcement with consideration of security levels and protection costs
that has been recently studied in the literature. In [28], a probabilistic system model and a corresponding opacity concept
are introduced, and security level is measured by a probabilistic threshold as the upper bound for intruder’s belief on
secret states. In [29], a weighted finite-state system model is considered and various protection costs are modeled as a
multidimensional integer-valued vector. Although [28,29] and our work are similar in terms of the target scenarios of
security protection, there are several evident differences. First, the models and approaches of [28,29] are quantitative:
probabilistic/weighted models are considered; security levels and protection costs are real numbers/integer vectors. By
contrast, in our work the basic finite-state automaton is considered, and the concepts of security levels and protection
costs are defined without needing to introduce extra quantification. Second, although system usability can be defined
2

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

i
t
t
p
c
t
p
s

f
a
i

2

t
a

c
p
c

a

q
b
t

a
a
d

n [29] as one component in the cost vector, in our work usability is defined to relate automaton’s marker states and
ransition structure. This way of defining system usability is new in the literature. Third, our work further differentiates
he importance of secret states, which is novel and not dealt with in [28,29]. Last but not least, the opacity enforcement
roblem studied in [28,29] is based on the assumption that intruder has only partial information of the system (most
ommonly partial observation [29], also partial confidence level [28]), and investigates how to use the partial information
o ‘confuse’ intruder. By contrast, the secret protection problem considered in our work makes no such assumption on
artial information; indeed, intruder can have full knowledge of the system and secret states. Accordingly our problem
eeks how to suitably protect certain events to make it ‘hard’ for intruder to gain access to the secret states.
The rest of this paper is organized as follows. Section 2 introduces system model and definitions of cost; Section 3

ormulates two usability aware minimum cost secret protection problems; Section 4 solves the first problem in which
ll secrets are deemed equally important, while Section 5 solves the second problem in which the secrets have different
mportance; finally in Section 6 we state our conclusions and future work.

. System model

Consider that a system administrator needs to protect all secret information in the system. The administrator desires
o do so in such a way that every secret is protected with at least a certain number of protections and these protections
re of at least a certain security level.
Meanwhile, the administrator needs to balance secret protection with the associated cost. There are two sources of

ost often considered in practice. One is the cost of purchasing, implementing, and maintaining the device or program for
rotection. This cost evidently varies depending on the means of protection; for example, a biometric device is much more
ostly than a password protection. Correspondingly, the higher the cost is, the higher the security level of the protection
becomes.

The other source of cost is due to that secret protection can have the side effect of negatively impacting the convenience
of regular users of the system. Unlike intruders, regular users when using the system do not always try to see the secret
information (e.g. personal data), but more often use various services that the system provides (e.g. watching a movie,
reading an e-book, launch an app). If protecting secrets simultaneously requires regular users to undergo many security
checks before using any services, user experience or system’s usability will decline, and if this causes users to stop using
the system, the cost can be significant.

In this section, we will formulate the above-described system and cost considerations for secret protection. Our
objective is to design for the administrator a protection policy that ensures the required level of secret protection while
minimizes the incurred cost.

To model the system, we employ the framework of discrete-event systems (DES) [30,31], and consider the system
modeled as a finite-state automaton

G = (Q , Σ, δ, q0,Qm). (1)

Here Q is the set of states, Σ the set of events, δ : Q × Σ → Q the (partial) transition function,1 q0 ∈ Q the initial state,
and Qm ⊆ Q the set of marker states which models the set of services/functions provided by the system to its users. We
denote by Qs ⊆ Q the set of secret states in G; no particular relation is assumed between Qs and Qm, i.e. a secret state may
or may not coincide with a marker state. This indicates that the services/functions which contain secrets, namely states
in Qs ∩ Qm (if they exist), will unavoidably be affected by protection and thus deemed irrelevant to calculating usability
cost. In addition, we extend the transition function δ to δ : Q × Σ∗

→ Q (where Σ∗ is the set of all finite-length strings
of events in Σ including the empty string ϵ) in the standard manner, and write δ(q, s)! to mean that string s is defined
t state q. The closed behavior of G, written L(G), is the set of all strings that are defined at the initial state q0:

L(G) = {s ∈ Σ∗
| δ(q0, s)!}.

Also define the marked behavior of G:

Lm(G) = {s ∈ L(G) | δ(q0, s)! & δ(q0, s) ∈ Qm}.

That is, every string in Lm(G) is a member of the closed behavior L(G), and moreover reaches a marker state in Qm.
A state q ∈ Q is reachable (from the initial state q0) if there is a string s such that δ(q0, s)! and δ(q0, s) = q. A state

∈ Q is co-reachable (to the set of marker states Qm) if there is a string s such that δ(q, s)! and δ(q, s) ∈ Qm. G is said to
e trim if every state is both reachable and co-reachable. Unless otherwise specified, we consider trim automaton G for
he system model in the sequel.

In practice, not all events in the system can be protected by the administrator for reasons such as exceeding
dministrative permissions. Thus we partition the event set Σ into a disjoint union of the subset of protectable events Σp
nd the subset of unprotectable events Σup, namely Σ = Σp∪̇Σup. Moreover, protecting different events in Σp may incur
ifferent costs. As described at the beginning of this section, we consider two sources of cost.

1 It is sometimes convenient to view δ as a set of triples: δ = {(q, σ , q′) | (q, σ) ↦→ q′
}.
3

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

w
q

i
c
p
s
c

a
i
a
u
h
s

p

T
c
f

A
t

n
w

t
t
n

For the first source of purchasing/implementing/maintaining the protection device/program, we partition the set of
protectable events Σp further into n disjoint subsets Σi where i ∈ {0, 1, . . . , n − 1}, namely

Σp =

⋃̇n−1

i=0
Σi. (2)

The index i of Σi indicates the cost level when the system administrator protects one or more events in Σi; the larger the
index i, the higher the cost level of protecting events in Σi. For simplicity we assume that the index is the deciding factor
for the first source of cost; that is, the cost of protecting one event in Σi is sufficiently higher than the cost of protecting
all events in Σi−1. While this assumption might be restrictive, it is also reasonable in many situations: for example, the
cost of purchasing/installing/maintaining a biometric sensor is more costly than setting multiple password protections.
Since this source of cost is directly related to the strength of protection, we will also refer to these cost levels as security
levels.

For the second source of cost regarding regular users’ convenience, we investigate the impact of protecting an event
σ ∈ Σp at a state q on the usability of services/functions provided by the system (which are modeled by the marker states
in Qm). In particular, we define for each pair (q, σ), with δ(q, σ)!, the following set of non-secret marker states that can
be reached from the state δ(q, σ):

U(q, σ) := {q′
∈ Qm \ Qs | (∃s ∈ Σ∗)δ(δ(q, σ), s)! & δ(q, σ s) = q′

}. (3)

This U(q, σ) is the set of (non-secret) marker states that would be affected if σ is protected at q; namely, regular users
potentially would also have to go through the protected σ in order to use any of the services in this set.2 The reason
why we focus on marker states that are not secrets is because it is unavoidable to cause inconvenience of the users if the
services/functions to be used coincide with the secrets to be protected. Note also that for different states q, q′ where σ

is defined, U(q, σ) and U(q′, σ) generally have different values. Since q′ can be a downstream state from q, for U to be
ell-defined, it is important to consider only those pairs (q, σ) where (q, σ)!, namely σ is (the first event) defined at state
.
With the set defined in (3), it is intuitive that the cost of protecting σ at q is large (resp. small) if the size of this set,

.e. |U(q, σ)|, is large (resp. small). In case the cost is overly large, this event σ (at q) belonging to (say) Σi (i.e. the ith
ost level of the first source) may be just as costly as those events in one-level higher Σi+1. For example, if setting up a
assword at a particular point to protect a secret simultaneously requires all regular users to enter a password for most
ervices the system provides, this could largely reduce the users’ satisfaction; hence this password protection may be as
ostly as using a biometric sensor (when the latter is used to protect a secret but affecting no regular users’ experience).
In practice it is case dependent as for how large this cost (measured by |U(q, σ)|) should we treat σ (defined at q)

s having one-level higher cost: different systems (or business) have different criteria. Thus we consider using a positive
nteger T (≥ 1) as a threshold number: if the cost of the second source exceeds this threshold, i.e. |U(q, σ)| ≥ T , the event σ

t q belong to Σi (say) will be treated as having the same cost level as those in Σi+1. The more important the system deems
ser experience, the smaller threshold T should be set.3 Finally as noted above, the same event σ at different q generally
as different |U(q, σ)|; hence this second source of cost is state-dependent (in contrast with the state-independent first
ource of cost).
With the above preparation, we now synergize the aforementioned two sources of cost as follows. Consider the

artition of Σp in (2) and let T ≥ 1 be the threshold. First define

C0 := {(σ , |U(q, σ)|) | q ∈ Q & σ ∈ Σ0 & δ(q, σ)! & |U(q, σ)| < T }. (4)

hus C0 is the set of pairs in which the event belongs to Σ0 (the lowest level of the first cost) and the |U(q, σ)| (the second
ost) is below the threshold T . In other words, these events at their respective states are the least costly ones when the
irst and second costs combined.

Next for each i ∈ {1, . . . , n − 1}, define

Ci :={(σ , |U(q, σ)|) | q ∈ Q & σ ∈ Σi & δ(q, σ)! & |U(q, σ)| < T }

∪ {(σ , |U(q, σ)|) | q ∈ Q & σ ∈ Σi−1 & δ(q, σ)! & |U(q, σ)| ≥ T }. (5)

s defined, Ci is the union of two sets of pairs. The first set is analogous to C0 (here for events in Σi). The second set is
he collection of those pairs in which the event belongs to Σi−1 (one lower level of the first cost) and the |U(q, σ)| (the

2 While this formulation of U(q, σ) provides a reasonable way of capturing usability cost, this need not be the unique way. For example, an
alternative is to formulate U(q, σ) such that it does not include those (non-secret) marker states that can still be reached from q by another path
ot starting from σ . For clarity we focus on the formulation of U(q, σ) in (3), while pursuing the study of other possible formulations in future
ork.
3 More generally, one can consider setting up a sequence of threshold numbers T1 < T2 < T3 · · ·, and if |U(q, σ)| ∈ [T1, T2), treat σ ∈ Σi as having

he same cost as those in Σi+1; if |U(q, σ)| ∈ [T2, T3), treat σ ∈ Σi as in Σi+2 , and so on. For clarity, however, of the henceforth presentation and
he fact that this more general case is in principle derivable from the simpler case presented here, we will focus on the case of a single threshold
umber.
4

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

s

T

t

Fig. 1. System G: initial state q0 (circule with an incoming arrow), marker state set Qm = {q3, q4, q7, q10} (double circles), secret state set
Qs = {q7, q8, q10} (shaded circles).

econd cost) is larger than or equal to the threshold T . Thus the events corresponding to the second set have different
levels when only the first cost is considered and when the two costs are combined.

Finally define

Cn := {(σ , |U(q, σ)|) | q ∈ Q & σ ∈ Σn−1 & δ(q, σ)! & |U(q, σ)| ≥ T }. (6)

hus Cn is the set of pairs in which the event belongs to Σn−1 (the highest level of the first cost) and the |U(q, σ)| (the
second cost) exceeds the threshold T . That is, these events at their respective states are the most costly ones when the
first and second costs combined.

It is convenient to define the set of events corresponding to Ci (i ∈ [0, n]), by projecting the elements (i.e. pairs) to
heir first components. Hence for i ∈ [0, n] we write

Σ(Ci) := {σ | (∃q ∈ Q)(σ , |U(q, σ)|) ∈ Ci}. (7)

From (4)–(6), it is evident that

Σ(C0) ⊆ Σ0, Σ(Cn) ⊆ Σn−1, (∀i ∈ [1, n − 1])Σ(Ci) ⊆ Σi−1 ∪ Σi. (8)

To illustrate the system modeling and cost definitions presented so far, we provide the following example, which will
also be used as the running example in subsequent sections.

Example 2.1. The finite-state automaton G in Fig. 1 represents a simplified system model of using a software application
in which there are three restricted realms. There are also four services that this system provides. Consider that this
application works according to the users’ permission levels. Several authentication points can be (though need not be) set
up so that the users have to pass them in order to obtain the permission to reach the restricted realms. States q7, q8 and
q10 represent the restricted realms modeled as secret states, i.e. Qs = {q7, q8, q10}. On the other hand, states q3, q4, q7,
and q10 represent the services provided by the system and hence the set of marker states is Qm = {q3, q4, q7, q10}. Thus
q7 and q10 are simultaneously marker and secret states.

The initial state q0 indicates that a user is about to log into the system. Accordingly, events σ0 and σ1 represent logging
into the system as a regular user or a system administrator respectively; then q1 and q2 mean that the user has logged in
corresponding to σ0 and σ1 respectively. Typically, an administrator has higher-level permission in the system compared
to a regular user. Also, σ2 indicates switching permission from the administrator to a regular user, σ5 denotes launching
the application, and σ6 means that a regular user launches the application with the administrative permission, e.g. sudo in
Unix-like operating systems. Events σ3 and σ4 are respectively the starting and finishing actions of using a system service.
Moreover, σ7 and σ8 indicate the authentication points to obtain access to the secret states q7 and q8. On the other hand,
the administrative realm denoted by the secret state q10 requires users to pass two-factor authentication represented by
σ9 (first factor) and σ10 (second factor). In order to keep secret states secure, the system administrator needs to configure
several authentication points for restrict access.
5

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

q
i

p

w

According to the above description, the set of protectable events is

Σp = {σ0, σ1, σ5, σ6, σ7, σ8, σ9, σ10}

which can be partitioned into four different cost/security levels (low to high):

Σ0 = {σ0, σ1, σ5}, Σ1 = {σ6, σ7, σ8}, Σ2 = {σ9}, Σ3 = {σ10}. (9)

That is, Σp = Σ0∪̇Σ1∪̇Σ2∪̇Σ3 and n = 4. This is the first source of cost we consider, which corresponds to the level of
security of these events. The remaining events are deemed unprotectable, i.e. Σup = {σ2, σ3, σ4}.

For the second source of cost due to usability (user experience), in this example we set the threshold T = 2, namely
if protecting an event at a state affects two or more (non-secret) services provided by the system, this cost is deemed so
large that the event at the state needs to be moved one level up in terms of the total cost. In fact in G, there are exactly
two marker states that are not secret states: q3, q4; hence if both these states are affected when protecting an event at a
state, the threshold is reached.

Inspecting the set U(q, σ) as defined in (3), we find U(q0, σ1) = {q3, q4} because δ(q0, σ1σ3) = q3 and δ(q0, σ1σ2σ5σ3) =

4. As a result, |U(q0, σ1)| = 2 = T and σ1 ∈ Σ0 at q0 must be moved one level up in the total cost. Continuing this
nspection, in fact U(q0, σ1) is the only case where the threshold T = 2 is reached. Also note that event σ5 has different
|U(·, σ5)| at different states where it is defined: |U(q1, σ5)| = 1 whereas |U(q2, σ5)| = 0. This shows that the second cost
is state-dependent.

Finally we present the cost level sets with the two sources of cost combined:

C0 = {(σ0, 1), (σ5, 1), (σ5, 0)}
C1 = {(σ1, 2), (σ6, 0), (σ7, 0), (σ8, 0)}

C2 = {(σ9, 0)} (10)
C3 = {(σ10, 0)}
C4 = ∅.

3. Problem formulation

Given the system model G in (1), the n security levels Σ0, . . . , Σn−1 in (2), and the n + 1 cost levels C0, . . . , Cn in
(4)–(6), we formulate in this section two secret protection problems.

To proceed, we need several definitions. Let u ≥ 1 be the least number of events that are required to be protected
before any secret state may be reached from any system trajectory from the initial state. Also let v ≥ 0 be the least
security level that is needed for protecting the secrets. Write

Σ≥v
p :=

⋃̇n−1

i=v
Σi (11)

for the collection of protectable events where security levels are at least v. The following definition formalizes the notion
that the secret states are protected with at least u number of protections with at least v security level of protectable
events.

Definition 3.1 (u− v−secure Reachability). Consider a system G in (1) with a set of secret states Qs, the security level sets
Σi (i ∈ [0, n−1]) in (2), and let u ≥ 1, v ≥ 0, and Σ̃ be a nonempty subset of Σ≥v

p in (11). We say that Qs is reachable with
at least u protectable events of security level at least v w.r.t. Σ̃ (or simply Qs is u − v−securely reachable) if the following
condition holds:

(∀s ∈ Σ∗)(δ(q0, s)!& δ(q0, s) ∈ Qs) ⇒ s ∈ Σ∗Σ̃Σ∗
· · · Σ∗Σ̃Σ∗

Σ̃ appears u times

. (12)

Condition (12) means that every string from the initial state that can reach a secret state must contain at least u
protectable events of security level at least v.

Next we define a protection policy that identifies which protectable events to protect at which states. Such a policy is
what we aim to design for the system administrator.

Definition 3.2 (Protection Policy). For the system G = (Q , Σ = Σp ∪ Σup, δ, q0,Qm) in (1) and a nonempty subset of
rotectable events Σ̃ ⊆ Σp, a protection policy P is a mapping that assigns to each state a subset of protectable events:

P : Q → Pwr(Σ̃) (13)

here Pwr(Σ̃) denotes the power set of Σ̃ .
6

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

i
l

s
t
(

w
i
w

P
C
i
p
i
(

E
(

t
f

t
l
(
w

4

a

4

i
c

T
l

Note that what a protection policy specifies can also be interpreted as the protection of a transition labeled by a
protectable event at a given state. For example, P(q) = {σi, σj} represents that protectable events σi and σj occurring at
state q are protected.

Now we are ready to formulate two secret protection problems studied in this paper. The first problem is to find a
protection policy (if it exists) that protects all the secret states with at least a prescribed number of protections of at least
a prescribed security level, and moreover the protection cost should be minimum.

Problem 3.3 (Usability Aware Secret Securing with Multiple Protections and Minimum Cost Problem, USCP). Consider a system
G in (1) with a set of secret states Qs, the cost level sets Ci (i ∈ [0, n]) in (4)–(6), and let u ≥ 1, v ≥ 0. Find a protection
policy P : Q → Pwr(Σ̃), Σ̃ ⊆ Σp, such that Qs is u− v−securely reachable w.r.t. Σ̃ and the highest index i of Ci that has
nonempty intersection with Σ̃ is minimum (i.e. max{i ∈ [0, n] | Ci ∩ Σ̃ ̸= ∅} is minimum).

Problem 3.3 states that we need to find which transitions to be protected so that all paths to secret states from the
nitial state have at least u protected transitions whose cost levels are equal to or higher than v, while the highest cost
evel of the protectable event the policy specifies is minimum.

More generally, and this is typical in practice, secrets may have different importance. For example in online shopping
ystems, customers’ credit card information is (likely) more important than their email address information (though
he latter certainly also needs to be protected). Thus the set of secret states Qs may be partitioned into k ≥ 1 disjoint
nonempty) subsets Qs1, . . . ,Qsk; the level of importance rises as the index increases.

Naturally the administrator wants to protect secrets of higher importance with events of higher security levels. Hence
e associate each Qsj (j ∈ [1, k]) with a number vj that indicates the least security level required for protecting the secrets

n Qsj. These vj satisfy 0 ≤ v1 ≤ · · · ≤ vk(≤ n − 1) according to the rising importance. With this additional consideration,
e formulate our second problem.

roblem 3.4 (Usability Aware Heterogeneous Secret Securing with Multiple Protections and Minimum Cost Problem, UHSCP).
onsider a system G in (1), a set of secret states Qs partitioned into disjoint (nonempty) subsets Qs1, . . . ,Qsk with rising
mportance, the cost level sets Ci (i ∈ [0, n]) in (4)–(6), and let u ≥ 1, 0 ≤ v1 ≤ · · · ≤ vk ≤ n − 1. Find a
rotection policy P : Q → Pwr(Σ̃), Σ̃ ⊆ Σp, such that for every j ∈ [1, k] the jth important secret state subset Qsj
s u − vj−securely reachable w.r.t. Σ̃ and the highest index i of Ci that has nonempty intersection with Σ̃ is minimum
i.e. max{i ∈ [0, n] | Ci ∩ Σ̃ ̸= ∅} is minimum).

Let us revisit Example 2.1 to explain the above formulated two problems.

xample 3.5. Consider the system model G in Fig. 1, with the secret state set Qs = {q7, q8, q10}, the security level sets Σi
i ∈ [0, n − 1]) in (9), and the cost level sets Ci (i ∈ [0, n]) in (10).

For Problem 3.3, let u = 2 and v = 0; namely it is required that at least 2 events be protected for every system
rajectory (from the initial state) that may reach a secret state in Qs, and the least security level is 0. Then our goal is to
ind a protection policy (if it exists) P : Q → Pwr(Σ̃), Σ̃ ⊆ Σp, such that Qs is 2 − 0−securely reachable w.r.t. Σ̃ , and
moreover the highest index i of Ci that has nonempty intersection with Σ̃ is minimum (i.e. least cost).

Next for Problem 3.4, we consider that Qs is partitioned into two disjoint subsets Qs1 = {q7, q8} and Qs2 = {q10}. This
means that q10, the administrative realm, is a more important secret than q7 and q8 (regular users’ secrets). Accordingly,
let v1 = 0 and v2 = 1, namely the least security level for Qs1 is 0 while the least security level for Qs2 is 1; the latter means
hat when protecting the secret state q10 ∈ Qs2, events σ0, σ1, σ5 ∈ Σ0 cannot be used due to their insufficient security
evel. As for the required number of protections, we again let u = 2. Then the objective here is to find a protection policy
if it exists) P : Q → Pwr(Σ̃), Σ̃ ⊆ Σp, such that Qs1 is 2−0−securely reachable w.r.t. Σ̃ , Qs2 is 2−1−securely reachable
.r.t. Σ̃ , and moreover the highest index i of Ci that has nonempty intersection with Σ̃ is minimum (i.e. least cost).

. Usability aware secret securing with minimum cost

In this section, we address Problem 3.3 (USCP). We start by characterizing the solvability of Problem 3.3, then present
n algorithm to compute a solution, and finally illustrate the results using the running example (Example 2.1).

.1. Solvability of USCP

It is evident that if there are too few protectable events or the requirement for protection numbers and security levels
s too high, then there might not exist a solution to Problem 3.3. The following theorem provides a necessary and sufficient
ondition under which there exists a solution of Problem 3.3.

heorem 4.1. Consider a system G in (1) with a set of secret states Qs, the cost level sets Ci (i ∈ [0, n]) in (4)–(6), the required
east number of protections u ≥ 1, and the required lowest security level v ≥ 0. Problem 3.3 is solvable (i.e. there exists a
7

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

p
t

o

t
t
i
‘

e
s

T

rotection policy P : Q → Pwr(Σ̃), Σ̃ ⊆ Σp, such that Qs is u − v−securely reachable w.r.t. Σ̃ and the highest index i of Ci
hat has nonempty intersection with Σ̃ is minimum) if and only if either

Qs is u − 0−securely reachable w.r.t. Σ̃ = Σ(C0); (14)

r there exists i ∈ [v, n] such that

Qs is u − v−securely reachable w.r.t. Σ̃ =

i⋃
l=v

Σ(Cl) \ Σv−1

&

Qs is not u − v−securely reachable w.r.t. Σ̃ =

i−1⋃
l=v

Σ(Cl) \ Σv−1.

(15)

Condition (14) means that in the special case where the required lowest security level v = 0, every system trajectory
reaching the secret states in Qs contains at least u protectable events in Σ(C0) ⊆ Σ0. This is the easiest case, and the
index 0 is minimum.

More generally, condition (15) means that there exists an index i ∈ [v, n] for which every system trajectory reaching
he secret states in Qs contains at least u protectable events in

⋃i
l=v Σ(Cl) \ Σv−1 ⊆ Σ≥v

p , but there exists at least one
rajectory reaching Qs that contains fewer than u protectable events in

⋃i−1
l=v Σ(Cl)\Σv−1 ⊆ Σ≥v

p . That these two conditions
n (15) simultaneously hold indicates that the index i of the cost level sets Ci is minimum. Note that in (15) the set minus
‘\Σv−1’’ is needed because Σ(Cv) ⊆ Σv−1 ∪Σv (as in (8)), and the protectable events in Σv−1 do not satisfy the required
security level v.

Proof (⇒). If condition (14) holds, i.e. Qs is u−0−securely reachable w.r.t. Σ(C0) ⊆ Σ0, then the index 0 is evidently the
smallest. In this case, there exists a protection policy P : Q → Pwr(Σ(C0)) as a solution for Problem 3.3 using protectable
vents only in Σ(C0) ⊆ Σ0 which satisfies the required security level 0. Therefore, if (14) holds, then Problem 3.3 is
olvable (for the special case v = 0).
If (15) holds, then Qs is u− v−securely reachable w.r.t.

⋃i
l=v Σ(Cl) \Σv−1, and moreover the index i of Ci is minimum.

he latter is because Qs is not u−v−securely reachable w.r.t.
⋃i−1

l=v Σ(Cl)\Σv−1 and
⋃i−1

l=v Σ(Cl)\Σv−1 ⊆
⋃i

l=v Σ(Cl)\Σv−1.
In this case, there exists a protection policy P : Q → Pwr(

⋃i
l=v Σ(Cl)\Σv−1) as a solution for Problem 3.3 using protectable

events in
⋃i

l=v Σ(Cl)\Σv−1 ⊆ Σ≥v
p which satisfies the required security level v. Therefore, if (15) holds, then Problem 3.3

is solvable.
(⇐) If Problem 3.3 is solvable with the minimum index of Ci being i = 0, then Qs is u − 0−securely reachable w.r.t.

Σ(C0). This is exactly condition (14).
If Problem 3.3 is solvable with the minimum index of Ci satisfying v ≤ i ≤ n, then Qs is u−v−securely reachable w.r.t.⋃i

l=v Σ(Cl)\Σv−1. Since the index i is minimum, it indicates that Qs is not u−v−securely reachable w.r.t.
⋃i−1

l=v Σ(Cl)\Σv−1.
Therefore (15) holds. □

4.2. Policy computation for USCP

When Problem 3.3 is solvable under the condition presented in Theorem 4.1, we design an algorithm to compute a
solution, namely a protection policy.

To compute such a protection policy, our approach is to convert Problem 3.3 (a security problem) to a corresponding
control problem and adapt methods from the supervisory control theory.

By this conversion, the sets of protectable events Σp and unprotectable events Σup are interpreted as the sets of
controllable events Σc and uncontrollable events Σuc , respectively. Accordingly, a system G in (1) is changed to

G = (Q , Σ, δ, q0,Qm) (16)

where Σ = Σc∪̇Σuc and Σc =
⋃̇n−1

i=0 Σi. Recall from (2) that Σi (i = 0, . . . , n − 1) denote the partition of protectable
events in Σp as the index i represents the security level (and the first source of cost); accordingly, here Σi denote the
partition of controllable events in Σc . Similar to (11), for a given v ≥ 0 write

Σ≥v
c :=

⋃̇n−1

i=v
Σi. (17)

In addition, protection policy P : Q → Pwr(Σp) is changed to control policy D : Q → Pwr(Σc), which is a
control decision (of a supervisor) specifying which controllable events to disable at any given state. More specifically,
let S = (X, Σ, ξ , x0, Xm) be a supervisor for system G = (Q , Σ, δ, q0,Qm) and assume without loss of generality that S is
a subautomaton of G. The control policy D : Q → Pwr(Σ̃), Σ̃ ⊆ Σc , is given by

D(q) :=

{
{σ ∈ Σ̃ | ¬ξ (q, σ)!& δ(q, σ)!}, if q ∈ X

(18)

∅, if q ∈ Q \ X

8

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

l
Q
r

P
C

o

a

s
(

Based on the above conversion, Definition 3.1 and Problem 3.3 are changed to the following definition and problem.

Definition 4.2 (u − v−controllable Reachability). Consider a system G in (16) with a set of secret states Qs, the (security)
evel sets Σi (i ∈ [0, n − 1]) in (2), and let u ≥ 1, v ≥ 0, and Σ̃ be a nonempty subset of Σ≥v

c in (17). We say that
s is reachable with at least u controllable events of (security) level at least v w.r.t. Σ̃ (or simply Qs is u − v−controllably
eachable) if the following condition holds:

(∀s ∈ Σ∗)(δ(q0, s)!& δ(q0, s) ∈ Qs) ⇒ s ∈ Σ∗Σ̃Σ∗
· · · Σ∗Σ̃Σ∗

Σ̃ appears u times

. (19)

roblem 4.3 (Usability Aware Reachability Control with Multiple Controllable Events and Minimum Cost Problem, UCCP).
onsider a system G in (16) with a set of secret states Qs, the cost level sets Ci (i ∈ [0, n]) in (4)–(6), and let u ≥ 1,

v ≥ 0. Find a control policy D : Q → Pwr(Σ̃), Σ̃ ⊆ Σc , such that Qs is u − v−controllably reachable w.r.t. Σ̃ and the
highest index i of Ci that has nonempty intersection with Σ̃ is minimum (i.e. max{i ∈ [0, n] | Ci ∩ Σ̃ ̸= ∅} is minimum).

The solvability condition of Problem 4.3, stated in the corollary below, follows directly from Theorem 4.1 and the above
presented conversion.

Corollary 4.4. Consider a system G in (16) with a set of secret states Qs, the cost level sets Ci (i ∈ [0, n]) in (4)–(6), the
required least number of protections u ≥ 1, and the required lowest (security) level v ≥ 0. Problem 4.3 is solvable (i.e. there
exists a control policy D : Q → Pwr(Σ̃), Σ̃ ⊆ Σc , such that Qs is u−v−controllably reachable w.r.t. Σ̃ and the highest index
i of Ci that has nonempty intersection with Σ̃ is minimum) if and only if either

Qs is u − 0−controllably reachable w.r.t. Σ̃ = Σ(C0); (20)

r there exists i ∈ [v, n] such that

Qs is u − v−controllably reachable w.r.t. Σ̃ =

i⋃
l=v

Σ(Cl) \ Σv−1

&

Qs is not u − v−controllably reachable w.r.t. Σ̃ =

i−1⋃
l=v

Σ(Cl) \ Σv−1.

(21)

When Problem 4.3 is solvable (equivalently Problem 3.3 is solvable), we present an algorithm to compute a control
policy as a solution for Problem 4.3. Such a control policy specifies at least u controllable events of (security) level at least
v to disable in every string from the initial state q0 to the secret state set Qs. This control policy will finally be converted
back to a protection policy as a solution for Problem 3.3 (our original security problem).

The algorithm that we design to solve Problem 4.3 is presented on the next page (Algorithm 1 UCCu). In the following
we explain the main ingredients and steps of this algorithm.

First, the inputs of Algorithm 1 are the system G in (16), a set of secret states Qs, the least number of protections u ≥ 1,
nd the least (security) level v ≥ 0. Then Algorithm 1 will output u supervisors S0, . . . , Su−1 for G (if they exist) as well

as the minimum cost index imin. Each supervisor is computed by the UCC function (lines 14–24), and provides a different
control policy such that every string reaching secret states has at least one controllable event of (security) level at v. So
in total, S0, . . . , Su−1 specify u controllable events to disable in every string reaching Qs.

To compute the first supervisor S0, at line 1 of Algorithm 1 we need to design the control specification GK . This is done
by removing from G all the secret states in Qs and the transition to and from the removed states. Hence

GK = (Q \ Qs, Σ, δK , q0,Q \ Qs) (22)

where δK = δ \ {(q, σ , q′) | q or q′
∈ Qs, σ ∈ Σ, δ(q, σ)!, δ(q, σ) = q′

}.4 We remark that for GK we let all of its states be
marked; this is because we do not want to introduce extra control actions owing to ensuring nonblocking behavior.

Example 4.5. Displayed in Fig. 2 is the specification automaton GK derived from the system G in Example 2.1 and the
ecret state set Qs = {q7, q8, q10}. To design GK , secret states in Qs = {q7, q8, q10} and transitions (q5, σ7, q7), (q5, σ8, q8),
q7, σ8, q8), (q8, σ9, q9) and (q9, σ10, q10) are removed from G in Fig. 1 and all the states of GK are marked.

4 Note that in real systems, secret states should still be reachable. Even though the computed supervisors specify which controllable events to
disable in the control context, we consider the protection of these specified events so that secret states are still reachable but protected. Our view
is that in real systems, it is not desirable to disable controllable events and make secret states unreachable, because it would prevent regular users
from ever accessing these secret states as well.
9

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

O

Algorithm 1: UCCu.
Input: System G, secret state set Qs, protection number u, security level v

utput: Supervisors S0, S1, . . . , Su−1, minimum cost index imin
1: G0 = (Q , Σ0, δ0, q0,Qm) = G,GK ,0 = GK as in (22)
2: for j = 0, 1, . . . , u − 1 do
3: (Sj, ij) = UCC(Gj, GK ,j, v)
4: if Sj is nonempty then
5: Derive Dj from Sj as in (18)
6: Form Gj+1 = (Q , Σ j+1, δj+1, q0,Qm) from Gj and Dj as in (25)
7: δ

j+1
K = δj+1

\ {(q, σ , q′) | q or q′
∈ Qs, σ ∈ Σ j+1, δj+1(q, σ) = q′

}

8: GK ,j+1 = (Q \ Qs, Σ j+1, δ
j+1
K , q0,Q \ Qs)

9: else
10: return Empty supervisors, index −1
11: end if
12: end for
13: return S0, S1, . . . , Su−1, imin = iu−1

14: function UCC(G, GK , v)
15: K = L(GK)
16: for i = v, v + 1, . . . , n do
17: Γ =

⋃i
l=v Σ(Cl) \ Σv−1

18: Compute a supervisor S s.t. L(S) = sup C(K) w.r.t. G and Γ

19: if S is nonempty then
20: return (S, i)
21: end if
22: end for
23: return (empty supervisor, index −1)
24: end function

Fig. 2. Specification automaton GK .

With GK constructed, line 2 of Algorithm 1 starts from j = 0 and line 3 calls the RCMC function (with arguments
G0 = G, GK ,0 = GK , v) to compute the first supervisor S0 and the minimum cost index i0. To this end, several standard
concepts of supervisory control theory (SCT) [30,32,33] are employed and briefly reviewed below.

Consider a system G = (Q , Σ = Σc ∪ Σuc, δ, q0,Qm) in (16), and let K = L(GK) ⊆ L(G) be a specification language
derived from the specification automaton G in (22). For a subset of the controllable events Γ (⊆ Σ), K is said to be
K c

10

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

c

s
a

L
h

S
s
s

T
h
i

(
d
a
c

m
(

W

M

O

I
l

w

T
(

t
a
−

t

b

ontrollable with respect to G and Γ if K (Σ \ Γ) ∩ L(G) ⊆ K where K is the prefix closure of K . We denote by the family
C(K) := {K ′

⊆ K | K (Σ \ Γ) ∩ L(G) ⊆ K } the set of all controllable sublanguages of K with respect to G and Γ , and by
up C(K) :=

⋃
{K ′

| K ′
∈ C(K)} the supremal controllable sublanguage of K with respect to G and Γ (which is known to

lways exist).

emma 4.6 (cf. [30]). Consider a plant G = (Q , Σ = Σc ∪ Σuc, δ, q0,Qm) in (16) and a specification language K ⊆ L(G). It
olds that

sup C(K) = ∅ (w.r.t. G and Σuc) ⇔ (∃s ∈ Σ∗

uc)s ∈ L(G) \ K . (23)

From Lemma 4.6 and the construction of GK in (22), letting K = L(GK) and i ∈ [v, n], we know that the first supervisor
0 = sup C(K) (with respect to G in (16) and

⋃i
l=v Σ(Cl)\Σv−1) is nonempty if and only if every string reaching the secret

tates in Qs from the initial state q0 has at least one controllable event belonging to
⋃i

l=v Σ(Cl) \ Σv−1. In other words,
up C(K) ̸= ∅ (with respect to G and

⋃i
l=v Σ(Cl) \ Σv−1) if and only if(

∀s ∈

(
Σ \

(
i⋃

l=v

Σ(Cl) \ Σv−1

))∗)
δ(q0, s) ̸∈ Qs. (24)

he computation of S0 is carried out in lines 15–22 of Algorithm 1. If a nonempty S0 is obtained (line 19; condition (24)
olds), then it is returned together with the current index i of the cost level sets (line 20). Since the index is incrementally
ncreased (line 16), we know that the index i in line 20 is minimum (for this is the first time that S0 is nonempty).

Once a nonempty supervisor Sj (j ≥ 0) is obtained (line 4), Algorithm 1 proceeds to compute the next supervisor Sj+1
until we acquire u nonempty supervisors). To ensure that each supervisor provides a different control policy (disabling
ifferent transitions) so as to meet the requirement of u protections, we need to change the status of those transitions
lready disabled by Sj from controllable to uncontrollable, so that the next supervisor Sj+1 is forced to disable other
ontrollable transitions.
This status change is done by event relabeling. Specifically, let Gj = (Q , Σ j

= Σuc,j∪̇Σc,j, δ
j, q0,Qm) be the jth system

odel and Dj be the control policy in (18) corresponding to supervisor Sj. Then the set of controllable transitions specified
or disabled) by Dj is

δDj := {(q, σ , q′) | q ∈ Q & σ ∈ Dj(q) & q′
= δj(q, σ)}.

e relabel the above transitions and obtain

δ′

Dj
:= {(q, σ ′, q′) | (q, σ , q′) ∈ δDj & σ ′ /∈ Σ j

}.

oreover, we designate these relabeled transition as uncontrollable, so the new uncontrollable event set is:

Σuc,j+1 = Σuc,j∪̇{σ ′
| (q, σ ′, q′) ∈ δ′

Dj
}.

n the other hand, the new controllable event set is:

Σc,j+1 = Σc,j \ {σ | (∀q ∈ Q)δj(q, σ)!& δj(q, σ) = q′
⇒ (q, σ , q′) ∈ δDj}.

n words, those controllable events whose corresponding transitions are all specified by Dj and therefore relabeled no
onger exist and are consequently removed from the controllable event set. Therefore we obtain the new system model

Gj+1 = (Q , Σ j+1, δj+1, q0,Qm) (25)

here

Σ j+1
= Σuc,j+1∪̇Σc,j+1 (26)

δj+1
= (δj \ δDj)∪̇δ′

Dj
. (27)

he above is carried out in lines 5–6 of Algorithm 1. Moreover, lines 7–8 update the specification model GK ,j+1 similar to
22).

With the updated system Gj+1 and specification GK ,j+1, Algorithm 1 again calls the UCC function (line 3) to compute
he next supervisor Sj+1 and the corresponding minimum cost index ij+1. This process continues until j = u − 1, unless
n empty supervisor is returned by the UCC function. In the latter case, Algorithm 1 returns empty supervisors and index
1.
If Algorithm 1 succeeds to compute u nonempty supervisors S0, . . . , Su−1, then these supervisors will be returned,

ogether with the minimum cost index imin = max(i0, . . . , iu−1) (line 13). It is evident from the above construction that
the inequality chain v ≤ i0 ≤ · · · ≤ iu−1 ≤ n holds; hence imin = iu−1.

Let Dj be the control policy of Sj (j = 0, . . . , u− 1). Then define the overall control policy D : Q → Pwr(Σ̃), Σ̃ ⊆ Σc ,
y taking the union of the controllable events specified by individual Dj at every state, namely

D(q) =

u−1⋃
Dj(q), q ∈ Q . (28)
j=0

11

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

S
a
s
a

l
p

P
i

P
c
n
C
e

Σ

d

U

T
l
p

P
c
i
c
G
u
D
e

4

Q

ince each control policy Dj (j ∈ [0, u − 1]) specifies controllable events such that every string reaching secret states has
t least one disabled event, D in (28) specifies at least u controllable events to disable in every string reaching secret
tates from the initial state. Moreover, it follows from line 16 of Algorithm 1 that the (security) level of all these u events
re at least v.
The time complexity of Algorithm 1 is O(u(n − v)|Q |

2), where u is from line 2, n − v from line 16, and |Q |
2 from

ine 18 (from the standard supervisory control theory [30]). The correctness of Algorithm 1 is asserted in the following
roposition.

roposition 4.7. Algorithm 1 (with inputs G, Qs, u and v) returns u nonempty supervisors and minimum cost index
min(∈ [v, n]) if and only if Problem 4.3 is solvable.

roof. By the aforementioned constructions in Algorithm 1, in particular line 16 (incrementally increasing the index of
ost level sets) and line 17 (

⋃i
l=v Σ(Cl)\Σv−1 monotonically becoming larger as index i increases), Algorithm 1 returns u

onempty supervisors and minimum cost index imin ∈ [v, n] if and only if either of the two conditions (20), (21) holds. By
orollary 4.4, the latter is a necessary and sufficient condition for the solvability of Problem 4.3. Therefore our conclusion
nsues. □

From the derived control policy D in (28), a solution for Problem 3.3, namely a protection policy P : Q → Pwr(Σ̃),
˜ ⊆ Σp, is obtained by inverse conversion of controllable events back to protectable events. In terms of P , we interpret
isabled events by D as protected events.
Finally, we state the main result in this section, which provides a solution to our original security protection problem

SCP (Problem 3.3).

heorem 4.8. Consider a system G in (1) with a set of secret states Qs, the cost level sets Ci (i ∈ [0, n]) in (4)–(6), the required
east number of protections u ≥ 1, and the required lowest security level v ≥ 0. If Problem 3.3 is solvable, then the protection
olicy P derived from D in (28) is a solution.

roof. Suppose that Problem 3.3 is solvable. Then Problem 4.3 is also solvable by conversion of protectable events to
ontrollable events. Then by Proposition 4.7, Algorithm 1 returns u nonempty supervisors and the minimum cost index
min ∈ [v, n]. Based on these u supervisors, control policies D0, . . . ,Du−1 may be derived as in (18). Hence, a combined
ontrol policy D in (28) is obtained. Due to the event relabeling in (25), each control policy uniquely specifies transitions in
to disable. Also it follows from the specifications GK ,0, . . . ,GK ,u−1 in Algorithm 1 that Qs is 1−v−controllably reachable
nder each of D0, . . . ,Du−1. Therefore, under control policy D, Qs is u−v−controllably reachable. Hence, the control policy
is a solution for Problem 4.3. Consequently, from the inverse conversion of controllable events back to protectable

vents, the protection policy P derived from D is a solution for Problem 3.3. □

.3. Running example

Let us again use Example 2.1 to demonstrate our developed solution via Algorithm 1 for Problem 3.3.
Consider the system G in Fig. 1, with the secret state set Qs = {q7, q8, q10}, the security level sets Σi (i ∈ [0, 3]) in (9),

and the cost level sets Ci (i ∈ [0, 4]) in (10). Let u = 2 and v = 0; namely it is required that at least 2 events be protected
for every system trajectory (from the initial state) that may reach a secret state in Qs, and the least security level is 0.
We demonstrate how to use Algorithm 1 to compute a protection policy P : Q → Pwr(Σ̃), Σ̃ ⊆ Σp, and the minimum
highest index i of Ci that has nonempty intersection with Σ̃ as a solution for Problem 3.3.

First, convert protectable events to controllable events such that

Σc = {σ0, σ1, σ5, σ6, σ7, σ8, σ9, σ10}.

Accordingly the uncontrollable event set Σuc = {σ2, σ3, σ4}. Then input Algorithm 1 with the converted system model G,
s, u = 2 and v = 0.
In the first iteration (j = 0), system G0 = G in Fig. 1 and specification GK ,0 = GK in Fig. 2. Then the RCMC function

is called to compute the first supervisor S0. It is verified that when i = 0 (line 16), the supervisor S is empty (line 18),
whereas when i = 1, the supervisor S is nonempty. Thus this nonempty supervisor is returned as S0 and the index 1 is
returned as i0 (line 20). The control policy D0 corresponding to S0 is:

D0(q1) = {σ6}, D0(q2) = {σ5}, D0(q5) = {σ7, σ8},

(∀q ∈ Q \ {q1, q2, q5})D0(q) = ∅.

Fig. 3 depicts the control policy D0 over the plant G in Fig. 1, indicating the disabled transitions by ‘‘ ’’.
We remark that since the lowest security level set is Σ0 = {σ0, σ1, σ5}, it would have been sufficient to disable σ0, σ1

at q0 to satisfy the required v = 0. However, disabling σ1 would simultaneously affect regular users’ accessing the (non-
secret) marker states q , q , and this is deemed too costly in this example setting (threshold number is T = 2 for the
3 4

12

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111
Fig. 3. Control policy D0 of S0 .

number of affected non-secret marker states). This observation makes it evident that taking into account the cost of
usability generally requires the administrator to adopt a different protection policy.

After obtaining D0, Algorithm 1 proceeds to relabel the disabled transitions by D0 as follows:

δD0 = {(q1, σ6, q6), (q2, σ5, q6), (q5, σ7, q7), (q5, σ8, q8)}
δ′

D0
= {(q1, σ ′

6, q6), (q2, σ
′

5, q6), (q5, σ
′

7, q7), (q5, σ
′

8, q8)}.

The relabeled events are designated to be uncontrollable events; thus the new uncontrollable event set is

Σuc,1 = Σuc∪̇{σ ′

5, σ
′

6, σ
′

7, σ
′

8}.

On the other hand, the new controllable event set is

Σc,1 = Σc \ {σ6, σ7}.

Note that events σ5, σ8 remain in Σc,1 since they have other instances (of transitions) that are not disabled by D0. From
the above, the new system becomes G1 = (Q , Σ1, δ1, q0,Qm) where

Σ1
= Σuc,1∪̇Σc,1, δ1 = (δ \ δD0)∪̇δ′

D0

and the new specification automaton becomes

GK ,1 = (Q \ Qs, Σ1, δ1K , q0,Q \ Qs)

where

δ1K = δ1 \ {(q, σ , q′) | q or q′
∈ Qs, σ ∈ Σ1, δ1(q, σ) = q′

}.

The new system G1 and specification GK ,1 are displayed in Fig. 4 and Fig. 5, respectively.
With G1 and GK ,1, Algorithm 1 in the second iteration (j = 1) again calls the RCMC function to compute the second

supervisor S1. Like in the first iteration, when i = 0 (line 16) the supervisor S is empty (line 18), whereas when i = 1 the
supervisor S is nonempty. Thus this nonempty supervisor is returned as S1 and the index 1 is returned as i1 (line 20). The
control policy D1 corresponding to S1 is:

D0(q0) = {σ0, σ1}, (∀q ∈ Q \ {q0})D0(q) = ∅.

By now Algorithm 1 has succeeded in computing two nonempty supervisors. Since u = 2, Algorithm 1 terminates and
returns S , S , and the minimum cost index i = i = 1. Now we combine the two corresponding control policies into
0 1 min 1

13

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

D

T

p
t

Fig. 4. Relabeled system G1 .

Fig. 5. Updated specification GK ,1 .

as follows:

D(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{σ0, σ1}, if q = q0
{σ6}, if q = q1
{σ5}, if q = q2
{σ7, σ8}, if q = q5
∅, if q ∈ Q \ {q0, q1, q2, q5}

his D is a solution of Problem 4.3.
Finally, by inverse conversion of controllable events back to protectable events we obtain a corresponding protection

olicy P as a solution of the original Problem 3.3. Fig. 6 illustrates this protection policy P , where ‘‘ ’’ means the transitions
hat need to be ‘‘protected’’.
14

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111
Fig. 6. Protection policy P for G.

Observe that based on this protection policy P , every string from q0 that can reach the secret states in Qs has at least
two protected events in Σ(C0) ∪ Σ(C1) ⊆ Σ0 ∪ Σ1. Thus the least number of protections u = 2 and the lowest security
level v = 0 are satisfied; moreover, the minimum cost index is imin = 1.

For this example, the protections of each protected event specified by the policy P may be implemented as follows:

• σ0, σ1: setting up a password on each account of the regular user and the administrator.
• σ5: setting up a password for launching the application.
• σ6: setting up one-time password authentification.
• σ7, σ8: setting up fingerprint authentication.

5. Usability aware heterogeneous secret securing with minimum cost

In this section, we move on to address Problem 3.4 (UHSCP), in which the set of secret states Qs is partitioned into
k(≥ 1) groups Qs1, . . . ,Qsk with heterogeneous importance; as the index j ∈ [1, k] increases, the importance of Qsj rises.
Similar to the preceding section, we begin with a characterization of the solvability of Problem 3.4, then present a solution
algorithm, and finally use our running example to illustrate the results.

5.1. Solvability of UHSCP

The following theorem provides a necessary and sufficient condition under which there exists a solution to Problem 3.4.

Theorem 5.1. Consider a system G in (1), a set of secret states Qs =
⋃̇k

j=1Qsj, the cost level sets Ci (i ∈ [0, n]) in (4)–(6),
the required least number of protections u ≥ 1, and the required lowest security levels vj ≥ 0 for Qsj such that v1 ≤ · · · ≤ vk.
Problem 3.4 is solvable (i.e. there exists a protection policy P : Q → Pwr(Σ̃), Σ̃ ⊆ Σp, such that for every j ∈ [1, k] the
jth important secret state subset Qsj is u − vj−securely reachable w.r.t. Σ̃ and the highest index i of Ci that has nonempty
intersection with Σ̃ is minimum) if and only if there exists i ∈ [v1, n] such that

(∀j ∈ [1, k])Qsj is u − vj−securely reachable w.r.t. Σ̃j =

i⋃
l=vj

Σ(Cl) \ Σvj−1

&

(∃j ∈ [1, k])Qsj is not u − vj−securely reachable w.r.t. Σ̃j =

i−1⋃
l=vj

Σ(Cl) \ Σvj−1.

(29)
15

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

p

t
T

P⋃

O

i

Condition (29) means that there exists an index i ∈ [v1, n] such that for every j ∈ [1, k], the secret states in Qsj can be
rotected with at least u protections using protectable events in

⋃i
l=vj

Σ(Cl) \ Σvj−1 ⊆ Σ
≥vj
p , but there is j ∈ [1, k] such

hat if only protectable events in
⋃i−1

l=vj
Σ(Cl) \ Σvj−1 ⊆ Σ

≥vj
p are used, secrets cannot be protected with u protections.

hat these two conditions in (29) simultaneously hold indicates that the cost level index i is minimum.

roof (⇒). If condition (29) holds, then for every j ∈ [1, k], the secret subset Qsj is u − vj−securely reachable w.r.t.
i
l=vj

Σ(Cl) \ Σvj−1, and moreover the index i of Ci is minimum. The latter is because at least one secret subset Qsj′

(j′ ∈ [1, k]) is not u − vj′−securely reachable w.r.t.
⋃i−1

l=vj′
Σ(Cl) \ Σvj′−1 and

⋃i−1
l=vj′

Σ(Cl) \ Σvj′−1 ⊆
⋃i

l=vj′
Σ(Cl) \ Σvj′−1.

In this case, for every Qsj there exists a protection policy Pj : Q → Pwr(
⋃i

l=vj
Σ(Cl) \ Σvj−1) such that protectable events

in
⋃i

l=vj
Σ(Cl) \ Σvj−1 may be used to satisfy the required least number of protections u and the lowest security level

vj. These protection policies Pj (j ∈ [1, k]) together comprise a solution for Problem 3.3. Therefore, if (29) holds, then
Problem 3.4 is solvable.

(⇐) If Problem 3.4 is solvable with the minimum index of Ci being i ∈ [v1, n], then for every j ∈ [1, k], Qsj is
u − vj−securely reachable w.r.t.

⋃i
l=vj

Σ(Cl) \ Σvj−1. Since the index i is minimum, it indicates that there exists at least

one j′ ∈ [1, k] such that Qsj′ is not u − vj′−securely reachable w.r.t.
⋃i−1

l=vj′
Σ(Cl) \ Σvj′−1. Therefore (29) holds. □

5.2. Policy computation for UHSCP

When Problem 3.4 is solvable under the condition presented in Theorem 5.1, we design an algorithm to compute a
solution protection policy.

To compute such a protection policy, like in Section 4.2 we again convert the security problem to a corresponding
control problem (call it UHCCP) by changing protectable events to controllable events. Then we employ Algorithm 1 to
compute a control policy for each secret subset Qsj (j ∈ [1, k]) to satisfy the required least number of protections u and
the lowest security level vj. This is done by inputting Algorithm 1 with G in (16), Qsj, u and vj.

If a solution exists, Algorithm 1 outputs u supervisors S0,j, . . . , Su−1,j and the minimum cost index imin,j. For these
supervisors, one obtains the corresponding control policies D0,j, . . . ,Du−1,j, which may be combined into a single control
policy

Dj(q) =

u−1⋃
l=1

Dl,j(q), q ∈ Q . (30)

If the above holds for all j ∈ [1, k], further combining all resulting Dj (j ∈ [1, k]) yields an overall control policy D as
follows:

D(q) =

k⋃
j=1

Dj(q), q ∈ Q . (31)

One the other hand, the overall minimum cost index imin satisfies:

imin = max(imin,1, . . . , imin,k).

Algorithm 2: UHCCu.

Input: System G in (16), secret state set Qs =
⋃̇k

j=1Qsj, protection number u, security levels 0 ≤ v1 ≤ · · · ≤ vk ≤ n.
utput: Control policy D, minimum cost index imin
1: for j = 1, . . . , k do
2: S0,j, . . . , Su−1,j, imin,j = UCCu(G, Qsj, u, vj)
3: if all S0,j, . . . , Su−1,j are nonempty (or equivalently imin,j ̸= −1) then
4: Derive Dj from S0,j, . . . , Su−1,j as in (30)
5: end if
6: end for
7: if all imin,1, . . . , imin,k are not equal to −1 then
8: Derive D from D1, . . . ,Dk as in (31)
9: return D and imin = max(imin,1, . . . , imin,k)

10: end if
11: return Empty control policy D and index −1

The above procedure is summarized in Algorithm 2 UHCCu. The time complexity of Algorithm 2 is k (from line 1 and k
s the number of heterogeneous secret subsets) times that of Algorithm 1, namely O(ku(n− v)|Q |

2). In fact, the k calls to
1

16

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

A
p

P
e

s

T
r

s
c
C
e

m
p

5

t
l
s

d
h

u

i

c

I
u
t

t
i
s
(
v

lgorithm 1 in line 2 can be done independently; hence the k executions of lines 2–5 may be implemented on multi-core
rocessors in a distributed (thus more efficient) manner.
If Algorithm 2 successfully outputs a (nonempty) control policy D, then we convert it to a protection policy P : Q →

wr(Σ̃), Σ̃ ⊆ Σp, by changing all controllable events back to protectable events. In terms of P , we interpret disabled
vents by D as protected events.
Our main result in this section below asserts that the converted protection policy P is a solution for our original

ecurity problem UHSCP (Problem 3.4).

heorem 5.2. Consider a system G in (1), a set of secret states Qs =
⋃̇k

j=1Qsj, the cost level sets Ci (i ∈ [0, n]) in (4)–(6), the
equired least number of protections u ≥ 1, and the required lowest security levels vj ≥ 0 for Qsj such that v1 ≤ · · · ≤ vk. If
Problem 3.4 is solvable, then the protection policy P derived from D in (31) (computed by Algorithm 2) is a solution.

Proof. Suppose that Problem 3.4 is solvable. Then it follows from Theorem 5.1 that (29) holds, i.e. there is i ∈ [v1, n]
such that the two conditions in (29) are satisfied.

Convert all protectable events to controllable events. The first condition in (29) ensures that Algorithm 2 passes
the test in line 3 for all j ∈ [1, k]. Hence, k control policies Dj (j ∈ [1, k]) are obtained, each Dj ensuring that the
ecret subset Qsj is protected by u protections, and the lowest security level of these protections is vj. Again by the first
ondition in (29), Algorithm 2 passes the test in line 7 and a combined control policy D is obtained from Dj (j ∈ [1, k]).
onverting all controllable events back to protectable events, we derive the corresponding protection policy P which
nsures u − vj−secure reachability of Qsj for all j ∈ [1, k].
Finally, since each index imin,j (j ∈ [1, k]) is minimum for the respective call to UCCu(G,Qsj, u, vj) and imin =

axj∈[1,k] imin,j, it follows from the second condition in (29) that imin is the minimum cost index for the derived protection
olicy P as a solution for Problem 3.4. □

.3. Running example

For illustration let us revisit Example 2.1. Consider the system G in Fig. 1, with the secret state set Qs partitioned into
wo subsets: Qs1 = {q7, q8} (regular users’ secrets) and Qs2 = {q10} (administrator’s secret). Accordingly, we require the
owest security levels to be v1 = 0 and v2 = 1, respectively. For the required number of protections, we let u = 2 (the
ame as Section 4.3).
In addition, the security level sets are Σi (i ∈ [0, 3]) as in (9), and the cost level sets are Ci (i ∈ [0, 4]) as in (10). We

emonstrate how to use Algorithm 2 to compute a protection policy P : Q → Pwr(Σ̃), Σ̃ ⊆ Σp, and the minimum
ighest index i of Ci that has nonempty intersection with Σ̃ as a solution for Problem 3.4.
First, convert protectable events to controllable events and input Algorithm 2 with the converted G, Qs = Qs1∪̇Qs2,

= 2, v1 = 0 and v2 = 1.
For j = 1, call UCCu(G,Qs1, u, v1) to compute u (nonempty) supervisors S0,1, . . . , Su−1,1 and the minimum cost index

min,1 = 1. From these supervisors, we obtain the corresponding control policy D1 as in (30):

D1(q) =

⎧⎨⎩
{σ5}, if q = q1
{σ7, σ8}, if q = q5
∅, if q ∈ Q \ {q1, q5}

Similarly for j = 2, call UCCu(G,Qs2, u, v2) to compute u (nonempty) supervisors S0,2, . . . , Su−1,2 and the minimum
ost index imin,2 = 3. From these supervisors, we obtain the corresponding control policy D2 as in (30):

D2(q) =

⎧⎪⎪⎨⎪⎪⎩
{σ9}, if q = q6
{σ9}, if q = q8
{σ10}, if q = q9
∅, if q ∈ Q \ {q6, q8, q9}

t is interesting to observe that due to the required lowest security level v2 = 1, events in Σ0 = {σ0, σ1, σ5} cannot be
sed (even though the event σ1 at state q0 belongs to Σ(C1)). Consequently in this example, the events in the highest
wo security levels Σ2, Σ3 have to be used in order to meet this requirement.

Finally combining the above D1 and D2 yields an overall control policy D as in (31), which is shown in Fig. 7. Observe
hat every string from the initial state q0 that can reach the secret states in Qs1 = {q7, q8} has at least two disabled events
n Σ(C0) ∪ Σ(C1) ⊆ Σ0 ∪ Σ1. Thus the least number of protections u = 2 and the lowest security level v1 = 0 are
atisfied. Moreover, every string from q0 that can reach the secret state in Qs2 = {q10} has at least two disabled events in
Σ(C1) ∪ Σ(C2) ∪ Σ(C3)) \ Σ0 ⊆ Σ1 ∪ Σ2 ∪ Σ3. Thus the least number of protections u = 2 and the lowest security level

1 = 1 are also satisfied.

17

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111
Fig. 7. Overall control policy D for G (with protectable events converted to controllable events).

Now changing all disabled transitions in Fig. 7 denoted by ‘‘ ’’ to ‘‘ ’’, we obtain a protection policy P for the system
G as follows:

P(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{σ5}, if q = q1
{σ7, σ8}, if q = q5
{σ9}, if q = q6
{σ9}, if q = q8
{σ10}, if q = q9
∅, if q ∈ Q \ {q1, q5, q6, q8, q9}

.

Finally, the minimum cost index is imin = max(imin,1, imin,2) = 3.
For this example, the protections of each protected event specified by the policy P may be implemented as follows:

• σ5, σ7, σ8: already described at the end of Section 4.3.
• σ9: setting up the first of two-factor authentification with a security question.
• σ10: setting up the second of two-factor authentification with a physical security key.

6. Conclusions

We have studied a cybersecurity problem of protecting system’s secrets with multiple protections and a required
security level, while minimizing the associated cost due to implementation/maintenance of these protections as well as
the affected system usability. Two usability-aware minimum cost secret protection problems have been formulated; the
first one considers secrets of equal-importance, whereas the second considers heterogeneous secrets. In both cases, a
necessary and sufficient condition that characterizes problem solvability has been derived and when the condition holds,
a solution algorithm has been developed. Finally, we have demonstrated the effectiveness of our solutions with a running
example.

In future work, we aim to extend the usability-aware secret protection problem to the setting of decentralized
systems (which are typical in CPS), and develop efficient distributed protection policies (by leveraging existing de-
centralized/hierarchical approaches in the supervisory control theory). Other directions of extension from a broader
perspective include generalizing the system model from deterministic purely-logical finite-state automaton with full
observation to nondeterministic/probabilistic, timed, nonterminating, or partially-observed settings, and formulate/solve
the usability-aware secret protection problem in those settings with different features.

CRediT authorship contribution statement

Shoma Matsui: Method developments, Proofs, Examples, Initial writing. Kai Cai: Idea developments, Technical
checking, Writing quality improvements.
18

S. Matsui and K. Cai Nonlinear Analysis: Hybrid Systems 43 (2021) 101111

D

a

R

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

eferences

[1] M.P. Barrett, Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1, National Institute of Standards and Technology, 2018,
http://dx.doi.org/10.6028/NIST.CSWP.04162018.

[2] C. Brooks, C. Grow, P. Craig, D. Short, Cybersecurity Essentials, John Wiley & Sons, 2018.
[3] K. Hoffman, D. Zage, C. Nita-Rotaru, A survey of attack and defense techniques for reputation systems, ACM Comput. Surv. 42 (1) (2009) 1–31.
[4] A. Teixeira, D. Perez, H. Sandberg, K.H. Johansson, Attack models and scenarios for networked control systems, in: Proc. 1st International

Conference on High Confidence Networked Systems, 2012, pp. 55–64.
[5] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, M. Rajarajan, A survey of intrusion detection techniques in Cloud, J. Netw. Comput. Appl. 36

(1) (2013) 42–57.
[6] F. Pasqualetti, F. Dorfler, F. Bullo, Control-theoretic methods for cyberphysical security: geometric principles for optimal cross-layer resilient

control systems, IEEE Control Syst. Mag. 35 (1) (2015) 110–127.
[7] F. Lin, Opacity of discrete event systems and its applications, Automatica 47 (3) (2011) 496–503.
[8] A. Saboori, C.N. Hadjicostis, Verification of K-step opacity and analysis of its complexity, IEEE Trans. Autom. Sci. Eng. 8 (3) (2011) 549–559.
[9] S. Lafortune, F. Lin, C. Hadjicostis, On the history of diagnosability and opacity in discrete event systems, Annu. Rev. Control 45 (2018) 257–266,

http://dx.doi.org/10.1016/j.arcontrol.2018.04.002.
[10] Y. Tong, Z.W. Li, C. Seatzu, A. Giua, Verification of state-based opacity using Petri nets, IEEE Trans. Automat. Control 62 (6) (2017) 2823–2837.
[11] X. Yin, S. Li, Opacity of networked supervisory control systems over insecure multiple channel networks, in: Proc. 58th IEEE Conference on

Decision and Control, 2019, pp. 7641–7646.
[12] Y. Xie, X. Yin, S. Li, Opacity enforcing supervisory control using non-deterministic supervisors, in: Proc. IFAC World Congress, 2020.
[13] H. Lan, Y. Tong, C. Seatzu, Verification of infinite-step opacity using labeled petri nets, in: Proc. IFAC World Congress, 2020.
[14] T. Moor, A discussion of fault-tolerant supervisory control in terms of formal languages, Annu. Rev. Control 41 (2016) 159–169.
[15] R. Fritz, P. Zhang, Overview of fault-tolerant control methods for discrete event systems, IFAC-PapersOnLine 51 (24) (2018) 88–95.
[16] L. Lin, Y. Zhu, R. Su, Towards bounded synthesis of resilient supervisors, in: Proc. 58th IEEE Conference on Decision and Control, 2019, pp.

7659–7664.
[17] N. Paape, J. van de Mortel-Fronczak, L. Swartjes, M. Reniers, Efficient failure-recovering supervisors, in: Proc. IFAC World Congress, 2020.
[18] J. Yao, X. Yin, S. Li, On attack mitigation in supervisory control systems: a tolerance control approach, in: Proc. 59th IEEE Conference on Decision

and Control, 2020, pp. 4504–4510.
[19] L.K. Carvalho, Y.-C. Wu, R. Kwong, S. Lafortune, Detection and mitigation of classes of attacks in supervisory control systems, Automatica 97

(2018) 121–133.
[20] R. Fritz, P. Zhang, Modeling and detection of cyber attacks on discrete event systems, in: Proceedings of the 14th IFAC Workshop on Discrete

Event Systems, Sorrento, Italy, 2018, pp. 285–290.
[21] M. Agarwal, Rogue twin attack detection: A discrete event system paradigm approach, in: Proceedings of the 2019 IEEE International Conference

on Systems, Man and Cybernetics (SMC), 2019, pp. 1813–1818.
[22] C. Gao, C. Seatzu, Z. Li, A. Giua, Multiple attacks detection on discrete event systems, in: Proceedings of the 2019 IEEE International Conference

on Systems, Man and Cybernetics (SMC), 2019, pp. 2352–2357.
[23] R. Meira-Goes, C. Keroglou, S. Lafortune, Towards probabilistic intrusion deetection in supervisory control of discrete event systems, in: Proc.

IFAC World Congress, 2020.
[24] S. Matsui, K. Cai, Secret securing with minimum cost, in: Proceedings of the 61st Japan Joint Automatic Control Conference, 2018, pp. 1017–1024.
[25] S. Matsui, K. Cai, Secret securing with multiple protections and minimum costs, in: Proc. the 58th IEEE Conference on Decision and Control,

2019, pp. 7635–7640.
[26] Z. Ma, K. Cai, Optimal secret protections in discrete-event systems, IEEE Trans. Automat. Control (2021) http://dx.doi.org/10.1109/TAC.2021.

3091438.
[27] S. Matsui, K. Cai, Application of supervisory control to secret protection in discrete-event systems, J. Soc. Instrument Control Eng. 60 (1) (2021)

14–20.
[28] B. Wu, H. Lin, Privacy verification and enforcement via belief abstraction, IEEE Control Syst. Lett. 2 (4) (2018) 815–820.
[29] Y. Ji, X. Yin, S. Lafortune, Enforcing opacity by insertion functions under multiple energy constraints, Automatica 108 (2019) 108476.
[30] W.M. Wonham, K. Cai, Supervisory Control of Discrete-Event Systems, Springer, 2019.
[31] C.G. Cassandras, S. Lafortune, Introduction To Discrete Event Systems, Springer, 2008.
[32] K. Cai, W.M. Wonham, Supervisory control of discrete-event systems, in: Encyclopedia of Systems and Control, second ed., Springer, 2020,

http://dx.doi.org/10.1007/978-1-4471-5102-9_54-2.
[33] W.M. Wonham, K. Cai, K. Rudie, Supervisory control of discrete-event systems: a brief history, Annu. Rev. Control 45 (2018) 250–256.
19

http://dx.doi.org/10.6028/NIST.CSWP.04162018
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb2
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb3
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb5
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb5
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb5
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb6
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb6
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb6
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb7
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb8
http://dx.doi.org/10.1016/j.arcontrol.2018.04.002
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb10
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb14
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb15
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb19
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb19
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb19
http://dx.doi.org/10.1109/TAC.2021.3091438
http://dx.doi.org/10.1109/TAC.2021.3091438
http://dx.doi.org/10.1109/TAC.2021.3091438
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb27
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb27
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb27
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb28
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb29
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb30
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb31
http://dx.doi.org/10.1007/978-1-4471-5102-9_54-2
http://refhub.elsevier.com/S1751-570X(21)00101-1/sb33

	Usability aware secret protection with minimum cost
	Introduction
	System model
	Problem formulation
	Usability aware secret securing with minimum cost
	Solvability of USCP
	Policy computation for USCP
	Running example

	Usability aware heterogeneous secret securing with minimum cost
	Solvability of UHSCP
	Policy computation for UHSCP
	Running example

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

