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Abstract— Supervisor localization can be applied to distribute
a monolithic supervisor into local supervisors. Performing
supervisor localization can be computationally costly. In this
work, we consider systems that evolve over time. We study
how to reuse the results from a previous supervisor localization,
to more efficiently compute local supervisors when the system
is adapted. We call this approach transformational supervisor
localization, and present algorithms for the procedure. The
efficiency of the procedure is experimentally evaluated.

I. INTRODUCTION

Supervisory control theory, as introduced by Ramadge and
Wonham [1], is a model-based approach to control discrete
event (dynamic) systems. Typically, cyber-physical systems
are modeled. By applying supervisor synthesis on a model
of an uncontrolled system (plant) and system requirements, a
correct-by-construction supervisor is obtained. This supervi-
sor enables/disables events such that the requirements are
always adhered to, and some more behavioral properties
apply to the controlled system such as: nonblockingness,
controllability, and maximal permissiveness [2]. The most
straightforward approach is monolithic supervisor synthesis,
which computes a single global supervisor that controls all
components and enforces all requirements.

Large, global controllers may be undesirable in practice.
As such, many modern control systems are distributed over
a number of agents [3]. These agents may act locally based
on their own observations and control strategies. Through
supervisor localization (SL) [4], local supervisors for the
individual agents are computed from the monolithic supervi-
sor, that together achieve the same controlled behavior as
the monolithic supervisor. SL is an extension to supervi-
sor reduction, which converts a supervisor automaton to a
smaller automaton (with less states) that is control equivalent
to the original automaton [5]. We present preliminaries on
supervisor localization/reduction in Section II.

In this work, we slightly modify the SL algorithm from
[5], [4] to be able to initialize it in a way such that it
has to do less calculations/loops, which benefits the method
that we are going to introduce. Furthermore, because it is
desirable to obtain small (in terms of number of states) local
supervisors, we show that the local supervisors obtained by
SL are maximally reduced. These novel extensions to SL are
presented in Section III.

In recent work, transformational approaches for supervi-
sory control algorithms, such as transformational supervisor
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synthesis [6] and transformational nonblocking verification
[7], are investigated. Such transformational approaches deal
with cyber-physical systems that evolve over time. Results
of previous computations, such as synthesis or verification,
may not be valid anymore once the system is adapted.
In this case, tranformational methods can be applied that
reuse the output of previous calculations to more efficiently
compute the result of some algorithm, rather than computing
it from scratch. The general idea is that the previous result
is transformed into the new result, using knowledge on how
the system is adapted.

In this paper, we investigate transformational supervisor
localization (TSL). We assume a base model, on which
(T)SL has already been performed. The base model is
adapted such that a variant model is obtained. The goal is
to use the localization output of the base model, to more
efficiently compute local supervisors for the variant model.
The formal problem definition is given in Section IV. We
present algorithms for TSL and prove their correctness in
Section V. The computational benefit of TSL is evaluated
by a use case in Section VI.

II. PRELIMINARIES

In the following we discuss the preliminaries on SL. We
first provide automata definitions for plant and (monolithic)
supervisor. The plant is assumed to be a composition of
agents. The goal is to generate local supervisors that each
supervise an agent. This is done by grouping states of the
monolithic supervisor into cells, that are consistent in the
enablement and disablement of events controlled by the
respective agent. These cells are the states of the local su-
pervisor. Together, the behavior of the system under control
by the local supervisors is the same as that of the monolithic
supervisor. For details we refer to [4].

The plant is defined by a finite state automaton G =
(Q,Σ, δ, q0, Qm), where Q is the finite state set, Σ is the
finite event set, q0 is the initial state, and Qm is the subset
of marked states. δ : Q × Σ → Q is the (partial) transition
function. We denote δ(q, σ)! if δ(q, σ) is defined. We extend
this notation to δ : Q × Σ∗ → Q, and write δ(q, s) for
s ∈ Σ∗ to indicate sequences of transitions. We consider the
case that G is formed by a composition of n agents, that
each have local events:

⋃̇
k∈{1,...,n}Σk = Σ, from which

a subset are locally controllable Σc,k ⊆ Σk. We assume
a monolithic supervisor is provided for plant G, defined
by finite state automaton S = (X,Σ, ξ, x0, Xm). For the
purpose of the algorithms in this work, we assume the states
are numbered/indexed, i.e., X = {x0, x1, ...}.

We use the following functions [4]:
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• E : X → 2Σ, where E(x) = {σ ∈ Σ|ξ(x, σ)!}
• Dk : X → 2Σc,k , and Dk(x) = {σ ∈ Σc,k|¬ξ(x, σ)! ∧

(∃s ∈ Σ∗) : (ξ(x0, s) = x ∧ δ(q0, sσ)!)}
• M : X → {0, 1}, where M(x) = 1 iff x ∈ Xm

• T : X → {0, 1}, where T (x) = 1 iff (∃s ∈ Σ∗) :
(ξ(x0, s) = x ∧ δ(q0, s) ∈ Qm)

E indicates events enabled by the supervisor in state x. Dk

indicates the events from Σc,k disabled by the supervisor
in state x. M determines if a state is marked in S, and T
determines if some corresponding state is marked in G.

We define control consistency relation Rk ⊆ X ×X (for
agent k): for every x, x′ ∈ X , (x, x′) ∈ Rk iff:

E(x) ∩Dk(x
′) = ∅ = E(x′) ∩Dk(x) (1)

T (x) = T (x′) =⇒ M(x) = M(x′) (2)

Cover Ck = {Xi ⊆ X|i ∈ Ik} with suitable index set Ik
is called a control cover with respect to some Σk iff:

(i) (∀i ∈ Ik,∀x, x′ ∈ Xi)(x, x
′) ∈ Rk

(ii) (∀i ∈ Ik,∀σ ∈ Σ)
[(
(∃x ∈ Xi)ξ(x, σ)!

)
=⇒(

(∃j ∈ Ik)(∀x′ ∈ Xi)ξ(x
′, σ)! =⇒ ξ(x′, σ) ∈ Xj

)]
If a control cover C is a partition on X , it is called a

control congruence.
In this work we frequently address a singleton cover C =

{{x}|x ∈ X}, which trivially always is a control congruence.
We call a set of states in a cover a cell. In our notation we

use [x]C to refer to the set of states contained in the same
cell as x in cover C, or simply [x] if there is no ambiguity.

Given a control congruence Ck, a local supervisor LOCk

is computed as follows (simplified from [5]): LOCk =
(Ck,Σ, ηk, y0,k, Ym,k), where: ηk : Ck × Σ → Ck, with
ηk(π1, σ) = π2 iff (∃x ∈ π1) : ξ(x, σ) ∈ π2; y0,k =
[x0]; and Ym,k = {[x]|x ∈ Xm}. A local supervisor is
deterministic as a result of condition (ii) for the control cover.

The set of local supervisors {LOCk|1≤k≤n} constructed
in this way is control equivalent to S with respect to G [4]:

L(G) ∩
⋂

1≤k≤nL(LOCk) = L(S) ∩ L(G) (3)

Lm(G) ∩
⋂

1≤k≤nLm(LOCk) = Lm(S) ∩ Lm(G) (4)

L(A) and Lm(A) respectively denote the language and the
marked language of automaton A [2].

III. SUPERVISOR LOCALIZATION

In the process of SL, for each agent, a control congruence
is computed and subsequently the local supervisor is gener-
ated. We can use the definitions and functions from Section
II to perform the localization algorithm, shown in Algorithm
1, which makes calls to Algorithm 2 [4]1. Note that, e.g.,
the X on line 1 implicitly originates from automaton S. A
‘continue’ ends current execution and the function goes to
the next iteration of the nearest enclosing for-loop. A ‘return’
ends current call to the algorithm and the specified values
are returned to the parent routine.

1Relative to [5], [4] some minor changes have been made to lines 1,2,
and 7 of Algorithm 2 for correctness.

Algorithm 1 localize

Input: G, S, Σc,k, initial Ck

Output: Control congruence Ck

1: for i = 0 to |X| − 2 do
2: if i > min({m|xm ∈ [xi]}) then continue; end
3: for j = i+ 1 to |X| − 1 do
4: if j > min({m|xm ∈ [xj ]}) then continue; end
5: W = ∅
6: (flag ,W ) = check merge(xi, xj ,W, i, ξ, Ck)
7: if flag then
8: Ck =

{
[x] ∪

⋃
{[x′]|{(x, x′), (x′, x)} ∩W ̸= ∅}∣∣∣[x], [x′] ∈ Ck

}
9: end

10: end
11: end
12: return Ck

Algorithm 2 check merge

Input: xi, xj , waiting list W , i, ξ, Ck

Output: mergeability Boolean flag , W
1: for all xp ∈ [xi] ∪

⋃
{[x]|{(x, x′

i), (x
′
i, x)} ∩W ̸= ∅,

x′
i ∈ [xi]} do

2: for all xq ∈ [xj ] ∪
⋃
{[x]|{(x, x′

j), (x
′
j , x)} ∩W ̸= ∅,

x′
j ∈ [xj ]} do

3: if {(xp, xq), (xq, xp)} ∩W ̸= ∅ then continue; end
4: if (xp, xq) ̸∈ Rk then return (false,W ); end
5: W = W ∪ {(xp, xq)}
6: for all σ ∈ E(xp) ∩ E(xq)
7: if [ξ(xp, σ)] = [ξ(xq, σ)] or

{(ξ(xp, σ), ξ(xq, σ)), (ξ(xq, σ), ξ(xp, σ))} ∩W ̸= ∅
then continue; end

8: if min({m|xm ∈ [ξ(xp, σ)]}) < i or
min({m|xm ∈ [ξ(xq, σ)]}) < i

then return (false,W ); end
9: (flag ,W ) = check merge(ξ(xp, σ), ξ(xq, σ),W, i,

ξ, Ck)
10: if not flag then return (false,W ); end
11: end
12: end
13: end
14: return (true,W )

Example 1: We consider the supervisor automaton shown
in Fig. 1(a). The states are represented by circles. The
dangling incoming arrow indicates x0 is the initial state.
Transitions are shown by arrows between states with the
respective event label. To simplify the examples, no states
are marked and all events are controllable.

We consider the case that there is an agent (numbered 1)
whose set of local controllable events includes all events,
i.e., Σc,1=Σ1=Σ={a, b, c, d, e}. Let us consider the case
that the supervisor disables event c in state x0, and disables
event a in state x2. There are no disablements in the
other states, i.e., the supervisor permits the same events
as the plant in those states. So, D1(x0)={c}, D1(x2)={a},
D1(x1)=D1(x3)=D1(x4)=∅.

To compute the local supervisor, we perform the lo-
calization algorithm initialized with a singleton cover
{{x0}, ..., {x4}}. First, mergeability of x0 and x1 is checked.
These states are not mergeable, since event c is disabled in
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Fig. 1: Automata of Example 1

x0 but enabled in x1. Also x0 and x2 are not mergeable.
x0 is mergeable with x3 and they are subsequently merged.
Next, {x0, x3} is merged with x4 to form cell {x0, x3, x4}.
Finally x1 and x2 are merged, and no more merges are
possible so the algorithm terminates. Using the resulting
control congruence, a local supervisor is constructed, which
is displayed in Fig. 1(b). ♦

In [4] the localization algorithm is initiated with a sin-
gleton cover. However, in this work we will also initialize
the algorithm with non-singleton covers, to benefit the effi-
ciency of the transformational method that we are going to
introduce. We present Lemma 1 on this initialization.

Lemma 1: If Algorithm 1 is initiated with a control con-
gruence Ck,init, the output cover Ck is a control congruence.

Proof: Correctness of Algorithm 1 initiated by a
singleton cover is proven in [5]. The singleton cover is a
special instance of a control congruence. The same proof
of [5] applies here, when we generalize the algorithm to be
initialized with any control congruence.

It is desirable to have small (in terms of number of
states) local supervisors. Therefore, we want to compute
control congruences which cannot be reduced further, i.e.,
any further merging of cells would result in an invalid
control cover. We call such a cover maximally reduced,
see Definition 1. Reducedness of the control congruences
obtained by Algorithm 1 is addressed in Lemma 2.

Definition 1: Cover Ck is maximally reduced w.r.t.
G,S,Σc,k iff ∀π1, π2 ∈ Ck, if π1 ̸=π2, then (Ck\{π1, π2})∪
{π1 ∪ π2} is not a control congruence w.r.t. G,S,Σc,k. ♦

Lemma 2: Ck obtained by Algorithm 1, is maximally
reduced w.r.t. G,S,Σc,k.

Proof: Algorithm 1 iterates over all pairs of states,
and only skips pairs of states when mergeability between
some pair of states contained in the respective cells has
already been checked. Thus, if Algorithm 1 outputs a control
congruence containing individual cells π1 and π2, then
mergeability has been checked between some pair of states
x1 ∈ π1, x2 ∈ π2. Let us say x1, x2 respectively were in
cells ρ1, ρ2 at the point their mergeability was checked. Since
x1 and x2 were not merged, check merge has returned
false for this evaluation, which means that some pair of
states x3, x4 respectively in ρ1, ρ2 were not mergeable. Since
Algorithm 1 only merges cells (i.e., never splits a cell), we
know that for the resulting control congruence x3 ∈ ρ1 ⊆ π1

and x4 ∈ ρ2 ⊆ π2. Since x3 and x4 are not mergeable, π1

and π2 cannot be merged to form a control congruence.
Note that Lemma 2 does not mean that the smallest control

congruence is found by Algorithm 1. A control congruence
(and resulting local supervisor) is generally non-unique, and
which is found by Algorithm 1 depends on the order in which
mergeability of the states is checked, which depends on their
indexing. Unfortunately, finding a control congruence with
the smallest number of cells is an NP-hard problem [5].

Lemmas 1 and 2 are applicable for supervisor localization
[4] and supervisor reduction [5] (which also uses Algorithms
1 and 2, i.e., not only applicable to the transformational
approach we present next.

IV. PROBLEM DEFINITION

We assume a base system G consisting of n agents, a
supervisor S, and a partition

⋃̇
k∈{1,...,n}Σc,k = Σc ⊆ Σ of

controllable events. This base system has been localized, i.e.,
a control congruence Ck was obtained for each agent k.

Now the system changes to variant system G′ consisting
of n′ agents, a supervisor S′, and a partition of controllable
events

⋃̇
k∈{1,...,n′}Σ

′
c,k = Σ′

c ⊆ Σ′. We compute C′
k

and LOC ′
k for all k from 1 to n′ based on the control

congruences of the base system, rather than starting localiza-
tion from scratch. We call this procedure transformational
supervisor localization (TSL). TSL is to correctly localize
the variant system, as defined in Problem 1. Note that in this
problem definition, any adaptation can be made to the base
system (that generates a well-defined variant system).

Problem 1: Use Ck for k from 1 to n of the base system
G,S to transformationally compute new local supervisors
LOC ′

k for all k from 1 to n′ that are control equivalent
(Equations 3 and 4) to S′ with respect to G′. ♦

Since a set of local supervisors can be constructed from
a set of control covers, in our work we mainly focus on
finding control covers (in this case, control congruences) for
the variant system in a transformational approach.

Furthermore, it is desirable to have small local supervisors.
Therefore, TSL will compute maximally reduced control
covers to use in the construction of the local supervisors.

V. TRANSFORMATIONAL SUPERVISOR LOCALIZATION

In this section, we first discuss an algorithm that is used
to transform a cover Ck to a control congruence in case the
system has been adapted. Next, we use this algorithm in the
general procedure used for TSL.

A. Isolating conflicts

We consider the case that a control congruence Ck has been
computed for some base system S = (X,Σ, ξ, x0, Xm), G =
(Q,Σ, δ, q0, Qm). Now the system is adapted to form variant
system S′ = (X ′,Σ′, ξ′, x′

0, X
′
m), G′ = (Q′,Σ′, δ′, q′0, Q

′
m).

In our notation, we use E′, D′
k, ... to indicate that the

function E, Dk, ... are applied to the variant automaton. I.e.,
E′ is a function E′ : X ′ → 2Σ

′
.

Algorithm 3 constructs a control congruence C′
k based

on Ck. First, states that are removed from X to create X ′
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Algorithm 3 isolate

Input: Ck, S, G′, S′, Σ′
c,k

Output: C′
k

1: C′
k = {π \ (X \X ′)|π ∈ Ck} ∪

⋃
{{x}|x ∈ X ′ \X}

2: flag = true
3: while flag do
4: flag = false
5: for all x ∈ X ′ ∩X do
6: if ∃x′ ∈ [x]C′

k
:
(
(x, x′) ̸∈ R′

k∨(∃σ ∈ E′(x)∩E′(x′)) :

([ξ′(x, σ)]C′
k
̸= [ξ′(x′, σ)]C′

k
)
)

then
7: flag = true
8: C′

k = (C′
k \ {[x]C′

k
}) ∪ {[x]C′

k
\ {x}} ∪ {{x}}

9: end
10: end
11: end
12: return C′

k

 a 

 c 
e b

c,d

Fig. 2: Isolated state x0

are removed from the cells they were in in Ck. New states
are added as singleton cells. Next, the algorithm looks for
states x that do not satisfy condition (i) or (ii) of a control
cover from Section II anymore with a state x′ in the same
cell. If such a state x is found, it is isolated: it is removed
from its initial cell and placed in a singleton cell. Note that
conditions (i) and (ii) are always satisfied for states in a
singleton cell. Finally, all states that induce such a control
consistency conflict are isolated, and the resulting cover is a
control congruence.

We first present Example 2 to demonstrate the functioning
of Algorithm 3. Next, we prove correctness of Algorithm 3
in Theorem 1.

Example 2: Let us consider the case the system of
Example 1 is adapted. In addition to the disablements
D1(x0)={c}, D1(x2)={a} in the base system, the variant
system has an additional disablement: D1(x3)={a}. As a
result, for the variant system (x0, x3) ̸∈ R1. Therefore, the
cover found in Example 1 is not valid anymore. This conflict
is found in line 6 of Algorithm 3, and subsequently x0 (or x3

depending on order of iteration) is removed from its previous
cell and placed in a singleton cell. No more conflicts exist in
the resulting cover. Constructing a local supervisor for this
cover yields the automaton shown in Fig. 2. ♦

Theorem 1: Given N = |X∩X ′|, Algorithm 3 terminates,
has a worst-case time complexity of O(|Σ|·N3), and the
generated cover C′

k is a control congruence w.r.t. G′, S′,Σ′
c,k.

Proof: A state in a singleton cell is trivially control
consistent. If in the for-loop (lines 5-10) a state is found that
is not control consistent with another state in the same cell,
it is placed in a singleton cell and removed from its original
cell, and the algorithm iterates over all states in X∩X ′ again.
Eventually, since N is finite, there are no more non-control

Algorithm 4 TSL

Input: {Ck|1 ≤ k ≤ n}, S, G′, S′, {Σ′
c,k|1 ≤ k ≤ n′}, M

Output: {LOC′
k|1 ≤ k ≤ n′}, {C′

k|1 ≤ k ≤ n′}
1: for k = 1 to n′ do
2: if M(k) ̸= 0 then
3: C′

k,init = isolate(CM(k), S,G
′, S′,Σ′

c,k)
4: else
5: C′

k,init = {{x}|x ∈ X ′}
6: end
7: C′

k = localize(G′, S′,Σ′
c,k, C′

k,init)
8: Compute LOC′

k based on C′
k

9: end
10: return {LOC′

k|1 ≤ k ≤ n′}, {C′
k|1 ≤ k ≤ n′}

consistent states, the for-loop terminates with flag = false ,
the while-loop breaks, and the algorithm terminates.

Checking the if-condition on line 6 has a worst-case cost
of |Σ|·N . The for-loop (lines 5-10) is performed N times in
worst-case. The while-loop (lines 3-11) is performed N times
in worst-case. Therefore, the time complexity is O(|Σ|·N3).2

The while-loop only breaks when conditions (i) and (ii)
are both met for all states in X∩X ′. Also all states in X ′\X
are control consistent as they are placed in singleton cells.
There is no overlap between cells in C′

k as all cells in X ′\X
are placed in singleton cells and no merges are performed
for states in X ∩ X ′, which are initially partitioned by Ck.
Thus, C′

k is a control congruence w.r.t. G′, S′,Σ′
c,k.

B. General procedure

In this section we present the TSL procedure, show in
Theorem 2 that TSL solves Problem 1, and in Theorem 3 that
the resulting control congruences are maximally reduced.

The TSL procedure is sketched in pseudo-code in Algo-
rithm 4. We assume a mapping M : {1, ..., n′} → {0, ..., n},
that maps every agent in the variant system to either an
agent of the base system, or to ‘0’. If M(k)=0, it means
no base control cover is selected and the inital control
congruence is set to a singleton cover. In case M(k) is
nonzero, control congruence CM(k) is selected from the
base system to perform isolate to find an initial control
congruence. After performing isolate, the resulting cover
might not be maximally reduced. This is why, after perform-
ing isolate, the cover is used to initialize localize
in order to merge cells whenever possible. The reasoning
for the TSL procedure is that isolate produces a control
congruence in which generally states will already be merged
into cells, limiting the work that needs to be done during
localize. This is demonstrated in Example 3. TSL also
returns covers {C ′

k|1 ≤ k ≤ n′} so that they can be used in
a next TSL if the system is further adapted.

Example 3: This is a continuation of Example 2, in which
a variant system was presented to the base system of
Example 1, and isolate was performed to compute a

2To achieve this cost in implementation, instead of storing cells as state
sets, a cell index number is stored for each state. A state can be isolated by
simply assigning it with a new cell index. Since all cells are non-overlapping,
comparing whether two cells are the same can be done by comparing the
cell index of one state from each cell.
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control congruence for the variant system, yielding the local
supervisor of Fig. 2. However, the cover can be further
reduced, resulting in a local supervisor with less states.
We perform localize initialized with the cover found in
Example 2. {x0} cannot merge with {x1, x2} for multiple
reasons: x1 and x2 both enable event c, which is disabled
in x0, and x0 enables event a, which is disabled in x2.
{x0} cannot merge with {x3, x4} as x0 enables a, which
is disabled in x3 in the variant system. {x1, x2} can be
merged with {x3, x4}: there are no conflicts. After merging
these cells, no further merges are possible, leading to control
congruence {{x0}, {x1, x2, x3, x4}}. Constructing a local
supervisor for this cover yields the automaton in Fig. 3. ♦

Theorem 2: Algorithm 4 terminates, has worst-case com-
plexity O(n′·|Σ′|·|X ′|4), and solves Problem 1.

Proof: Algorithm 4 terminates because isolate
(Theorem 1) and localize ([5], [4]) terminate.

In worst-case, isolate is called n′ times, and its com-
plexity is O(|Σ′|·|X ∩ X ′|3) (Theorem 1). localize is
called n′ times, and its complexity is O(|Σ′|·|X ′|4) [5], [4].
Therefore, the complexity of TSL is O(n′·|Σ′|·|X ′|4).

For each agent in the variant system, localize is
initiated with a control congruence, since line 3 constructs
a control congruence (Theorem 1) and the singleton cover
constructed in line 5 is a control congruence. Thus, the covers
computed by localize are control congruences following
from Lemma 1. It is shown in [4] that local supervisors
constructed from control congruences satisfy Problem 1.

Clearly, SL and TSL have the same complexity. The idea
is that TSL is quicker in practice, when the variant system
is sufficiently similar to the base system. Unfortunately, at
the moment we can not predict whether TSL will be quicker
than SL. We present some experiments in Section VI to study
the computational benefit in practice.

In addition to correctness of the result, TSL also produces
maximally reduced control congruences.

Theorem 3: All C′
k ∈ {C′

k|1 ≤ k ≤ n′} obtained by
Algorithm 4 are maximally reduced w.r.t. G′, S′,Σ′

c,k.
Proof: Every control congruence C′

k that is returned
by Algorithm 4 is constructed by performing Algorithm
1. Control congruences constructed by Algorithm 1 are
maximally reduced (Lemma 2). Thus, the theorem holds.

VI. CASE STUDY: CAT AND MOUSE TOWER

As a case study to evaluate the efficiency of TSL relative
to SL, we take the Cat and Mouse Tower (CMT) from [8].
There are n floors, and on each floor of the tower there
are five rooms as shown in Fig. 4. Cats and mice can move
between the rooms as indicated by the arrows. Between each
level there is a connection for both cats and mice. This
connection is between room j of level 5 · i + j to room
j of level 5 · i + j + 1, for i ∈ N0, j ∈ {1, 2, 3, 4, 5}, and
5 · i+ j < n. So room 1 level 1 is connected to room 1 level
2; room 2 level 2 is connected to room 2 level 3; and so
forth, essentially forming a spiraling staircase. All doors can
be controlled, except for the bidirectional cat door between
rooms 2 and 4. There are k cats and k mice, and consequently

 a 
 e b,c,d

Fig. 3: Local supervisor of variant system

Cat

Mouse

Cat uncontrollable

1 2 3

4 5

Fig. 4: CMT room layout of a level [9]

each room can also hold between 0 and k cats and/or mice.
The cats start in room 1 of level 1, and the mice start in
room 5 of level n. The requirement of this system is that
there can never be a cat and a mouse in the same room at
the same time.

As base system, we take a tower with four levels, one cat,
and one mouse. The monolithic supervisor of this system has
362 states and 1159 transitions. For localization, we consider
each level as a separate agent. An agent controls all events of
the cat and mouse that originate in that level, e.g., the level
1 agent controls all doors on that level, and the movements
from level 1 room 1 to level 2 room 1 (but not the other way
around; these are controlled by the level 2 agent).

We construct five variant systems (each modifies the base
system directly, i.e., the adaptations are not cumulative):

1) Removed cat door from room 3 to room 4 on level 2.
2) Made all doors controllable.
3) Added requirement that cats should never reach level 4.
4) Removed room 5 of level 1.
5) Added a room 6 to level 1 with bidirectional control-

lable doors for cat and mouse to room 5 of level 1.
The models and a proof-of-concept implementation of the

algorithms have been made in Matlab3. We performed SL for
the base system, and SL and TSL for each variant system.
For TSL, each agent (floor) of the variant system is mapped
to the same floor in the base system. A standard personal
computer with i7 processor was used. Matlab used less than
2 GB of memory. Since we draw conclusions on relative
and not absolute runtimes, the conclusions are not influenced
by the hardware. Because the results are influenced by state
indexing order, the experiments are performed for ten random
index orders and mean values over those runs are presented.

In the left side of Table I we compare the computation
time in seconds of performing SL and TSL for the agents in
the variant system. To provide further detail, we show how
much time of performing TSL is spent on the isolate
and localize portion of the procedure. The percentage
change comparing TSL to SL is displayed, where a negative
or positive value respectively indicates how much quicker or
slower TSL is compared to SL.

In the right side of Table I we compare the number of
cells between the result of SL and TSL for the agents in the

3All used models and algorithms can be found here: https://
github.com/sbthuijsman/TSL.
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TABLE I: CMT experimental results

mean runtime mean # cells

variant system agent SL [s] isolate [s] initialized
localize [s]

TSL [s]
(sum) % change SL initial

guess isolated TSL

1
(362 states,
1142 trans.)

1 1.22 0.05 0.15 0.20 -83% 11.6 11.6 11.6 11.6
2 1.11 0.04 0.21 0.25 -78% 14.3 14.3 14.3 14.3
3 1.16 0.04 0.15 0.18 -84% 13.7 13.7 13.7 13.7
4 2.47 0.06 0.08 0.14 -94% 10.9 10.9 10.9 10.9

2
(375 states,
1214 trans.)

1 1.84 0.03 1.73 1.76 -4% 11.5 23.9 295.6 18.8
2 1.10 0.05 1.26 1.30 +18% 15.0 27.8 231.6 22.1
3 1.32 0.04 1.21 1.26 -5% 14.7 27.5 232.7 21.7
4 3.78 0.03 1.92 1.95 -48% 11.1 24.3 292.7 17.2

3
(270 states,
853 trans.)

1 0.78 0.04 0.10 0.14 -82% 9.4 8.8 8.8 8.8
2 0.71 0.02 0.09 0.11 -85% 12.8 14.1 14.1 13.9
3 0.88 0.03 0.10 0.12 -86% 10.8 14.3 14.7 13.9
4 6.90 0.04 3.68 3.72 -46% 2.5 10.0 10.0 9.0

4
(309 states,
986 trans.)

1 2.19 0.05 0.65 0.69 -68% 8.9 11.2 11.2 10.6
2 0.82 0.03 0.10 0.12 -85% 12.8 14.3 14.3 14.3
3 0.79 0.03 0.15 0.17 -78% 13.9 14.1 14.1 14.1
4 1.78 0.04 0.08 0.13 -93% 10.6 11.4 11.4 11.4

5
(403 states,
1304 trans.)

1 2.23 0.05 1.49 1.54 -31% 12.1 51.5 327.4 14.7
2 1.41 0.05 0.66 0.71 -50% 14.6 55.2 269.4 15.9
3 1.79 0.05 0.61 0.66 -63% 14.3 55.1 262.0 14.4
4 4.59 0.03 1.49 1.52 -67% 11.2 52.4 323.2 11.7

variant system. The numbers under ‘initial guess’ indicate
the number of cells of C′

k after line 1 of isolate, before
any states are isolated. The numbers under ‘isolated’ indicate
the number of cells after completing isolate, but before
localize is performed.

For the first variant system, we observe that no states
need to be isolated during isolate and no further merges
of cells can be performed when performing localize
initialized by the control cover of the base system. Compared
to performing SL initialized by a singleton cover, TSL is
much quicker. For the second variant system, there is much
less computational benefit. Here, a local system is found
were TSL is slower than SL, i.e., in this case localization is
quicker when initialized by a singleton cover. At the moment,
we have no way to predict when this will be the case. We
observe that for this system a lot of states need to be isolated
for all subsystems. Even so, isolation is performed relatively
quickly. Because the isolated cover is relatively close to the
singleton cover (which has 375 cells), TSL runtimes are
relatively close to the SL runtimes. Another observation is
that TSL computes covers with more cells than SL, because
it starts with a coarser cover which limits the cell merges
that can be made during localize. For variant systems 3,
4, and 5 TSL is consistently quicker than SL, even though
for variant system 5 a lot of states require to be isolated.

The same experiments have been performed for larger
instances of CMT, with 6 levels (842 states) and 8 levels
(1525 states). Because of space constraints we cannot fully
present those results in this paper, they are available in
the repository linked above. The same conclusions can be
made for these larger instances. Respectively, the average
percentage change over all local systems for CMT with 4,
6, and 8 levels, were −61%, −54%, and −57%.

From a monolithic point of view the adaptations made to
the CMT system are considerable (reflected in the change in
number of states and transitions). Regardless, these experi-
ments suggest that TSL is more efficient than performing SL
from scratch.

VII. CONCLUSIONS

We presented a TSL procedure, that reuses control congru-
ences from a previous SL to more efficiently compute these
control congruences for a system once it is adapted. Correct-
ness of the algorithms is shown, and examples are provided.
The method is evaluated by means of some experiments on
the CMT system. For these experiments, the runtime of TSL
is shown to be lower than SL.
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