Pole Locations

Pole locations

Pole locations of $F(s)$ affect qualitative behavior of $f(t)$

For this discussion, consider rational functions $F(s)$
i.e. $F(s)=\frac{N(s)}{D(s)}$, where $N(s), D(s)$ are polynomials in s

Ex. $\frac{1}{s}, \frac{1}{s^{2}}, \frac{s}{s^{2}+1}$
These are the Laplace transform of $1, t, \cos t$

An example of a non-rational Laplace transform is e^{-s}

Pole locations

Consider a rational functions $F(s)=\frac{N(s)}{D(s)}$.
The poles of $F(s)$ are the values of s such that $D(s)=0$

The locations of the poles on the complex plane provides information about the behavior of $f(t)$

Example

$$
f(t)=\mathrm{e}^{-t}, F(s)=\frac{1}{s+1}, \text { pole }=-1
$$

Observation: a single negative pole corresponds to a decaying exponential in the time domain

Example

$f(t)=\mathrm{e}^{t}, F(s)=\frac{1}{s-1}$, pole $=1$

Observation: a single positive pole corresponds to a blowing-up exponential in the time domain

Example

$$
f(t)=1, F(s)=\frac{1}{s}, \text { pole }=0
$$

Observation: a single pole $s=0$ corresponds to a constant in the time domain

Pole locations

1. A single real negative pole corresponds to a decaying exponential. The farther left the pole is, the faster $f(t)$ decays.
2. A single real positive pole corresponds to a blowing-up exponential. The farther right the pole is, the faster $f(t)$ blows up.
3. A single pole $s=0$ corresponds to a constant in the time domain.

Example

$$
f(t)=\sin t, F(s)=\frac{1}{s^{2}+1}, \text { pole }= \pm j
$$

Observation: a complex conjugate pair of poles with $\operatorname{Re}(s)=0$ corresponds to a sinusoid with constant amplitude in the time domain

Example

$$
f(t)=\mathrm{e}^{-t} \sin t, F(s)=\frac{1}{(s+1)^{2}+1}, \text { pole }=-1 \pm j
$$

Observation: a complex conjugate pair of poles with $\operatorname{Re}(s)<0$ corresponds to a sinusoid with exponentially decaying amplitude in the time domain

Example

$$
f(t)=\mathrm{e}^{t} \sin t, F(s)=\frac{1}{(s-1)^{2}+1}, \text { pole }=1 \pm j
$$

Observation: a complex conjugate pair of poles with $\operatorname{Re}(s)>0$ corresponds to a sinusoid with exponentially blowing-up amplitude in the time domain

Pole locations

1. A complex conjugate pair of poles with $\operatorname{Re}(s)=0$ corresponds to a sinusoid with constant amplitude.
2. A complex conjugate pair of poles with $\operatorname{Re}(s)<0$ corresponds to a sinusoid with exponentially decaying amplitude.
3. A complex conjugate pair of poles with $\operatorname{Re}(s)>0$ corresponds to a sinusoid with exponentially blowing-up amplitude.

Pole locations

1. A double real negative pole corresponds to an amplitude-modified decaying amplitude.

$$
\text { Ex. } F(s)=\frac{1}{(s+1)^{2}}, f(t)=t \mathrm{e}^{-t}
$$

2. A double real positive pole corresponds to an amplitude-modified blowing-up amplitude.

$$
\text { Ex. } F(s)=\frac{1}{(s-1)^{2}}, f(t)=t \mathrm{e}^{t}
$$

3. A double complex conjugate pair of poles with $\operatorname{Re}(s)=0$ corresponds to a sinusoid with ramp-like amplitude.

$$
\text { Ex. } F(s)=\frac{1}{\left(s^{2}+1\right)^{2}}, f(t)=\frac{1}{2}(\sin t-t \cos t)
$$

Pole locations

Note: for a control engineer, the left half-plane is "good", and the right half-plane is "bad"

Note: pole locations of $F(s)$ are a good indicator of only the qualitative behavior of $f(t)$, but not the quantitative

Ex. $F(s)$ has poles $-10,-2 \pm 10 j$
$10 j$ part may suggest severe oscillations in $f(t)$
but $f(t)$ can be $f(t)=50 \mathrm{e}^{-10 t}+0.001 \mathrm{e}^{-2 t} \cos (10 t)$

