Final-Value Theorem

Pole locations

Pole locations of F(s) affect qualitative behavior of f(t)

When is f(t) bounded, i.e. |f(t)| < M for some M and all $t \ge 0$

When does f(t) have a final value, i.e. $\lim_{t\to\infty} f(t)$ exists

If $\lim_{t\to\infty} f(t)$ exists, what is the value of this limit

Strictly proper, proper, improper

Consider F(s) is rational, i.e. $F(s) = \frac{N(s)}{D(s)}$.

F(s) is strictly proper if degree N(s) < degree D(s)

F(s) is proper if degree $N(s) \leq$ degree D(s)

F(s) is improper if degree N(s) > degree D(s)

We will assume F(s) is strictly proper.

Example

By partial fraction expansion, F(s) can be uniquely written as $F(s) = G_1(s) + G_2(s) + G_3(s)$

Ex.
$$G_1(s) = \frac{1}{s+1} + \frac{2}{(s+2)^2 + 20}$$

 $G_2(s) = \frac{2}{s} + \frac{4}{s^2}$
 $G_3(s) = \frac{1}{s^2 + 1} + \frac{2}{s - 10}$

$$f(t) = g_1(t) + g_2(t) + g_3(t)$$

$$g_1(t) = e^{-t} + \frac{2}{\sqrt{20}}e^{-2t}\sin(\sqrt{20}t)$$

$$g_2(t) = 2 + 4t$$

$$g_3(t) = \sin t + 2e^{10t}$$

$$f(t) \text{ is unbounded}$$

Example

By partial fraction expansion, F(s) can be uniquely written as $F(s) = G_1(s) + G_2(s) + G_3(s)$

Ex.
$$G_1(s) = \frac{1}{s+1} + \frac{2}{(s+2)^2 + 20}$$

 $G_2(s) = \frac{2}{s}$
 $G_3(s) = 0$

$$f(t) = g_1(t) + g_2(t) + g_3(t)$$

$$g_1(t) = e^{-t} + \frac{2}{\sqrt{20}}e^{-2t}\sin(\sqrt{20}t)$$

$$g_2(t) = 2$$

$$g_3(t) = 0$$

$$f(t) \text{ is bounded}$$
and has a final value 2

Pole locations vs. boundedness

Suppose F(s) is rational and strictly proper.

- 1. If F(s) has no poles in $Re(s) \ge 0$, then f(t) is bounded.
- 2. If F(s) has no poles in $\text{Re}(s) \geq 0$ except a simple pole s = 0, and/or some simple complex-conjugate pairs of poles at Re(s) = 0 then f(t) is bounded.

3. In all other cases, f(t) is unbounded.

Pole locations vs. existence of final value

Suppose F(s) is rational and strictly proper.

- 1. If F(s) has no poles in $Re(s) \ge 0$, then f(t) has a final value 0.
- 2. If F(s) has no poles in $\text{Re}(s) \ge 0$ except a simple pole s = 0, then f(t) has a final value, $\lim_{s\to 0} sF(s)$.

3. In all other cases, f(t) does not have a final value.

Final value theorem

Suppose F(s) is rational and strictly proper.

Suppose F(s) has no poles in $\text{Re}(s) \geq 0$ except possibly a simple pole s = 0.

Then f(t) has a final value, which is

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

Example

By partial fraction expansion, F(s) can be uniquely written as $F(s) = G_1(s) + G_2(s) + G_3(s)$

Ex.
$$G_1(s) = \frac{1}{s+1} + \frac{2}{(s+2)^2 + 20}$$

 $G_2(s) = \frac{2}{s}$
 $G_3(s) = 0$

f(t) has a final value:

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s(G_1(s) + G_2(s) + G_3(s))$$

$$= \lim_{s \to 0} \left(\frac{s}{s+1} + \frac{2s}{(s+2)^2 + 20} + 2 \right)$$

$$= 2$$