Transfer Function



Review: Laplace transform

Consider a continuous-time, real-valued function f(t),
where —oo < t < o0.

Laplace transform of f(¢) is:
F(s):= [, f(t)e =tdt

where s € C is a complex variable.

Table 70 (s

unit step

f(t) sF(s) — f(0) valid if f(t) is differentiable at t =0




Recall state model

x = Ax + Bu
y=Cx+ Du

where x(t) € R™: state vector
u(t) € R™: input vector
y(t) € RP: output vector
A, B,C, D are constant matrices

We are going to take Laplace transforms
of these two equations



Laplace transform of vector signals

For x(t) =

For u(t) =

For y(t) =

, define X (s) =

, define U(s) =

, define Y'(s) =




Laplace transform of vector signals
derivative &(t) — sX(s) — x(0)

t(t) = Ax(t) + Bu(t) — sX(s) —x(0) = AX (s) + BU(s)
(sI — A)X(s) = BU(s) (z(0) =0)
X(s)=(sI —A)"'BU(s)

y(t) = Czx(t) + Du(t) — Y (s) = CX(s) + DU(s)
Y(s)=C(sI — A)"1BU(s) + DU(s)
Y(s) = (C(sI — A~ 1B+ D)U(s)



Transfer function model

The transfer funciton of
r = Ax + Bu
y=Cx+ Du

is the function G(s) satisfying Y (s) = G(s)U(s)
with x(0) = 0, and is given by

G(s):=C(sI —A)"'B+D

(G(s) is a p X m matrix)



Transfer function model

Single input, single output case: G(s) is 1 x 1

G(s)=C(sI — A)"'B+ D

:det(sl A)C’adj(sl A)B+ D

Cadj(sI—A)B+Ddet(sI—A)
det(sI—A)




Example

A= {(1) (ﬂ,B: m,czp 0],D =0

Compute G(s) = C(sI — A)"'B+ D



Suppose input u(t) =1 for t > 0 (unit step)

Let’s find output y(¢)

Y(S) — G(S)U(S) — SQL—l% — s(s—l—l;(s—l)
_ 1,05, 05

S s+1 s—1
So y(t) = -1+ 2e7 ! + L1ef
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Compute G(s) = C(sI — A)"'B+ D
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Compute G(s) = C(sI — A)"'B+ D
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Transfer function model

For some simple systems, we can get transfer function model
directly without first getting state model
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Ex. RC filter 5 z\v :g‘
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—~u+Ri+y=0,i=C%
RCy+y=u
RCsY (s)+Y(s) =U(s) (y(0) = 0)

Y (s 1
G(S) — UES% — RCs+1




Transfer function model

Note: unit of RC' is second, called time constant of the circuit

Note: pole of G(s) at s = _R_1(?5

smaller time constant implies farther left the pole

Note: the DC' gain of the circuit is G(0) = 1;
if u(t) is a constant voltage, then in steady state y(t) = u(t)

Note: this is a lowpass circuit



Example

G(s) = 2: pure gain
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~: single integrator; y(t) = ffoo u(T)dT
G(s) = =5: double integrator

G(s) = s: differentiator; y(t) = u(t)
(at best an approximation to a real system)

G(s) =e7 7% (1t > 0): time-delay system; not rational

G(s) = =73 C“:)” —= standard second-order transfer function
(wy, > 0: natural frequency; ¢ > 0: damping constant)



Example

G(s) = K1 + £2 4+ K3s: proportional-integral-derivative (PID)
controller

2 . .
Note: G(s) = £a¢ +[§1S+K2 is improper

Note: K3s is a differentiator; at best an approximation to
a real system; a better approximation:

G(s) = K; + £2 + i—j’r‘sl, where € > 0 is a small positive number



Realization

Inverse problem: given a transfer function G(s),
find a state model A, B,C,D s.t. G(s) =C(sI —A)™'B+ D

This state model A, B,C, D is called a realization of G(s)
Note: each G(s) has an infinite number of state realizations

Note: every proper, rational G(s) has a state realization



Example

Y (s
G(S) — 282—18—|—3 — UES%

(252 — 5+ 3)Y(s) = U(s)
25%Y (s) — sY(s) + 3
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20 —y+ 3y =u
Taking x1 =y, ro = 1y, we get
T1 = To

1 3

: 1
Tg = 5T2 — 51 + 35U

Yy =2



This technique extends to
G(s) = constant
polynomial of degree n




Example

S — Y (s
G(S) — 282—82—|—3 — UES%

Introduce an auxiliary V (s) s.t.

Y(s) = (s =2)V(s), V(s)
Yy=0v—20,20—0v+3v=1u

1
282—8+3U(S)
Taking x1 = v, xo = v, we get

jfl = T2

.1 3 1

T2 = 5T2 — 5T1 + 35U

Y = To — 211



This technique extends to any strictly proper rational G(s)



Example

Proper rational G(s) = £t (not strictly proper)

S

ie. G(s) = ]1\)[8’ N(s) and D(s) have the same degree

Divide N(s) by D(s) to get G(s) = c+ G1(s)

where ¢ is a constant, and G1(s) is strictly proper

In this case we get A, B, C' to realize GG1(s), and set D = ¢



