Principle of the argument

Principle of the argument involves two things:

- 1) a closed curve \mathcal{D} in the complex plane
- 2) a transfer function G(s)

We use a special \mathcal{D} , called Nyquist contour

Then \mathcal{G} is called Nyquist plot of G(s)

Suppose that G(s) has no poles or zeros on Nyquist contour \mathcal{D} , and has n poles in Re(s) > 0 and m zeros in Re(s) > 0

By principle of the argument, the Nyquist plot \mathcal{G} encircles the origin exactly n-m times CCW

Suppose that G(s) has no poles on Nyquist contour \mathcal{D} , and has n poles in Re(s) > 0

G(s) has no zeros in $Re(s) \ge 0$ if and only if the Nyquist plot \mathcal{G} (i) does not pass through the origin and (ii) encircles the origin exactly n times CCW

This is a graphical test for a rational function G(s) not to have any zeros in the closed right half-plane

What if G(s) does have poles on Nyquist contour \mathcal{D}

Modify \mathcal{D} such that it indents around these purely imaginary poles

Always indent to the right

Plant $P(s) = \frac{N_p(s)}{D_p(s)}$ is rational and strictly proper, controller $KC(s) = \frac{KN_c(s)}{D_c(s)}$ is rational and proper $(K \neq 0)$

Suppose P(s)C(s) has no pole-zero cancellations in $\text{Re}(s) \geq 0$

Feedback stability $\Leftrightarrow P(s)C(s)$ has no zeros in $\text{Re}(s) \geq -\frac{1}{K}$

Draw the Nyquist plot \mathcal{G} of G(s) := P(s)C(s)

Suppose that G(s) = P(s)C(s) has no poles on the Nyquist contour \mathcal{D} (indenting to the right if necessary), and has n poles in Re(s) > 0

G(s) has no zeros in $\text{Re}(s) \ge -\frac{1}{K}$ if and only if the Nyquist plot \mathcal{G} (i) does not pass through the $-\frac{1}{K}$ and (ii) encircles $-\frac{1}{K}$ exactly n times CCW

Suppose that G(s) = P(s)C(s) has no poles on the Nyquist contour \mathcal{D} (indenting to the right if necessary), and has n poles in Re(s) > 0

Feedback stability \Leftrightarrow

the Nyquist plot \mathcal{G} (i) does not pass through the $-\frac{1}{K}$ and (ii) encircles $-\frac{1}{K}$ exactly n times CCW

$$G(s) = P(s)C(s) = \frac{1}{(s+1)^2}$$

Divide Nyquist contour \mathcal{D} into 3 segments:

Segment from A to B: $s = j\omega$, ω from 0 to ∞

$$P(j\omega)C(j\omega) = \frac{1}{(j\omega+1)^2}$$

$$P(0)C(0) = 1 P(j\infty)C(j\infty) \to \frac{1}{(j\omega)^2} = -\frac{1}{\omega^2}$$

$$\operatorname{Re}(P(j\omega)C(j\omega)) = \frac{1-\omega^2}{(1-\omega^2)^2 + (2\omega)^2}, \operatorname{Im}(P(j\omega)C(j\omega)) = \frac{-2\omega}{(1-\omega^2)^2 + (2\omega)^2}$$

$$G(s) = P(s)C(s) = \frac{1}{(s+1)^2}$$

Divide Nyquist contour \mathcal{D} into 3 segments:

Segment from B to C: radius is ∞

$$P(j\infty)C(j\infty) = 0, P(-j\infty)C(-j\infty) = 0$$

$$G(s) = P(s)C(s) = \frac{1}{(s+1)^2}$$

Divide Nyquist contour \mathcal{D} into 3 segments:

Segment from C to A: $s = j\omega$, ω from $-\infty$ to 0 complex conjugate of the segment from A to B

$$G(s) = P(s)C(s) = \frac{1}{(s+1)^2}$$

 $P(s)C(s)$ has no poles in $Re(s) > 0$, i.e. $n = 0$

By Nyquist criterion: feedback loop is stable iff the Nyquist plot \mathcal{G} (i) does not pass through $-\frac{1}{K}$ and (ii) encircles $-\frac{1}{K}$ exactly 0 time CCW

So either $-\frac{1}{K} < 0$ or $-\frac{1}{K} > 1$, i.e. either K > 0 or -1 < K < 0But K = 0 is fine (why?); so K > -1 after all

Nyquist plot is not accurate

