THEORY OF COMPUTATION - HOMEWORK 3
Assigned 2018.11.20. Submission deadline 2018.12.04 (for only those who want their homework to be marked).

Problems

1. Consider the following context-free grammar G :

$$
\begin{aligned}
Y & \rightarrow X Y X \mid Z \\
Z & \rightarrow a T b \mid b T a \\
T & \rightarrow X T X|X| \epsilon \\
X & \rightarrow a \mid b
\end{aligned}
$$

Provide the formal definition of $G=(V, \Sigma, R, S)$ (i.e. specifying $V, \Sigma, R, S)$. Then give 3 strings in $L(G)$ and 3 strings not in $L(G)$.
2. Consider the following pushdown automaton G . Provide the formal definition of $\mathrm{G}=$ $\left(Q, \Sigma, \Gamma, \delta, q_{0}, Q_{a}\right)$ (i.e. specifying $\left.Q, \Sigma, \Gamma, \delta, q_{0}, Q_{a}\right)$. Then give 3 strings in $L(\mathbf{G})$, and describe what kind of strings G accepts.

G

3. Let the alphabet be $\Sigma=\{0,1\}$, and consider a language $L=\left\{w \in \Sigma^{*} \mid \# 0(w)>\# 1(w)\right\}$, where $\# 0(w)$ means the number of 0 's in w and $\# 1(w)$ means the number of 1 's in w. Design a pushdown automaton \mathbf{G} to accept the language L.
