THEORY OF COMPUTATION - HOMEWORK 5
Assigned 2020.01.14. Deadline 2020.01.28 (we will discuss them in class).

Problems

1. Consider the following problem: given two DFA G_{1} and G_{2}, test if they accept the same language, i.e. $L_{a}\left(\mathbf{G}_{1}\right)=L_{a}\left(\mathbf{G}_{2}\right)$.

Prove that this problem is algorithmically solvable. HINT: first write down the language L that corresponds to the problem; then design a (high-level) Turing machine (i.e. algorithm) that decides the language L.
2. Consider the Turing machine (algorithm) you designed in Problem 1, and suppose the numbers of states of \mathbf{G}_{1} and \mathbf{G}_{2} are no more than n.

First analyze the time complexity of the algorithm using the big-O notation with respect to n. Then conclude if the (decidable) language L in Problem 1 is in class P or class NP.
3. Answer the following.
3.1. If $f(n)=2 n^{4}+2^{50} n^{2}+10 n$, then $f(n)=O(?)$
3.2. If $f(n)=9 n \log _{2} n+4 n \log _{2} \log _{2} n+6$, then $f(n)=O($? $)$
3.3. If $f(n)=9 n^{4}+n 2^{n}$, then $f(n)=O(?)$
3.4. If $f(n)=O\left(n^{3}\right)+O\left(n^{2} \log n\right)+O(1)$, then $f(n)=O(?)$

