Theory of Computation

Instructor: Kai Cai

Period: 2019.10-2020.02

Introduction

In this course you will learn
-) J(\ C;,G’dh@/\
1. Computation models \ J,M'Jr““’“

* Finite automaton
e Push-down automaton

e Turing machine Alon Tun‘vj

2. Computability
e Decidable
e Undecidable

3. Complexity: P and NP

In this course you will learn

1. Computation models

* Finite automaton
e.g. text, numbers, variable names: x=0.1

* Push-down automaton
e.g. grammar of programming languages: begin...end

 Turing machine

= real computer

In this course you will learn

2. Computability

What problems can be solved, or cannot be solved?

e Decidable

e.g. Given a map of JR routes in Osaka, determine if one can
go from Sugimotocho to Morinomiya.

e Undecidable

e.g. Given a program, determine if it always terminates.

In this course you will learn

3. Complexity

What problems can be solved fast, or slow?

.+ P

e.g. Given a map of JR routes in Osaka, determine if one can

go from Sugimotocho to Morinomiya.
[0

e ————

(12
* NP @ qor " &

: : . 2 :
e.g. Given a list of cities and the distances between each pair
of cities, find the shortest route that visits each city once and
returns to the origin city (travelling salesman problem).
N‘\"_*__\———-—"‘—"\\—.

In this course you will learn

3. Complexity

S1M “Millennium Problem”:

s P = NP?

Math training

In this course you will exercise many maths:

e Set
* Logic
e Proof

Course website

https://www.control.eng.osaka-cu.ac.jp/teaching/compute2019

Cellphone

https://www.control.eng.osaka-cu.ac.jp/teaching/compute2019

Finite Automaton

“AUTOMATON” = “SELF-MOVER”
Homer’s lliad - 18, lines 373-377

b

A A A A S A S S.A

. - - - - - - -~ - - -~ - - - y

Twenty tripods [Hephaistos] crafted, to
stand around ... his house. At the base
of each he placed golden wheels, so
these self-movers [hoi automatoi] might
enter the divine assembly, and return
back to the house, a wonder to behold!

11

 Computation theory begins with this question:
What is a good math model for a computer?

 We will introduce several computational
models, with different features

* We begin with the simplest and important one:
finite automaton

Example: automatic door

Sensor

Door has 2 states: CLOSED, OPEN

There are 2 conditions (or events):
1) S_.ON: sensor detects a person

2) S_OFF: no person is detected

Example: automatic door

Design a state transition diagram for the door:

’DW S ON S_ON “ 56(](- (oo);"
CLOSED PEN
\ S_OFF
Twhio (uc\ral 6 wce‘r\‘
Initial State: CLOSED —0) 56 cheke

Acceptp\(Marker) State: OPEN O

\- ke skeke
1-step tran81t10n e.g. (CLOSED, S_ON)=0OPEN

2-step ’fransmon e.g. (OPEN, S_OFF.S_ON)=0OPEN

-5 {,Q
k-step transition: <) CClesey, s.on s off. s.om) = BPEN

Example: automatic door

Design a state transition diagram for the door:

S_ON
CLOSE?®OPEN
S_OFF

This is a simple computer, with just 1-bit memory.
This is called a finite automaton.

Other examples

Coffee machines
Vending machines
Elevators

'Tennis scores

Aside: Set

A set is a collection of objects.

e.g. S=1{a,b,c}
a is called an element of S: a € S

the size of S is the number of its elements: |S| = 3
S is a finite set if |S| is finite

e.g. T={x|x>0& z is even}
24 €T, but 25 ¢ T

T is an infinite set if |T'| = oo

Aside: Set

Let S be a set.

A subset of S is a subcollection of elements of S.

e.g. S=1{a,b,c}
{a,b} C S, {a} C S

e.g. T={x|xz>0& z is even}
12,229 992221 C T

Two special subsets:) C S, S C S (always)

Aside: Cartesian Product
S

Let S,T be two sets.
The Cartesian product of S,’I" is a set of pairs of elements:

SxT ={(s,t)|se€S&teT}

e.g. S=1{a,b,c}
T={z|x>0& zis even}

SXT:§(Q,27/C‘))L7/LCL;%)/ '“ﬁ

Aside: Cartesian Product

Let S,T be two sets.
The Cartesian product of S,’I" is a set of pairs of elements:

SxT ={(s,t)|se€S&teT}

e.g. S={z|xeR}
T={ylyecR}
SXT:RL=fC’»‘/)l"f7€-Kj

Aside: Function

TR
A function f .S — T is a mapping that
assigns each element s € S a unique element t € T’

ie. fsr—t ter=1

Call S domain, and T' codomain of tunction f

e.g. S={a,b,c}
T={{x|z>0& x is even}
f-S%T

=2
():l
22

Aside: Function

A function f : S — T is a mapping that
assigns each element s € S a unique element t € T’

ie. f(s)=t
Call S domain, and T' codomain of tunction f

e.g. S={a,b,c}
T={{x|z>0& x is even}
f:SxT—{0,1}

&OW\N" Co flowA™
& (0> =0
§u2=|

Finite automaton
{m\&

A finite automaton G is a five tuple
— (Qa 27 57 qo, Qa)7 where

: \
Q : stg%ue set; a finite set of states CLOSED Oft'

2 .
> alphabet a finite set of symbols

0 : Q x Y () : state transition function
OMMn Copimmain S(CLOSED , S_ON) =OPEN

q0 ‘% init 1al state
® . S}, 9= 1‘
0% accept states

Example: automatic door

S_ON

CLOSE)D@OPEN
®

Q@z fCLOSED / DFENSTOFF
2={ S_oN, S_GfF]

U8 (cLoseD, S_ON) = 6PEN ; dCOfEN, S_6ffF) =cLbseD
§:QxZ>Q

¥, = cLose

%V{Wi“k}

How does a finite automaton work

A finite automaton G = (Q, X, 4, qo, Qq)

Beeps when a
transition enters
an accept state

Internal state
transitions

