Theory of Computation

Instructor: Kai Cai

Period: 2019.10-2020.02

Introduction

In this course you will learn

1. Computation models [Imitation Game]

- Finite automaton
- Push-down automaton
- Turing machine Alan Turing

2. Computability

- Decidable
- Undecidable

3. Complexity: P and NP

In this course you will learn

1. Computation models

- Finite automaton
e.g. text, numbers, variable names: $x=0.1$
- Push-down automaton
e.g. grammar of programming languages: begin...end
- Turing machine
= real computer

In this course you will learn

2. Computability

What problems can be solved, or cannot be solved?

- Decidable
e.g. Given a map of JR routes in Osaka, determine if one can go from Sugimotocho to Morinomiya.
- Undecidable
e.g. Given a program, determine if it always terminates.

In this course you will learn

3. Complexity

What problems can be solved fast, or slow?

- P
e.g. Given a map of JR routes in Osaka, determine if one can go from Sugimotocho to Morinomiya.
- NP

e.g. Given a list of cities and the distances between each pair of cities, find the shortest route that visits each city once and returns to the origin city (travelling salesman problem).

In this course you will learn

3. Complexity
\$1M "Millennium Problem":

$$
\text { Is } P=N P ?
$$

Math training

In this course you will exercise many maths:

- Set
- Logic
- Proof

Course website

https://www.control.eng.osaka-cu.ac.jp/teaching/compute2019

Cellphone

Finite Automaton

"AUTOMATON" = "SELF-MOVER"

Homer's Iliad - 18, lines 373-377

Twenty tripods [Hephaistos] crafted, to stand around ... his house. At the base of each he placed golden wheels, so these self-movers [hoi automatoi] might enter the divine assembly, and return back to the house, a wonder to behold!

- Computation theory begins with this question: What is a good math model for a computer?
- We will introduce several computational models, with different features
- We begin with the simplest and important one: finite automaton

Example: automatic door

Door has 2 states: CLOSED, OPEN
There are 2 conditions (or events):

1) S_ON: sensor detects a person
2) S_OFF: no person is detected

Example: automatic door

Design a state transition diagram for the door:

Initial State: CLOSED
initial \& accept

"self-coop"
\rightarrow © state
Accept (Marker) State: OPEN
1-step transition: e.g. (CLOSED, S_ON)=OPEN
2-step ${ }^{2}$ transition: e.g. (OPEN, S_OFF.S_ON) $=$ OPEN
k-step transition: eng. (CLOSED, S_ON. S_OFF. S.ON $)=$ OPEN

Example: automatic door

Design a state transition diagram for the door:

This is a simple computer, with just 1-bit memory. This is called a finite automaton.

Other examples

Acept/Mater star

Coffee machines
Vending machines
Elevators
Tennis scores

Aside: Set

A set is a collection of objects.
e.g. $S=\{a, b, c\}$
a is called an element of $S: a \in S$
the size of S is the number of its elements: $|S|=3$
S is a finite set if $|S|$ is finite
e.g. $T=\{x \mid x>0 \& x$ is even $\}$
$24 \in T$, but $25 \notin T$
T is an infinite set if $|T|=\infty$

Aside: Set

Let S be a set.
A subset of S is a subcollection of elements of S.

$$
\begin{array}{ll}
\text { e.g. } & S=\{a, b, c\} \\
\quad\{a, b\} \subseteq S,\{a\} \subseteq S
\end{array}
$$

e.g. $T=\{x \mid x>0 \& x$ is even $\}$

$$
\{2,222,22222\} \subseteq T
$$

Two special subsets: $\emptyset \subseteq S, S \subseteq S$ (always)

Aside: Cartesian Product

S, T
Let S, T be two sets.
The Cartesian product of S, T is a set of pairs of elements:

$$
S \times T=\{(s, t) \mid s \in S \& t \in T\}
$$

$$
\text { e.g. } \begin{aligned}
S & =\{a, b, c\} \\
T & =\{x \mid x>0 \& x \text { is even }\} \\
& S \times T=\{(a, 2),(b, b),(a, 8), \cdots\}
\end{aligned}
$$

Aside: Cartesian Product

Let S, T be two sets.
The Cartesian product of S, T is a set of pairs of elements:

$$
S \times T=\{(s, t) \mid s \in S \& t \in T\}
$$

$$
\text { e.g. } \begin{aligned}
S & =\{x \mid x \in \mathbb{R}\} \\
T & =\{y \mid y \in \mathbb{R}\} \\
S & \times T=\mathbb{R}^{2}=\{(x, y) \mid x, y \in \mathbb{R}\}
\end{aligned}
$$

Aside: Function

A function $f: S \rightarrow T$ is a mapping that assigns each element $s \in S$ a unique element $t \in T$
i.e. $f=$

$$
f(s)=t
$$

Call S domain, and T codomain of function f

$$
\begin{aligned}
& \text { e.g. } S=\{a, b, c\} \\
& T=\{x \mid x>0 \& x \text { is even }\} \\
& f: S \rightarrow T \\
& f(a)=2 \\
& f(b)=22 \\
& f(c)=222
\end{aligned}
$$

Aside: Function

A function $f: S \rightarrow T$ is a mapping that assigns each element $s \in S$ a unique element $t \in T$ i.e. $f(s)=t$

Call S domain, and T codomain of function f

$$
\begin{aligned}
& \text { ecg. } S=\{a, b, c\} \\
& T=\{x \mid x>0 \& x \text { is even }\} \\
& f: \underset{\text { domain }}{S \times T} \rightarrow \underbrace{\{0,1\}}_{\text {codominn }} \\
& f(a, 2) \quad f(a, 2)=0 \\
& f(1,20)=1
\end{aligned}
$$

Finite automaton

finite
A finitomaton \mathbf{G} is a five tuple
$\mathbf{G}=\left(Q, \Sigma, \delta, q_{0}, Q_{a}\right)$, where

Q:

Q : state set; a finite set of states
Σ : alphabet; a finite set of symbols
$\delta: \underline{Q^{8} \times \Sigma} \rightarrow \underline{Q}:$ state transition function

Example: automatic door

$$
\begin{aligned}
& Q^{(1)}=\{\text { CLOSED, OPEN }\} \text { S_OFF } \\
& \frac{2}{2}=\left\{S_{-O N}, \quad \text { S_OFF }\right\} \\
& \text { (3) } \delta(C L O S E D, S-O N)=O P E N ; \quad \delta(O P E N, S-O F F)=C L O S E D \\
& \delta: Q \times \bar{\Sigma} \rightarrow Q \\
& \text { (A) } Q_{0}=C L O S E D \\
& \text { (S) } Q_{a}=\{O P E N\}
\end{aligned}
$$

How does a finite automaton work

A finite automaton $\mathbf{G}=\left(Q, \Sigma, \delta, q_{0}, Q_{a}\right)$

Internal state transitions

Beeps when a transition enters an accept state

