Complexity

From computability to complexity

In computability: we identified some problems are decidable, and some others are undecidable

From computability to complexity

In computability: we identified some problems are decidable, and some others are undecidable

Even when a problem is decidable (i.e. algorithmic solvable), it may not be practically solvable as it may require too much time and/or space

Travelling Salesman Problem (TSP):

Find the shortest route that visits each city exactly once and returns to the starting city?

From computability to complexity

In computability: we identified some problems are decidable, and some others are undecidable

Even when a problem is decidable (i.e. algorithmic solvable), it may not be practically solvable as it may require too much time and/or space

From now on: let's focus on decidable problems, and identify problems that can be solved efficiently (as well as those that are intractable)

This is the (final) topic of complexity

Time complexity

Travelling Salesman Problem (TSP):

Find the shortest route that visits each city exactly once and returns to the starting city?

Suppose $\mathbf{M}_{T S P}$ is a decider (i.e. algorithm) that solves TSP.
Want: how many steps (i.e. head moves) $\mathbf{M}_{T S P}$ takes before it halts

Number of steps depends on length of input string (number of cities)

Time complexity

Given an algorithm (i.e. a TM), we define the (worst-case) time complexity

Defn. Let \mathbf{M} be a (deterministic) decider.
For an input string s, \mathbf{M} accepts or rejects s after $t(s)$ steps. The time complexity of \mathbf{M} is

$$
f(n)=\max _{\left\{s \in \Sigma^{*}| | s \mid=n\right\}} t(s)
$$

$\left|s_{1}\right|=\left|s_{2}\right|=\frac{11|1|}{\left|s_{3}\right|=n}$

Time complexity

Given an algorithm (i.e. a TM), we define the (worst-case) time complexity

Defn. Let \mathbf{M} be a (deterministic) decider.
For an input string s, \mathbf{M} accepts or rejects s after $t(s)$ steps. The time complexity of \mathbf{M} is

$$
f(n)=\max _{\left\{s \in \Sigma^{*}| | s \mid=n\right\}} t(s)
$$

Exact number of steps of \mathbf{M} is often complicated. Consider asymptotic time complexity: when n is large.

Big-O

e.g. Let $f(n)=6 n^{3}$

Then $f(n)=O\left(\frac{n^{3}}{g(n)}\right)=n^{3}$

$$
\text { e.g. Let } f(n)=6 n^{3}+10 n^{2}
$$

$$
\begin{aligned}
& c=7: f(n)=6 n^{3} \leq 7 n^{3}=c \cdot g(n) \\
& \begin{aligned}
c=16: & f(n) \\
& =6 n^{3}+10 n^{2} \\
& \leq 6 n^{3}+10 n^{3} \\
& =16 \cdot n^{3}=c \cdot g(n)
\end{aligned}
\end{aligned}
$$

Write $f(n)=O(g(n))$ if
$(\exists c \geq 1)\left(\exists n_{0} \geq 1\right)\left(\forall n \geq n_{0}\right) f(n) \leq c g(n)$

Big-O

e.g. Let $f(n)=6 n^{3}+5 n^{2}+4 n+100$

Then $f(n)=O\left(n^{3}\right)$
e.g. Let $f(n)=3 n^{2}+20 n \log _{2} n+10^{2}$

Then $f(n)=O\left(n^{2}\right)$
e.g. Let $f(n)=2 \log _{2} n+7 \log _{2}\left(\log _{2} n\right)+4$

Then $f(n)=O\left(\log _{2} n\right)=O(\log n)$

Big-O

e.g. Let $f(n)=6 n^{3}+5 n^{2}+4 n+100$

Then $f(n)=$
e.g. Let $f(n)=3 n^{2}+20 n \log _{2} n+10^{2}$

Then $f(n)=$
e.g. Let $f(n)=2 \log _{2} n+7 \log _{2} \log _{2} n+4$

Then $f(n)=$
e.g. Let $f(n) \equiv 99$

Then $\frac{f(n)=O(1)}{}$
e.g. Let $f(n)=88 n^{99}+2^{n}$

Then $f(n)=O\left(n^{49}\right)$

Big-O
e.g. $f(n)=O\left(n^{2}\right)+O(n)=O\left(n^{2}\right)$
e.g. $f(n)=O(n \log n)+\frac{n}{2} O(n)=O\left(n^{2}\right)$
e.g. $f(n)=\begin{gathered}2^{O(n)}+n^{O(1)}=2^{O(n)} \\ n^{l}\end{gathered}$ expu. poly.

Example

Consider the following TM (decider) M1 that decides

M1 = "On input string s :
$\underbrace{\downarrow}_{n}$

1) Scan the tape; if a 0 is to the right of a 1 , reject
2) Scan the tape and cross off one 0 and one $1 . \rightarrow 0(n)$ Repeat until no 0 er) no 1 on the tape. $\frac{n}{2}$
3) If only 0 remains or only 1 remains on the tape, reject; if neither 0 nor 1 remains on the tape, accept."

$$
|s|=n
$$

Time complexity $f(n)=O(n)+\frac{n}{2} \cdot O(n)+O(n)$

$$
=O\left(n^{2}\right)
$$

$$
n \rightarrow \frac{n}{2} \rightarrow \frac{n}{4} \rightarrow \cdots
$$

Example

$$
\frac{2}{\frac{20 \times 1 x_{1}}{200 \cdots B}}
$$

Consider the following TM (decider) M2 that decides $L=\left\{\left.\frac{n}{0^{n} n^{n}} \right\rvert\, n=0,1, \ldots\right\}$:
M2 = "On input string s :

1) Scan the tape; if a 0 is to the right of a 1 , reject
2) Scan the tape and cross off every other 0 starting from the first 0 , then every other 1 starting from the first 1. $\xrightarrow{\text { Repeat }}$ until no 0 or no 1 on the tape.
3) If only 0 remains or only 1 remains on the tape, reject; if neither 0 nor 1 remains on the tape, accept."

Time complexity $f(n)=O(n)+\log _{2} n O(n)+O(n)$

$$
=O(n \log n)
$$

Example

Consider the following TM (decider) M3 with 2 tapes

M3 = "On input string s :

1) Scan tape 1; if a 0 is to the right of a 1 , reject $0(n)$
2) Scan 0 s on tape 1 until the first $1, O(n)$ and copy the Os onto tape 2.
3) Scan As on tape 1 until B. For each 1 read on tape 1 cross off a 0 on tape 2 . If all 0 s are crossed off on tape 2 before is on tape 1 are read, reject
$O(n)$
4) If 0 remains on tape 2 , reject;
if all 0 s are crossed off on tape, accept." $O(n)$
Time complexity $f(n)=O(n)$

Recap

For language $L=\left\{\alpha^{n} \beta^{n} \mid n=0,1, \ldots\right\}$:

> M1 (1-tape) M2 (1-tape) M3 (2-tape)
Time complexity $O\left(n^{2}\right)$ $O(n \log n)$ $O(n)$
$O(n \log n)$ is the best a single-tape TM can do if the language it decides is non-regular

Time complexity is dependent on models
(Decidability was not)

Polynomial difference

Multi-tape TM

Time complexity

$$
(t(n) \geq n)
$$

$$
f(n)=O(t(n))
$$

$$
f(n)=O\left(t^{2}(n)\right)
$$

Time complexity of nondeterministic TM

Defn. Let \mathbf{N} be a (nondeterministic) decider.
For an input string s, \mathbf{N} accepts/rejects s on multiple branches and let $t(s)$ be the maximum steps among these branches.
The time complexity of \mathbf{N} is

$$
\begin{aligned}
& \text { Non-det. } \quad f(n)=\max _{\left\{s \in \Sigma^{*}| | s \mid=n\right\}} t(s) \\
& t(s)=\max ^{q_{\text {rages }}}\left\{t_{1}(s), t_{2}(s), t_{t}(s)\right\}
\end{aligned}
$$

Bet

Exponential difference

Nondeterministic single-tape TM

Time complexity

$$
(t(n) \geq n)
$$

Deterministic single-tape TM
$f(n)=2^{O(t(n))}$

Class P and NP

Difference between multi-tape and single-tape: polynomial
Difference between nondeterministic and deterministic: exponential
e.g. n^{3} and 2^{n}

Class P and NP

From now on: draw a line for decidable languages:
Class P: languages that can be decided by a polynomial time $O\left(n^{c}\right)$ algorithm (tractable, practically computable)

Class NP: languages that can be decided by an exponential time $O\left(2^{c n}\right)$ algorithm, but a polynomial time algorithm has not been found (intractable, practically unsolvable)

Example

Language $L=\left\{\alpha^{n} \beta^{n} \mid n=0,1, \ldots\right\}$ can be decided by a TM with time complexity $O(n)\left(O(n \log n), O\left(n^{2}\right)\right)$ so it is in Class P

Every context-free language is in Class P

Example

$C \Theta \rightarrow$

$$
n=\begin{gathered}
\text { "number of } \\
\text { nodes" }
\end{gathered}
$$

Consider $L:=\{\langle\mathcal{G}\rangle \mid \mathcal{G}$ is a undirected connected graph $\}$ We designed the following TM that decides L
$\mathbf{M}=$ "On input string $\langle\mathcal{G}\rangle$:

1) Select the first node and mark it.
$O(1)$
2) From a marked node v, select an unmarked node v^{\prime} that is connected to v and mark v^{\prime} 。O(n).O(n) Repeat this step until no unmarked nodes can be selected.
3) Scan all nodes to determine if they are all marked. If so, accept. Otherwise, reject."

Let n be the number of nodes in \mathcal{G}
Time complexity $f(n)=O\left(n^{2}\right)$
Let n be the number of nodes in
Time complexity $f(n)=O\left(n^{2}\right)$

Class NP

These are languages for which a polynomial time algorithm has not been found.
Existence is unknown.

Instead, a polynomial time algorithm using nondeterministic TM has been found, which corresponds to an exponential time algorithm using deterministic TM

Example

Let \mathcal{G} be an undirected graph. A clique is a subgraph of \mathcal{G}, where every two nodes are connected by an edge.

Example

Let \mathcal{G} be an undirected graph. A clique is a subgraph of \mathcal{G}, where every two nodes are connected by an edge.

A k-clique is a clique that contains k nodes.
Problem: given a graph \mathcal{G} and a number k, determine if \mathcal{G} contains a k-clique.

Example

Consider $L:=\{<\mathcal{G}, k>\mid \mathcal{G}$ is an undirected graph that contains a k-clique $\}$.
Design a TM that decides L

Example

Consider $L:=\{<\mathcal{G}, k>\mid \mathcal{G}$ is an undirected graph that contains a k-clique $\}$.
Design a TM that decides L
$\mathbf{N}=$ "On input string $\langle\mathcal{G}, k\rangle$:

1) Nondeterministically select k nodes.
2) Scan the edge set \mathcal{E} to check
if an edge exists between every two of the selected k nodes
3) If there is a branch of \mathbf{N} checks positively, accept.

Otherwise, reject."
Let n be the number of nodes in \mathcal{G}
Time complexity $f(n)=$

Example

Let \mathcal{G} be an undirected graph. A Hamiltonian cycle is a cycle that visits each node exactly once.

Example

Let \mathcal{G} be an undirected graph. A Hamiltonian cycle is a cycle that visits each node exactly once.

Problem: given a graph \mathcal{G}, determine if \mathcal{G} contains a Hamiltonian cycle.

Example

Consider $L:=\{\langle\mathcal{G}\rangle \mid \mathcal{G}$ is an undirected graph that contains a Hamiltonian cycle\}.

Design a TM that decides L

Example

Consider $L:=\{\langle\mathcal{G}\rangle \mid \mathcal{G}$ is an undirected graph that contains a Hamiltonian cycle\}.

Design a TM that decides L
$\mathbf{N}=$ "On input string $\langle\mathcal{G}\rangle$:

1) Nondeterministically select n edges.
2) Scan the edge set \mathcal{E} to check if the edges form a cycle that includes all nodes.
3) If there is a branch of \mathbf{N} checks positively, accept. Otherwise, reject."

Let n be the number of nodes in \mathcal{G}
Time complexity $f(n)=$

Example

Travelling Salesman Problem (TSP):

Find the shortest route that visits each city exactly once and returns to the starting city?

Such a route is a Hamiltonian cycle
Problem: given a (weighted) undirected graph \mathcal{G} and a number d, determine if there is a Hamiltonian cycle with distance $\leq d$

Example

Consider $L:=\{<\mathcal{G}, d>\mid \mathcal{G}$ is a (weighted) undirected graph that contains a Hamiltonian cycle with distance $\leq d\}$.

Design a TM that decides L

Example

Consider $L:=\{<\mathcal{G}, d\rangle \mid \mathcal{G}$ is a (weighted) undirected graph that contains a Hamiltonian cycle with distance $\leq d\}$.

Design a TM that decides L
$\mathbf{N}=$ "On input string $\langle\mathcal{G}, d\rangle$:

1) Nondeterministically select n edges.
2) Scan the edge set \mathcal{E} to check
if the edges form a cycle that includes all nodes and the sum of distances is $\leq d$.
3) If there is a branch of \mathbf{N} checks positively, accept.

Otherwise, reject."
Let n be the number of nodes in \mathcal{G}
Time complexity $f(n)=$

Class P and NP

There are two possibilities:

$$
\mathrm{P} \nsubseteq \mathrm{NP} \quad \mathrm{P}=\mathrm{NP}
$$

One of the greatest open questions, worth of 1M USD

