
Chapter 2

The Equation ẋ = Ax

The object of study in this chapter is the unforced state equation

ẋ = Ax.

Here A is an n⇥ n real matrix and x(t) an n-dimensional vector-valued function of time.

2.1 Brief Review of Some Linear Algebra

In this brief section we review these concepts/results: Rn, linear independence of a set of vectors,
span of a set of vectors, subspace, basis for a subspace, rank of a matrix, existence and uniqueness
of a solution to Ax = b where A is not necessarily square, inverse of a matrix, invertibility. If you
remember them (and I hope you do), skip to the next section.

The symbol Rn stands for the vector space of n-tuples, i.e., ordered lists of n real numbers.
A set of vectors {v

1

, . . . , v
k

} in Rn is linearly independent if none is a linear combination of
the others. One way to check this is to write the equation

c
1

v
1

+ · · ·+ c
k

v
k

= 0

and then try to solve for the c0
i

s. The set is linearly independent i↵ the only solution is c
i

= 0 for
every i,

The span of {v
1

, . . . , v
k

}, denoted Span{v
1

, . . . , v
k

}, is the set of all linear combinations of these
vectors.

A subspace V of Rn is a subset of Rn that is also a vector space in its own right. This is true
i↵ these two conditions hold: If x, y are in V, then so is x + y; if x is in V and c is a scalar, then
cx is in V. Thus V is closed under the operations of addition and scalar multiplication. In R3 the
subspaces are the lines through the origin, the planes through the origin, the whole of R3, and the
set consisting of only the zero vector.

A basis for a subspace is a set of linearly independent vectors whose span equals the subspace.
The number of elements in a basis is the dimension of the subspace.

The rank of a matrix is the dimension of the span of its columns. This can be proved to equal
the dimension of the span of its rows.

The equation Ax = b has a solution i↵ b belongs to the span of the columns of A, equivalently

rank A = rank
⇥

A b
⇤

.
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18 CHAPTER 2. THE EQUATION Ẋ = AX

When a solution exists, it is unique i↵ the columns of A are linearly independent, that is, the rank
of A equals its number of columns.

The inverse of a square matrix A is a matrix B such that BA = I. If this is true, then AB = I.
The inverse is unique and we write A�1. A square matrix A is invertible i↵ its rank equals its
dimension (we say “A has full rank”); equivalently, its determinant is nonzero. The inverse equals
the adjoint divided by the determinant.

2.2 Eigenvalues and Eigenvectors

Now we turn to ẋ = Ax. The time evolution of x(t) can be understood from the eigenvalues and
eigenvectors of A—a beautiful connection between dynamics and algebra. Recall that the eigenvalue
equation is

Av = �v.

Here � is a real or complex number and v is a nonzero real or complex vector; � is an eigenvalue
and v a corresponding eigenvector. The eigenvalues of A are unique but the eigenvectors are not:
If v is an eigenvector, so is cv for any real number c 6= 0. The spectrum of A, denoted �(A), is its
set of eigenvalues. The spectrum consists of n numbers, in general complex, and they are equal to
the zeros of the characteristic polynomial det(sI �A).

Example Consider two carts and a dashpot like this:

M1 M2

x1 x2

D

Take D = 1, M
1

= 1, M
2

= 1/2, x
3

= ẋ
1

, x
4

= ẋ
2

. You can derive that the model is ẋ = Ax, where

A =

2

6

6

4

0 0 1 0
0 0 0 1
0 0 �1 1
0 0 2 �2

3

7

7

5

.

The characteristic polynomial of A is s3(s+ 3), and therefore

�(A) = {0, 0, 0,�3}.

⇤

The equation Av = �v says that the action of A on an eigenvector is very simple—just multi-
plication by the eigenvalue. Likewise, the motion of x(t) starting at an eigenvector is very simple.

Lemma 2.2.1 If x(0) is an eigenvector v of A and � the corresponding eigenvalue, then x(t) = e�tv.
Thus x(t) is an eigenvector too for every t.
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Proof The initial-value problem

ẋ = Ax, x(0) = v

has a unique solution—this is from di↵erential equation theory. So all we have to do is show that
e�tv satisfies both the initial condition and the di↵erential equation, for then e�tv must be the
solution x(t). The initial condition is easy:

e�tv
�

�

�

t=0

= v.

And for the di↵erential equation,

d

dt
(e�tv) = e�t�v = e�tAv = A(e�tv).

⇤

The result of the lemma extends to more than one eigenvalue. Let �
1

, . . . ,�
n

be the eigenvalues
of A and let v

1

, . . . , v
n

be corresponding eigenvectors. Suppose the initial state x(0) can be written
as a linear combination of the eigenvectors:

x(0) = c
1

v
1

+ · · ·+ c
n

v
n

.

This is certainly possible for every x(0) if the eigenvectors are linearly independent. Then the
solution satisfies

x(t) = c
1

e�1tv
1

+ · · ·+ c
n

e�ntv
n

.

This is called a modal expansion of x(t).

Example

A =



�1 1
2 �2

�

, �
1

= 0, �
2

= �3, v
1

=



1
1

�

, v
2

=



�1
2

�

Let’s say x(0) = (0, 1). The equation

x(0) = c
1

v
1

+ c
2

v
2

is equivalent to

x(0) = V c,

where V is the 2⇥ 2 matrix with columns v
1

, v
2

and c is the vector (c
1

, c
2

). Solving gives c
1

= c
2

=
1/3. So

x(t) =
1

3
v
1

+
1

3
e�3tv

2

⇤
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The case of complex eigenvalues is only a little complicated. If �
1

is a complex eigenvalue, some
other, say �

2

, is its complex conjugate: �
2

= �
1

. The two eigenvectors, v
1

and v
2

, can be taken to
be complex conjugates too (easy proof). Then if x(0) is real and we solve

x(0) = c
1

v
1

+ c
2

v
2

,

we’ll find that c
1

, c
2

are complex conjugates as well. Thus the equation will look like

x(0) = c
1

v
1

+ c
1

v
2

= 2< (c
1

v
1

),

where < denotes real part.

Example

A =



0 �1
1 0

�

, �
1

= j, �
2

= �j, v
1

=



1
�j

�

, v
2

=



1
j

�

Suppose x(0) = (0, 1). Then c
1

= j/2, c
2

= �j/2 and

x(t) = 2<
⇣

c
1

e�1tv
1

⌘

= <
✓

jejt


1
�j

�◆

=



� sin t
cos t

�

.

⇤

2.3 The Jordan Form

Now we turn to the structure theory of a matrix related to its eigenvalues. It’s convenient to
introduce a term, the kernel of a matrix A. Kernel is another name for nullspace. Thus Ker A is
the set of all vectors x such that Ax = 0; that is, Ker A is the solution space of the homogeneous
equation Ax = 0. Notice that the zero vector is always in the kernel. If A is square, then Ker A is
the zero subspace, and we write Ker A = 0, i↵ 0 is not an eigenvalue of A. If 0 is an eigenvalue,
then Ker A equals the span of all the eigenvectors corresponding to this eigenvalue; we say Ker A
is the eigenspace corresponding to the eigenvalue 0. More generally, if � is an eigenvalue of A
the corresponding eigenspace is the solution space of Av = �v, that is, of (A � �I)v = 0, that is,
Ker (A� �I).

Let’s begin with the simplest case, where A is 2⇥ 2 and has 2 distinct eigenvalues, �
1

,�
2

. You
can show (this is a good exercise) that there are then 2 linearly independent eigenvectors, say v

1

, v
2

(maybe complex vectors). The equations

Av
1

= �
1

v
1

, Av
2

= �
2

v
2

are equivalent to the matrix equation

A
⇥

v
1

v
2

⇤

=
⇥

v
1

v
2

⇤



�
1

0
0 �

2

�

,

that is, AV = V A
JF

, where

V =
⇥

v
1

v
2

⇤

, A
JF

= diag (�
1

,�
2

).
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The latter matrix is the Jordan form of A. It is unique up to reordering of the eigenvalues. The
mapping A 7�! A

JF

= V �1AV is called a similarity transformation. Example:

A =



�1 1
2 �2

�

, V =



1 �1
1 2

�

, A
JF

=



0 0
0 �3

�

.

Corresponding to the eigenvalue �
1

= 0 is the eigenvector v
1

= (1, 1), the first column of V . All
other eigenvectors corresponding to �

1

have the form cv
1

, c 6= 0. We call the subspace spanned by
v
1

the eigenspace corresponding to �
1

. Likewise, �
2

= �3 has a one-dimensional eigenspace.
These results extend from n = 2 to general n. Note that in the preceding result we didn’t

actually need distinctness of the eigenvalues — only linear independence of the eigenvectors.

Theorem 2.3.1 The Jordan form of A is diagonal, i.e., A is diagonalizable by similarity transfor-
mation, i↵ A has n linearly independent eigenvectors. A su�cient condition is n distinct eigenval-
ues.

The great thing about diagonalization is that the equation ẋ = Ax can be transformed via
w = V �1x into ẇ = A

JF

w, that is, n decoupled equations:

ẇ
i

= �
i

w
i

, i = 1, . . . , n.

The latter equations are trivial to solve:

w
i

(t) = e�itw
i

(0), i = 1, . . . , n.

Now we look at how to construct the Jordan form when there are not n linearly independent
eigenvectors. We start where A has only 0 as an eigenvalue.

Nilpotent matrices

Consider
2

4

0 1 0
0 0 0
0 0 0

3

5 ,

2

4

0 1 0
0 0 1
0 0 0

3

5 . (2.1)

For both of these matrices, �(A) = {0, 0, 0}. For the first matrix, the eigenspace Ker A is two-
dimensional and for the second matrix, one-dimensional. These are examples of nilpotent matrices:
A is nilpotent if Ak = 0 for some k � 1. The following statements are equivalent:

1. A is nilpotent.

2. All its eigs are 0.

3. Its characteristic polynomial is sn.

4. It is similar to a matrix of the form (2.1), where all elements are 0’s, except 0’s or 1’s on the
first diagonal above the main one. This is called the Jordan form of the nilpotent matrix.
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Example Suppose A is 3⇥ 3 and A = 0. Then of course it’s already in Jordan form,

2

4

0 0 0
0 0 0
0 0 0

3

5

⇤

Example Here we do an example of transforming a nilpotent matrix to Jordan form. Take

A =

2

6

6

6

6

4

1 1 0 0 0
�1 �1 0 1 0
0 0 0 0 0
0 0 0 1 1
0 0 0 �1 �1

3

7

7

7

7

5

.

The rank of A is 3 and hence the kernel has dimension 2. We can compute that

A2 =

2

6

6

6

6

4

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

7

7

7

7

5

, A3 =

2

6

6

6

6

4

0 0 0 1 1
0 0 0 �1 �1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

7

7

7

7

5

, A4 = 0.

Take any vector v
5

in Ker A4 = R5 that is not in Ker A3, for example,

v
5

= (0, 0, 0, 0, 1).

Then take

v
4

= Av
5

, v
3

= Av
4

, v
2

= Av
3

.

We get

v
4

= (0, 0, 0, 1,�1) 2 Ker A3, 62 Ker A4

v
3

= (0, 1, 0, 0, 0) 2 Ker A2, 62 Ker A3

v
2

= (1,�1, 0, 0, 0) 2 Ker A, 62 Ker A2.

Finally, take v
1

2 Ker A, linearly independent of v
2

, for example,

v
1

= (0, 0, 1, 0, 0).

Assemble v
1

, . . . , v
5

into the columns of V . Then

V �1AV = A
JF

=

2

6

6

6

6

4

0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

3

7

7

7

7

5

.
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This is block diagonal, like this:

2

6

6

6

6

4

0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

3

7

7

7

7

5

.

⇤

In general, the Jordan form of a nilpotent matrix has 0 in each entry except possibly in the first
diagonal above the main diagonal which may have some 1s.

A nilpotent matrix has only the eigenvalue 0. Now consider a matrix A that has only one
eigenvalue, �, i.e.,

det(sI �A) = (s� �)n.

To simplify notation, suppose n = 3. Letting r = s� �, we have

det[rI � (A� �I)] = r3,

i.e., A��I has only the zero eigenvalue, and hence A��I =: N , a nilpotent matrix. So the Jordan
form of N must look like

2

4

0 ? 0
0 0 ?
0 0 0

3

5 ,

where each star can be 0 or 1, and hence the Jordan form of A is

2

4

� ? 0
0 � ?
0 0 �

3

5 , (2.2)

To recap, if A has just one eigenvalue, �, then its Jordan form is �I + N , where N is a nilpotent
matrix in Jordan form.

An extension of this analysis results in the Jordan form in general. Suppose A is n ⇥ n and
�
1

, . . . ,�
p

are the distinct eigenvalues of A and m
1

, . . . ,m
p

are their multiplicities; that is, the
characteristic polynomial is

det(sI �A) = (s� �
1

)m1 · · · (s� �
p

)mp .

Then A is similar to

A
JF

=

2

6

4

A
1

. . .

A
p

3

7

5

,
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where A
i

is m
i

⇥m
i

and it has only the eigenvalue �
i

. Thus A
i

has the form �
i

I +N
i

, where N
i

is
a nilpotent matrix in Jordan form. Example:

A =

2

6

6

4

0 0 1 0
0 0 0 1
0 0 �1 1
0 0 2 �2

3

7

7

5

As we saw, the spectrum is �(A) = {0, 0, 0,�3}. Thus the Jordan form must be of the form

A
JF

=

2

6

6

4

0 ? 0 0
0 0 ? 0
0 0 0 0
0 0 0 �3

3

7

7

5

.

Since A has rank 2, so does A
JF

. Thus only one of the stars is 1. Either is possible, for example,

A
JF

=

2

6

6

4

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 �3

3

7

7

5

.

This has two “Jordan blocks”:

A
JF

=



A
1

0
0 A

2

�

, A
1

=

2

4

0 0 0
0 0 1
0 0 0

3

5 , A
2

= �3.

2.4 The Transition Matrix

Let us review from the ECE356 course notes. For a square matrix M , the exponential eM is defined
as

eM := I +M +
1

2!
M2 +

1

3!
M3 + · · · .

The matrix eM is not the same as the component-wise exponential of M . Facts:

1. eM is invertible for every M , and (eM )�1 = e�M .

2. eM+N = eMeN i↵ M and N commute, i.e., MN = NM .

The matrix function t 7�! etA : R ! Rn⇥n is then defined and is called the transition matrix
associated with A. It has the properties

1. etA|
t=0

= I

2. etA and A commute.

3.
d

dt
etA = AetA = etAA.

Moreover, the solution of

ẋ = Ax, x(0) = x
0

is x(t) = etAx
0

. So etA maps the state at time 0 to the state at time t. In fact, it maps the state at
any time t

0

to the state at time t
0

+ t.



2.4. THE TRANSITION MATRIX 25

On computing the transition matrix

via the Jordan form If one can compute the Jordan form of A, then etA can be written in closed
form, as follows. The equation

AV = V A
JF

implies

A2V = AV A
JF

= V A2

JF

.

Continuing in this way gives

AkV = V Ak

JF

,

and then

eAtV = V eAJF t,

so finally

eAt = V eAJF tV �1.

The matrix exponential eAJF t is easy to write down. For example, suppose there’s just one eigen-
value, so A

JF

= �I +N , N nilpotent, n⇥ n. Then

eAJF t = e�teNt

= e�t
✓

I +Nt+N2

t2

2!
+ · · ·+Nn�1

tn�1

(n� 1)!

◆

.

via Laplace transforms Taking Laplace transforms of

ẋ = Ax, x(0) = x
0

gives

sX(s)� x
0

= AX(s).

This yields

X(s) = (sI �A)�1x
0

.

Comparing

x(t) = etAx
0

, X(s) = (sI �A)�1x
0

shows that etA, (sI � A)�1 are Laplace transform pairs. So one can get etA by finding the matrix
(sI �A)�1 and then taking the inverse Laplace transform of each element.
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2.5 Stability

The concept of stability is fundamental in control engineering. Here we look at the scenario where
the system has no input, but its state has been perturbed and we want to know if the system will
recover. This was introduced in the ECE356 course notes. Here we go a little farther now that
we’re armed with the Jordan form.

The maglev example is a good one to illustrate this point. Suppose a feedback controller has
been designed to balance the ball’s position at 1 cm below the magnet. Suppose if the ball is placed
at precisely 1 cm it will stay there; that is, the 1 cm location is a closed-loop equilibrium point.
Finally, suppose there is a temporary wind gust that moves the ball away from the 1 cm position.
The stability questions are, will the ball move back to the 1 cm location; if not, will it at least stay
near that location?

So consider

ẋ = Ax.

Obviously if x(0) = 0, then x(t) = 0 for all t. We say the origin is an equilibrium point—if you
start there, you stay there. Equilibrium points can be stable or not. While there are more elaborate
and formal definitions of stability for the above homogeneous system, we choose the following two:
The origin is asymptotically stable if x(t) �! 0 as t �! 1 for all x(0). The origin is stable
if x(t) remains bounded as t �! 1 for all x(0). Since x(t) = eAtx(0), the origin is asymptotically
stable i↵ every element of the matrix eAt converges to zero, and is stable i↵ every element of the
matrix eAt remains bounded as t �! 1. Of course, asymptotic stability implies stability.

Asymptotic stability is relatively easy to characterize. Using the Jordan form, one can prove
this very important result, where < denotes “real part”:

Theorem 2.5.1 The origin is asymptotically stable i↵ the eigenvalues of A all satisfy < � < 0.

Let’s say the matrix A is stable if its eigenvalues satisfy < � < 0. Then the origin is asymptot-
ically stable i↵ A is stable.

Now we turn to the more subtle property of stability. We’ll do some examples, and we may as
well have A in Jordan form.

Consider the nilpotent matrix

A = N =



0 0
0 0

�

.

Obviously, x(t) = x(0) for all t and so the origin is stable. By contrast, consider

A = N =



0 1
0 0

�

.

Then

eNt = I + tN,

which is unbounded and so the origin is not stable. This example extends to the n ⇥ n case: If A
is nilpotent, the origin is stable i↵ A = 0.
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Here’s the test for stability in general in terms of the Jordan form of A:

A
JF

=

2

6

4

A
1

. . .

A
p

3

7

5

.

Recall that each A
i

has just one eigenvalue, �
i

, and that A
i

= �
i

I + N
i

, where N
i

is a nilpotent
matrix in Jordan form.

Theorem 2.5.2 The origin is stable i↵ the eigenvalues of A all satisfy < �  0 and for any
eigenvalue with < �

i

= 0, the nilpotent matrix N
i

is zero, i.e., A
i

is diagonal.

Here’s an example with complex eigenvalues:

A =



0 �1
1 0

�

, A
JF

=



j 0
0 �j

�

.

The origin is stable since there are two 1⇥ 1 Jordan blocks. Now consider

A =

2

6

6

4

0 �1 1 0
1 0 0 1
0 0 0 �1
0 0 1 0

3

7

7

5

.

The eigenvalues are j, j,�j,�j and so the Jordan form must look like

A
JF

=

2

6

6

4

j ? 0 0
0 j 0 0
0 0 �j ?
0 0 0 �j

3

7

7

5

.

Since the rank of A� jI equals 3, the upper star is 1; since the rank of A+ jI equals 3, the lower
star is 1. Thus

A
JF

=

2

6

6

4

j 1 0 0
0 j 0 0
0 0 �j 1
0 0 0 �j

3

7

7

5

.

Since the Jordan blocks are not diagonal, the origin is not stable.

Example Consider the cart-spring-damper system

y

K

D
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The equation is

Mÿ +Dẏ +Ky = 0.

Defining x = (y, ẏ), we have ẋ = Ax with

A =



0 1
�K/M �D/M

�

.

Assume M > 0 and K,D � 0. If D = K = 0, the eigenvalues are {0, 0} and A is a nilpotent
matrix in Jordan form. The origin is an unstable equilibrium. If only D = 0 or K = 0 but not
both, the origin is stable but not asymptotically stable. And if both D,K are nonzero, the origin
is asymptotically stable. ⇤

Example Two points move on the line R. The positions of the points are x
1

, x
2

. They move toward
each other according to the control laws

ẋ
1

= x
2

� x
1

, ẋ
2

= x
1

� x
2

.

Thus the state is x = (x
1

, x
2

) and the state equation is

ẋ = Ax, A =



�1 1
1 �1

�

.

The eigenvalues are �
1

= 0,�
2

= �2, so the origin is stable but not asymptotically stable. Obviously,
the two points tend toward each other; that is, the state x(t) tends toward the subspace

V = {x : x
1

= x
2

}.

This is the eigenspace for the zero eigenvalue. To see this convergence, write the initial condition
as a linear combination of eigenvectors:

x(0) = c
1

v
1

+ c
2

v
2

, v
1

=



1
1

�

, v
2

=



�1
1

�

.

Then

x(t) = c
1

e�1tv
1

+ c
2

e�2tv
2

= c
1

v
1

+ c
2

e�2tv
2

! c
1

v
1

.

So x
1

(t) and x
2

(t) both converge to c
1

, the same point. ⇤

Phase portraits help us visualize state evolution and stability, but they’re applicable only for
the n = 2 case. Below is shown a plot in R2 of the vector field for

A =



0 1
�1 �1

�

,

that is, at a grid of points, the directions of the velocity vectors Ax are shown translated to the
point x. By following the arrows, we get a trajectory; one is shown. The plot was done using
www.math.psu.edu/melvin/phase/newphase.html
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You can also use MATLAB, Scilab (free), Mathematica, or Octave (free).

2.6 Problems

1. Are the following vectors linearly independent?

v
1

= (1, 1, 2, 0), v
2

= (1, 0, 2,�2), v
3

= (�1, 2,�2, 6).

2. Continuing with the same vectors, find a basis for Span {v
1

, v
2

, v
3

}.

3. What kind of geometric object is {x : Ax = b} when A 2 Rm⇥n? That is, is it a sphere, a
point—what?

4. (a) Let A be an 8⇥ 8 real matrix with eigenvalues

2, 2,�3,�3,�3, 8, 4, 4.

Assume

rank(A� 2I) = 7, rank(A+ 3I) = 6, rank(A� 4I) = 6.

Write down the Jordan form of A.

(b) The matrix

A =

2

6

6

4

1 0 0 1
1 0 0 1
1 0 0 1

�1 0 0 �1

3

7

7

5

is nilpotent. Write down its Jordan form.
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5. Take

A =

2

6

6

4

0 0 1 0
0 0 0 1
0 0 �1 1
0 0 2 �2

3

7

7

5

.

Show that the matrix V constructed as follows satisfies V �1AV = A
JF

:

Select v
3

in Ker A2 but not in Ker A.

Set v
2

= Av
3

.

Select v
1

in Ker A such that {v
1

, v
2

} is linearly independent.

Select an eigenvector v
4

corresponding to the eigenvalue �3.

Set V = [v
1

v
2

v
3

v
4

].

(The general construction of the basis for the Jordan form is along these lines.)

6. Let

A =

2

6

6

4

0 1 0 0
0 0 1 0
0 0 0 1

�2 1 0 2

3

7

7

5

.

Write down the Jordan form of A.

7. Consider

A =



� !
�! �

�

,

where � and ! 6= 0 are real. Find the Jordan form and the transition matrix.

8. In the previous problem, we saw that when

A =



� !
�! �

�

its transition matrix is easy to write down. This problem demonstrates that a matrix with
distinct complex eigenvalues can be transformed into the above form using a nonsingular
transformation. Let

A =



�1 �4
1 �1

�

.

Determine the eigenvalues and eigenvectors of A, noting that they form complex conjugate
pairs. Let the first eigenvalue be written as a+jb with the corresponding eigenvector v

1

+jv
2

.
Take v

1

and v
2

as the columns of a matrix V . Find V �1AV .
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9. Consider the homogeneous state equation ẋ = Ax with

A =



3 1
2 2

�

and x
0

= (3, 2). Find a modal expansion of x(t).

10. Show that the origin is asymptotically stable for ẋ = Ax i↵ all poles of every element of
(sI �A)�1 are in the open left half-plane. Show that the origin is stable i↵ all poles of every
element of (sI � A)�1 are in the closed left half-plane and those on the imaginary axis have
multiplicity 1.

11. Consider the linear system

ẋ =



0 1
1 0

�

x+



�1
1

�

u

y =
⇥

0 1
⇤

x

(a) If u(t) is the unit step and x(0) = 0, is y(t) bounded?

(b) If u(t) = 0 and x(0) is arbitrary, is y(t) bounded?

12. (a) Suppose that �(A) = {�1,�3,�3,�1 + j2,�1� j2} and the rank of (A� �I)
�=�3

is 4.
Determine A

JF

.

(b) Suppose that �(A) = {�1,�2,�2,�2} and the rank of (A � �I)
�=�2

is 3. Determine
A

JF

.

(c) Suppose that �(A) = {�1,�2,�2,�2,�3} and the rank of (A��I)
�=�2

is 3. Determine
A

JF

.

13. Find A
JF

for

A =

2

4

0 1 0
0 0 1

�2 �4 �3

3

5 .

14. Summarize all the ways to find exp(At). Then find exp(At) for

A =

2

4

1 1 0
0 1 1
0 0 2

3

5 .

15. Consider the set

{cv : c � 0},

where v 6= 0 is a given vector in R2. This set is called a ray from the origin in the direction
of v. More generally,

{x
0

+ cv : c � 0}

is a ray from x
0

in the direction of v. Find a 2 ⇥ 2 matrix A and a vector x
0

such that the
solution x(t) of ẋ = Ax, x(0) = x

0

is a ray.
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16. Consider the following system:

ẋ
1

= �x
2

ẋ
2

= x
1

� 3x
2

Do a phase portrait using Scilab or MATLAB. Interpret the phase portrait in terms of the
modal decomposition of the system. Do lots more examples of this type.


