LINEAR FEEDBACK CONTROL - HOMEWORK 4

Assigned 2018.12.03. Submission deadline 2019.01.07 (for only those who want their homework to be marked).

Problems

1. Consider $\dot{x}=A x+B u$, where

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The eigenvalues of A are j and $-j$ (here $j:=\sqrt{-1}$); thus the origin is stable but not asymptotically stable.
(1.1) Is (A, B) controllable?
(1.2) Consider state feedback $u=F x$, and suppose that the desired eigenvalues of $A+B F$ are $-1,-2$ (so that the closed-loop system is asymptotically stable). Compute F.
2. Consider the cart-pendulum system in HOMEWORK 1 and the linearized system $\dot{x}=A x+B u$. You have checked in HOMEWORK3 that (A, B) is controllable. Now for simplicity let $m=$ $M=L=1$ and consider state feedback $u=F x$. Suppose that the desired eigenvalues of the closed-loop matrix $A+B F$ are $-1,-2,-1+j,-1-j$ (so that the closed-loop system is asymptotically stable). Compute F.
3. Consider a double inverted-pendula system: $\dot{x}=A x+B u$ where

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
\frac{g}{l} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{g}{L} & 0
\end{array}\right], B=\left[\begin{array}{c}
0 \\
\frac{1}{m l} \\
0 \\
\frac{1}{M L}
\end{array}\right] .
$$

Here m, M are the masses of the two pendula; l, L are the lengths of the two pendula; and g is the gravitational acceleration.
(3.1) Is (A, B) is controllable? If so, explain why.
(3.2) If (A, B) is not controllable, decompose this (uncontrollable) system into a controllable subsystem and an uncontrollable subsystem.
(3.3) Is (A, B) stabilizable?

Bonus problem (Matlab)

In this homework, we introduce a few convenient Matlab functions.
(i) Let A be a matrix. $\operatorname{rank}(A)$ computes the rank of A, and poly (A) computes the characteristic polynomial of A.
(ii) Let A, B be matrices of suitable sizes. $\operatorname{ctrb}(A, B)$ computes the controllability matrix of the pair (A, B).
(iii) Let A, B, C be matrices of suitable sizes. $[\tilde{A}, \tilde{B}, \tilde{C}, V]=\operatorname{ctrbf}(A, B, C)$ decomposes the system given by (A, B, C) into controllable and uncontrollable parts given by $(\tilde{A}, \tilde{B}, \tilde{C})$, and V is the invertible matrix for the corresponding similarity transformation.
(iv) Let A, B be matrices of suitable sizes, and Eigs be an array of desired closed-loop eigenvalues. $K=\operatorname{place}(A, B$, Eigs $)$ or $K=\operatorname{acker}(A, B$, Eigs) computes the gain matrix K for state feedback $u=-K x$.

