LINEAR FEEDBACK CONTROL - HOMEWORK 1

Assigned 2019.10.08. Submission deadline 2019.10.29 (for only those who want their homework to be marked).

Problems

1. Consider the following ordinary differential equation (ODE)

$$
\ddot{y}-2 y=3 \dot{u}
$$

Derive the state model (in the form of $\dot{x}=A x+B u$ and $y=C x$).
2. Consider a cart-pendulum system

θ : angle of the pendulum deviated from the upright direction
L : length of the pendulum
m : mass of the ball
M: mass of the cart
g : gravitational acceleration
y : position of the cart
u : force applied to the cart
F : force along the pendulum
For the ball, in the horizontal direction

$$
\begin{equation*}
F \sin \theta=m \frac{d^{2}}{d t^{2}}(y+L \sin \theta) \tag{1}
\end{equation*}
$$

in the vertical direction

$$
\begin{equation*}
m g-F \cos \theta=m \frac{d^{2}}{d t^{2}}(L-L \cos \theta) \tag{2}
\end{equation*}
$$

For the cart,

$$
\begin{equation*}
u-F \sin \theta=M \frac{d^{2} y}{d t^{2}} \tag{3}
\end{equation*}
$$

Choose the state variable $x=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]=\left[\begin{array}{lll}y & \dot{y} & \theta \\ \dot{\theta}\end{array}\right]^{\top}$.
2.1. Suppose that the angle θ is very small (i.e. $\sin \theta \approx \theta$ and $\cos \theta \approx 1$). From (1), (2), (3) derive the state model (in the form of $\dot{x}=A x+B u$ and $y=C x$).
2.2. From (1), (2), (3) derive the nonlinear model (check the details for yourself)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
\frac{u+m L x_{4}^{2} \sin x_{3}-m g \sin x_{3} \cos x_{3}}{M+m \sin ^{2} x_{3}} \\
x_{4} \\
\frac{-u \cos x_{3}-m L x_{4}^{2} \sin x_{3} \cos x_{3}+(m+M) g \sin x_{3}}{L\left(M+m \sin ^{2} x_{3}\right)}
\end{array}\right]
$$

Linearize the above model (by computing Jacobians) in the neighborhood of the equilibrium point $x^{*}=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$ and $u^{*}=0$ to derive $\dot{\Delta x}=A \Delta x+B \Delta u$. Check if matrices A, B are the same as in 2.1.

Bonus problem (Matlab)

Matlab is a software useful for control systems modeling and design. Our university has a license of Matlab 2015b. You can download the install files from the course website https://www.control.eng.osaka-cu.ac.jp/teaching/linear2019.
There are many tutorials on the basics of Matlab. One is at https://matlabacademy.mathworks.com/jp.
In this homework, we introduce how to create state models and transfer functions, as well as transform from one to the other. Given

$$
A=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad D=0
$$

to create the state model with these matrices, execute

$$
\mathrm{ss} 1=\operatorname{ss}(A, B, C, D)
$$

The next line

$$
\mathrm{tf} 1=\operatorname{tf}\left([0.5],\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]\right)
$$

creates a transfer function

$$
G(s)=\frac{0.5}{s^{2}+s}
$$

To convert tf1 to a state model, execute

$$
\mathrm{ss} 2=\mathrm{ss}(\mathrm{tf} 1)
$$

Finally to convert ss1 to a transfer line, execute

$$
\mathrm{tf} 2=\operatorname{tf}(\mathrm{ss} 1)
$$

Install Matlab 2015b and try the above procedures.

