LINEAR FEEDBACK CONTROL - HOMEWORK 5

Assigned 2020.01.07. Submission deadline 2020.01.21 (for only those who want their homework to be marked).

Problems

1. Consider $\dot{x}=A x$ and $y=C x$, where

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right], C=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

(1.1) Is (C, A) observable?
(1.2) Is (C, A) detectable?
2. Consider the cart-pendulum system in HOMEWORK 1 and the linearized system $\dot{x}=A x+B u$. For simplicity let $m=M=L=1$. Suppose that we can observe only the sum of the position of the cart and the angle of the pendulum; namely the output y is

$$
y=C x=\left[\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right] x
$$

(2.1) Is (C, A) observable? Is (C, A) detectable?
(2.2) Compute a matrix L such that the eigenvalues of $A+L C$ are $-1,-2,-1+j,-1-j$.
(2.3) Find an estimator-based output-feedback controller (using L computed in (2.2) and F in HOMEWORK 4) to asymptotically stabilize the cart-pendulum system.
(2.4) What are the eigenvalues of the closed-loop system?
3. Consider again the linearized cart-pendulum system in HOMEWORK 1 and $y=C x=$ [1 $\left.\begin{array}{llll}1 & 1 & 0\end{array}\right] x$; for simplicity let $m=M=L=1$. Design an output-feedback (error-feedback) controller such that the position of the cart asymptotically tracks a constant reference signal.
4. Consider a plant $\dot{x}=u(x, u \in \mathbb{R})$, a ramp reference signal and a sinusoid disturbance signal with frequency $2 \mathrm{rad} / \mathrm{s}$. Design a state-feedback controller such that the state x tracks the ramp reference while rejects the sinusoid disturbance.

Bonus problem (Matlab)

In this homework, we introduce the following two Matlab functions related to observability. (i) Let A, C be matrices of suitable sizes. $\operatorname{obsv}(A, C)$ computes the observability matrix of the pair (C, A).
(ii) Let A, B, C be matrices of suitable sizes. $[\tilde{A}, \tilde{B}, \tilde{C}, V]=\operatorname{obsvf}(A, B, C)$ decomposes the system given by (A, B, C) into observable and unobservable parts given by $(\tilde{A}, \tilde{B}, \tilde{C})$, and V is the invertible matrix for the corresponding similarity transformation.

