Controllability with multiple inputs

Let's now turn to the general case: $\dot{x}=A x+B u, x \in \mathbb{R}^{n}$ and $u \in \mathbb{R}^{m}$
E.g. $A=\left[\begin{array}{ccc}3 & -5 & 18 \\ -2 & 5 & -16 \\ -1 & 2 & -7\end{array}\right], B=\left[\begin{array}{cc}-3 & 0 \\ 0 & 3 \\ 0 & 1\end{array}\right]$

Check (A, B) is controllable $\operatorname{rank}\left(W_{C}=\left[\begin{array}{lll}B & A B & A^{2} B\end{array}\right]\right)=3$

Controllability with multiple inputs

Let's now turn to the general case: $\dot{x}=A x+B u, x \in \mathbb{R}^{n}$ and $u \in \mathbb{R}^{m}$
E.g. $A=\left[\begin{array}{ccc}3 & -5 & 18 \\ -2 & 5 & -16 \\ -1 & 2 & -7\end{array}\right], B=\left[\begin{array}{cc}-3 & 0 \\ 0 & 3 \\ 0 & 1\end{array}\right]$

Step|: Let $B_{1}=\left[\begin{array}{c}-3 \\ 0 \\ 0\end{array}\right]$ be the first column of B
$\operatorname{rank}\left[B_{1} A B_{1} A^{2} B_{1}\right]=\operatorname{rank}\left[\begin{array}{ccc}-3 & -9 & -3 \\ 0 & 6 & 0 \\ 0 & 3 & 0\end{array}\right]=2<3$
So $\left(A, B_{1}\right)$ is not controllable

Controllability with multiple inputs

Let's now turn to the general case: $\dot{x}=A x+B u, x \in \mathbb{R}^{n}$ and $u \in \mathbb{R}^{m}$
E.g. $A=\left[\begin{array}{ccc}3 & -5 & 18 \\ -2 & 5 & -16 \\ -1 & 2 & -7\end{array}\right], B=\left[\begin{array}{cc}-3 & 0 \\ 0 & 3 \\ 0 & 1\end{array}\right]$

Step2:
ut for $\hat{F}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],\left(A+B \hat{F}, B_{1}\right)$ is controllable:
$\left.\begin{array}{l}\operatorname{rank}\left[B_{1}(A+B \hat{F}) B_{1}(A+B \hat{F})^{2} B_{1}\right]=\operatorname{rank}\left[\begin{array}{ccc}-3 & 0 & 33 \\ 0 & -3 & -33 \\ 0 & 0 & -12\end{array}\right]=3 \\ 0\end{array}\right]$
design \tilde{F} to assign eigenvalues of $(A+B \hat{F})+B_{1} \tilde{F}$

Controllability with multiple inputs

Let's now turn to the general case: $\dot{x}=A x+B u, x \in \mathbb{R}^{n}$ and $u \in \mathbb{R}^{m}$
E.g. $A=\left[\begin{array}{ccc}3 & -5 & 18 \\ -2 & 5 & -16 \\ -1 & 2 & -7\end{array}\right], B=\left[\begin{array}{cc}-3 & 0 \\ 0 & 3 \\ 0 & 1\end{array}\right]$

Step $4:=\hat{F}+\left[\begin{array}{l}1 \\ 0\end{array}\right] \tilde{F}$
Then $A+B F=A+B\left(\hat{F}+\left[\begin{array}{l}1 \\ 0\end{array}\right] \tilde{F}\right)$

$$
=A+B \hat{F}+B\left[\begin{array}{l}
1 \\
0
\end{array}\right] \widetilde{F}=A+B \hat{F}+B_{1} \widetilde{F}
$$

Controllability with multiple inputs

Let's now turn to the general case: $\dot{x}=A x+B u, x \in \mathbb{R}^{n}$ and $u \in \mathbb{R}^{m}$

Fact: Let (A, B) be controllable, and B_{1} be the first column of $B\left(\right.$ and $\left.B_{1} \neq 0\right)$. Then there always exists \hat{F} s.t. $\left(A+B \hat{F}, B_{1}\right)$ is controllable.

Controllability with multiple inputs

Eigenvalue Assignment (or Pole Placement)

Consider $\dot{x}=A x+B u, x \in \mathbb{R}^{n}$ and $u \in \mathbb{R}^{m}$ and let $u=F x$ (state feedback).
Then all the eigenvalues of $A+B F$ are freely assignable ff (A, B) is controllable

1967 W. Murray Wonham first proved this result.

Stabilizability

To stabilize an unstable $\dot{x}=A x+B u$ by state feedback, all we need to do is to move the unstable eigenvalues of A
E.g. $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1\end{array}\right], B=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Eigenvalues of $A: \lambda_{1}=1, \lambda_{2}=1, \lambda_{3}=-1$
So $\dot{x}=A x+B u$ is unstable
To stabilize $\dot{x}=A x+B u$, we only need to move the unstable λ_{1}, λ_{2} to the (open) left half plane

Stabilizability

Consider $\dot{x}=A x+B u$ and $u=F x$
Say (A, B) is stabilizable if $(\exists F) A+B F$ is stable

Note: if (A, B) is controllable, then (A, B) is stabilizable

Proposition: Consider $\dot{x}=A x+B u$ and let $\lambda_{1}, \ldots, \lambda_{n}$ be eigenvalues of A.
Then (A, B) is stabilizable iff

$$
(\forall i=1, \ldots, n) \operatorname{Re}\left(\lambda_{i}\right) \geq 0 \Rightarrow \operatorname{rank}\left[A-\lambda_{i} I \quad B\right]=n
$$

Stabilizability

Note: (A, B) is stabilizable $\nRightarrow(A, B)$ is controllable
E.g. $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ -2 & 3 & 0 \\ 0 & 0 & -1\end{array}\right], B=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

Eigenvalues of $A: \lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=-1$ $\operatorname{rank}\left[\begin{array}{ll}A-\lambda_{1} I & B\end{array}\right] \operatorname{rank}\left[\begin{array}{cccc}-1 & 1 & 1 & 0 \\ -2 & 2 & 0 & 1 \\ 0 & 0 & -2 & 0\end{array}\right]=3 \quad$ stanitizable $N D T$ $\operatorname{rank}\left[\begin{array}{ll}A-\lambda_{2} I & B]=3\end{array}\right.$
$\operatorname{rank}\left[\begin{array}{lll}A-\lambda_{3} I & B\end{array}\right]=\operatorname{rank}\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ -2 & 4 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]=2<3$

Kalman decomposition

$\dot{x}=A x+B u$ can be decomposed into a controllable part and an uncontrollable part E.g. $A=\left[\begin{array}{ccc}0^{A_{11}} & 1 & A_{12} \\ \hline-2 & 3 & 0 \\ \hline 0 & 0 & -1 \\ A_{21} & A_{22}\end{array}\right], B=\left[\begin{array}{c}B_{1} \\ 1 \\ \hline 0\end{array}\right] \quad\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{ll}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]\left[\begin{array}{l}\tilde{x}_{2} \\ \dot{x}_{2}\end{array}\right]+\left[\begin{array}{l}\dot{x}_{1} \\ 0\end{array}\right]$

Controllable part: $\dot{\tilde{x}}_{1}=A_{11} \tilde{x}_{1}+A_{12} \tilde{x}_{2}+B_{1} u$
(A_{11}, B_{1}) controllable
Uncontrollable part: $\dot{\tilde{x}}_{2}=A_{22} \tilde{x}_{2}$
no control input u
(A, B) is stabilizable because $A_{22}=-1$ is stable

Kalman decomposition

$\dot{x}=A x+B u$ can be decomposed into
a controllable part and an uncontrollable part
E.g. $A=\left[\begin{array}{ccc}\left(\begin{array}{cc}A_{11} & 1 \\ -2 & 3\end{array}\right. & 1 \\ 0 & 0 & -1\end{array}\right], B=\left[\begin{array}{c}B_{1} \\ 1 \\ 0\end{array}\right]$
$\operatorname{Design} F_{1}$ s.t. $A_{11}+B_{1} F_{1}$ is stable $-1,-2$

$$
\begin{equation*}
(\lambda+1)(\lambda+2)=\lambda^{2}+31+2 \tag{1}
\end{equation*}
$$

$\left.\begin{array}{rl}A_{11}+\left[\begin{array}{ll}F_{11} & F_{12}\end{array}\right] B_{1} & =\left[\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right]+\left[\begin{array}{ll}f_{11} & F_{12}\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -23\end{array}\right]+\left[\begin{array}{cc}0 & 0 \\ F_{11} & F_{12}\end{array}\right] \\ & =\left[\begin{array}{cc}0 & 1 \\ -2+f_{11} & 3+F_{12}\end{array}\right] \\ \lambda^{2}-\left(3+f_{12}\right) \lambda-\left(-2+f_{11}\right.\end{array}\right] \cdots(2) \cdots\left(\begin{array}{ll}0 & -(2)\end{array}\right.$

Kalman decomposition

$\dot{x}=A x+B u$ can be decomposed into
a controllable part and an uncontrollable part
E.g. $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ -2 & 3 & 0 \\ 0 & 0 & -1\end{array}\right], B=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

Design F_{1} s.t. $A_{11}+B_{1} F_{1}$ is stable
Set $F=\left[\begin{array}{ll}F_{1} & 0\end{array}\right]$
$A+B F=\left[\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]+\left[\begin{array}{l}B_{1} \\ 0\end{array}\right]\left[\begin{array}{ll}F_{1} & 0\end{array}\right]$

$$
=\left[\begin{array}{ll}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]+\left[\begin{array}{cc}
B_{1} F_{1} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
A_{11}+B_{1} F_{1} & A_{12} \\
0 & A_{22}
\end{array}\right]
$$

Kalman decomposition

E.g. $A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & -2 & 0\end{array}\right], B=\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 2\end{array}\right]$
$\operatorname{rank} W_{c} \xlongequal[=]{\operatorname{rank} k}\left[\begin{array}{cccc}0 & -1 & 0 & 3 \\ -1 & 0 & 3 & 0 \\ 0 & 2 & 0 & -6 \\ 2 & 0 & -6 & 0\end{array}\right]=2<4$
The image space (column span) of $\begin{gathered}w_{c} \\ W_{i}\end{gathered}$

The set of all reachable states is the 2-dim subspace spanned by these two columns

Let $e_{1}:=\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 2\end{array}\right], e_{2}:=\left[\begin{array}{c}-1 \\ 0 \\ 2 \\ 0\end{array}\right]$
Add 2 more (independent) vectors to form a basis for \mathbb{R}^{4} (say standard basis) $e_{3}:=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right], e_{4}:=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
Now write $V:=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & e_{4}\end{array}\right]$
V is invertible: $V^{-1}=\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1\end{array}\right]$

Define a new state $\tilde{x}:=V^{-1} x($ thus $x=V \tilde{x})$
So $\dot{\tilde{x}}=V^{-1} \dot{x}=V^{-1}(A x+B u)$

$$
\begin{aligned}
& =V^{-1} A V \tilde{x}+V^{-1} B u \\
& =: \tilde{A} \tilde{x}+\tilde{B} u \\
& =\left[\begin{array}{cc|cc}
0 & -3 & -1 & 0 \\
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \tilde{x}+\left[\begin{array}{c}
A_{12} \\
\\
\\
A_{21}
\end{array} A_{22}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] u\right.
\end{aligned}
$$

Define a new state $\tilde{x}:=V^{-1} x($ thus $x=V \tilde{x})$
So $\dot{\tilde{x}}=V^{-1} \dot{x}=V^{-1}(A x+B u)$

$$
=V^{-1} A V \tilde{x}+V^{-1} B u
$$

$$
=: \tilde{A} \tilde{x}+\tilde{B} u
$$

$$
\begin{aligned}
& =: A x+B u \\
& =\left[\begin{array}{cc|cc}
0 & -3 & -1 & 0 \\
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & A_{12}
\end{array}\right] \tilde{x}+\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] u
\end{aligned}
$$

Correspondingly $\tilde{x}=\left[\begin{array}{l}\tilde{x}_{1} G \mathbb{R}^{2} \\ \tilde{x}_{2} \in \mathbb{R}^{2}\end{array}\right.$
Controllable part: $\dot{\tilde{x}}_{1}=A_{11} \tilde{x}_{1}+A_{12} \tilde{x}_{2}+B_{1} u$ Uncontrollable part: $\dot{\tilde{x}}_{2}=A_{22} \tilde{x}_{2}$

Kalman decomposition

In general $\dot{x}=A x+B u$ can be decomposed into a controllable part and an uncontrollable part:

Step 1: Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be a basis for image $\left(W_{c}\right)$. Complement it to form a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for \mathbb{R}^{n}

Step 2: Let $V:=\left[e_{1} \cdots e_{n}\right]$ and define $\tilde{x}:=V^{-1} x$ Then $\dot{\tilde{x}}=\tilde{A} \tilde{x}+\tilde{B} u$, where $\tilde{A}=V^{-1} A V, \tilde{B}=V^{-1} B$

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\tilde{x}}_{1} \\
\dot{\tilde{x}}_{2}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] u } \\
& \left(A_{11}, B_{1}\right) \text { is controllable }
\end{aligned}
$$

Kalman decomposition
Controllable subsystem
Block diagram:

$$
\dot{\tilde{x}_{1}}=A_{11} \tilde{x}_{1}+B_{1} u+\sqrt{A_{12} \tilde{x}_{2}}
$$

$$
\dot{\vec{x}}_{2}=A_{22} \tilde{x}_{2}
$$

Uncontrollable subsystem

Stabilizability

Proposition:
Consider $\dot{x}=A x+B u$ and the decomposed system $\dot{\tilde{x}}=\tilde{A} \tilde{x}+\tilde{B} u$:

$$
\left[\begin{array}{l}
\dot{\tilde{x}}_{1} \\
\dot{\tilde{x}}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] u
$$

Then (A, B) is stabilizable iff A_{22} is stable

Stabilizability

Consider $\dot{x}=A x+B u$ and assume (A, B) is stabilizable
Design $u=F x$ to stabilize the system:
Step 1: Decompose the system into $\dot{\tilde{x}}=\tilde{A} \tilde{x}+\tilde{B} u$:

$$
\left[\begin{array}{l}
\dot{\tilde{x}}_{1} \\
\dot{\tilde{x}}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] u
$$

Step 2: Compute F_{1} s.t. $A_{11}+B_{1} F_{1}$ is stable Step 3: Set $\tilde{F}=\left[\begin{array}{ll}F_{1} & 0\end{array}\right]$. So $\tilde{A}+\tilde{B} \tilde{F}=\left[\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]+\left[\begin{array}{cc}B_{1} \\ 0\end{array}\right]\left[\begin{array}{ll}F_{1} & 0\end{array}\right]$ $\begin{aligned} \text { Step 4: Set } F & =\tilde{F} V^{-1} \\ A+B F=A+B \widetilde{F} V^{-1} & =V A V^{-1}+V \tilde{\beta} V^{-1} \\ & =V(\widetilde{A}+\widetilde{B} \widetilde{F}) V^{-1}\end{aligned} \quad=\left[\begin{array}{cc}A_{11}+B_{11} F_{1} & A_{12} \\ 0 & A_{22}\end{array}\right]$

