
Chapter 4

Controllability

This chapter develops the fundamental results about controllability and pole assignment.

4.1 Reachable States

We study the linear system

ẋ = Ax+Bu, t � 0,

where x(t) 2 Rn and u(t) 2 Rm. Thus A 2 Rn⇥n and B 2 Rn⇥m. We begin our study of
controllability with a question: What states can we get to from the origin by choice of input? Are
there states in Rn that are unreachable? This is a question of control authority. For example, if B
is the zero matrix, there is no control authority, and if we start x at the origin, we’ll stay there. By
contrast, if B = I it will turn out that we can reach every state.

Fix a time t
1

> 0. We say a vector v in Rn is reachable (at time t
1

) if there exists an input
u(·) that steers the state from the origin at t = 0 to v at t = t

1

.
To characterize reachability we have to recall the integral form of the above di↵erential equation.

It was derived in ECE356 that

x(t) = etAx(0) +

Z

t

0

e(t�⌧)ABu(⌧)d⌧.

If x(0) = 0 and t = t
1

, then

x(t
1

) =

Z

t1

0

e(t1�⌧)ABu(⌧)d⌧.

Thus a vector v is reachable at time t
1

i↵

(9u(·)) v =

Z

t1

0

e(t1�⌧)ABu(⌧)d⌧.

Let us introduce the space U of all signals u(·) defined on the time interval [0, t
1

]. The smoothness
of u(·) is not really important, but to be specific, let’s assume u(·) is continuous. Also, let us
introduce the reachability operator

R : U ! Rn, Ru =

Z

t1

0

e(t1�⌧)ABu(⌧) d⌧.

47
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In words, R is the linear transformation (LT) that maps the input signal to the state at time t
1

starting from x(0) = 0.
The LT R is not the same as a matrix because U isn’t finite dimensional. But its image is well

defined and Im R is a subspace of Rn, as is easy to prove.
It’s time now to introduce the controllability matrix

W
c

=
⇥

B AB · · · An�1B
⇤

.

In the single-input case, B is n⇥ 1 and W
c

is square, n⇥ n. The importance of this matrix comes
from the theorem to follow.

Note The object B is a matrix. However, associated with it is an LT, namely the LT that maps a
vector u to the vector Bu. Instead of introducing more notation, we shall write Im B for the image
of this LT. That is, the symbol B will stand for the matrix or the LT depending on the context.
Likewise for other matrices such as A and W

c

.

Theorem 4.1.1 Im R = Im W
c

, i.e., the subspace of reachable states equals the column span of
W

c

.

Let’s postpone the proof and instead note the conclusion: A vector v is reachable at time t
1

i↵
it belongs to the column span of W

c

, i.e.,

rank W
c

= rank
⇥

W
c

v
⇤

.

Notice that reachability turns out to be independent of t
1

. Also, every vector is reachable i↵
rank W

c

= n.

Example Consider this setup of 2 carts, 2 forces:

M1 M2

K

u1 u2

y1 y2

The equations are

M
1

ÿ
1

= u
1

+K(y
2

� y
1

), M
2

ÿ
2

= u
2

+K(y
1

� y
2

).

Taking the state x = (y
1

, ẏ
1

, y
2

, ẏ
2

) and M
1

= 1,M
2

= 1/2,K = 1 we have the state model

A =

2

6

6

4

0 1 0 0
�1 0 1 0
0 0 0 1
2 0 �2 0

3

7

7

5

, B =

2

6

6

4

0 0
1 0
0 0
0 2

3

7

7

5

.

We compute using Scilab/MATLAB (or by hand) that W
c

is 4 ⇥ 8 and its rank equals 4. Thus
every state is reachable from the origin. That is, every position and velocity of the carts can be
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produced at any time by an appropriate open-loop control. In this sense, two forces gives enough
control authority. ⇤

Example Now consider 2 carts, 1 common force:

M1 M2

K

y1 y2

u

Now u
1

= �u and u
2

= u. So A is as before, while

B =

2

6

6

4

0
�1
0
2

3

7

7

5

.

Then

W
c

=

2

6

6

4

0 �1 0 3
�1 0 3 0
0 2 0 �6
2 0 �6 0

3

7

7

5

.

The rank equals 2. The set of reachable states is the 2-dimensional subspace spanned by the first
two columns. So we don’t have complete control authority in this case. ⇤

Example Two pendula balanced on one hand:

d

L1
L2

M1 M2

�1 �2

The linearized equations of motion are

M
1

(d̈+ L
1

✓̈
1

) = M
1

g✓
1

M
2

(d̈+ L
2

✓̈
2

) = M
2

g✓
2

.
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Take the state and input to be

x = (✓
1

, ✓̇
1

, ✓
2

✓̇
2

), u = d̈.

Find W
c

and show that every state is reachable i↵ L
1

6= L
2

. ⇤

The proof of the theorem requires the Cayley-Hamilton theorem, which we discuss now. Consider
the matrix

A =



0 1
�1 �1

�

.

Its characteristic polynomial is

s2 + s+ 1.

Substitute s = A into this polynomial, regarding the constant as s0. You get the matrix

A2 +A+ I.

Verify that this equals the zero matrix:

A2 +A+ I = 0.

Thus A2 is a linear combination of {I, A}. Likewise for higher powers A3, A4 etc.

Theorem 4.1.2 If p(s) denotes the characteristic polynomial of A, then p(A) = 0. Thus An is a
linear combination of lower powers of A.

Proof Here’s a proof for n = 3; the proof carries over for higher n. We have the identity

(sI �A)�1 =
1

p(s)
N(s),

where p(s) = det(sI �A) and N(s) is the adjoint of sI �A. We can manipulate this to read

p(s)I = (sI �A)N(s).

Say p(s) = s3 + a
3

s2 + a
2

s+ a
1

. Then N(s) must have the form s2I + sN
2

+N
1

, where N
1

, N
2

are
constant matrices. Thus we have

(s3 + a
3

s2 + a
2

s+ a
1

)I = (sI �A)(s2I + sN
2

+N
1

).

Equating coe�cients of powers of s, we get

a
3

I = N
2

�A

a
2

I = N
1

�AN
2

a
1

I = �AN
1

.

Multiply the first equation by A2 and the second by A, and then add all three: You get

a
3

A2 + a
2

A+ a
1

I = �A3,
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or

A3 + a
3

A2 + a
2

A+ a
1

I = 0.

⇤

Proof of Theorem 4.1.1 We first show Im R ⇢ Im W
c

. Let v 2 Im R. Then 9u 2 U such that
v = Ru, i.e.,

v =

Z

t1

0

e(t1�⌧)ABu(⌧) d⌧

=

Z

t1

0



I + (t
1

� ⌧)A+
(t

1

� ⌧)2

2!
A2 + · · ·

�

Bu(⌧) d⌧

= B

Z

t1

0

u(⌧)d⌧ +AB

Z

t1

0

(t
1

� ⌧)u(⌧)d⌧ + · · · .

Thus v belongs to the column span of

⇥

B AB A2B · · ·
⇤

.

By the Cayley-Hamilton theorem, the column span terminates at

⇥

B AB · · · An�1B
⇤

.

Now we show Im W
c

⇢ Im R. An equivalent condition is in terms of orthogonal complements:
(Im R)? ⇢ (Im W

c

)?. So let v be a vector orthogonal to Im R. Thus for every u(·)

vT
Z

t1

0

e(t1�⌧)ABu(⌧)d⌧ = 0.

That is,

Z

t1

0

vT e(t1�⌧)ABu(⌧)d⌧ = 0.

Since this is true for every u(·), it must be that

vT e(t1�⌧)AB = 0 8⌧, 0  ⌧  t
1

.

This implies that

vT etAB = 0 8t, 0  t  t
1

and hence that

vT
✓

I + tA+
t2

2
A2 + · · ·

◆

B = 0 8t, 0  t  t
1

.

Thus

vTB = 0, vTAB = 0, . . . .
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That is, v is orthogonal to every column of W
c

. ⇤

An auxiliary question is, if v is a reachable state, what control input steers the state from
x(0) = 0 to x(t

1

) = v? That is, if v 2 Im R, solve v = Ru for u. There are an infinite number of u
because the nullspace of R is nonzero. We can get one input as follows. We want to solve

v =

Z

t1

0

e(t1�⌧)ABu(⌧)d⌧

for the function u. Without any motivation, let’s look for a solution of the form

u(⌧) = BT e(t1�⌧)A

T
w,

where w is a constant vector. Then the equation to be solved is

v =

Z

t1

0

e(t1�⌧)ABBT e(t1�⌧)A

T
wd⌧.

Now w can be brought outside the integral:

v =



Z

t1

0

e(t1�⌧)ABBT e(t1�⌧)A

T
d⌧

�

w.

In square brackets is a square matrix:

L
c

=

Z

t1

0

e(t1�⌧)ABBT e(t1�⌧)A

T
d⌧.

If L
c

is invertible, we’re done, because w = L�1

c

v. It can be shown that L
c

is in fact invertible if
W

c

has full rank.

Recap: The set of all states reachable starting from the origin is a subspace, the image (column
span) of W

c

, the controllability matrix. Thus, if this matrix has rank n, every state is reachable. If
a state is reachable at some time, then it’s reachable at any time. Of course you’ll have to use a
big control if the time is very short.

Finally, we say that the pair of matrices (A,B) is a controllable pair if every state is reachable,
equivalently, the rank of W

c

equals n. Go over the examples in this section and see which are
controllable.

4.2 Properties of Controllability

Invariance under change of basis

The state vector of a system is certainly not unique. For example, if x is a state vector, so is V x
for any square invertible matrix V . Suppose we have the state model

ẋ = Ax+Bu

y = Cx+Du
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and we define a new state vector, x̃ = V x. The new equations are

˙̃x = V AV �1x̃+ V Bu

y = CV �1x̃+Du.

Under the change of state x 7�! V x, the A,B matrices change like this

(A,B) 7�! (V AV �1, V B)

and the controllability matrix changes like this
⇥

B AB A2B · · ·
⇤

7�! V
⇥

B AB A2B · · ·
⇤

.

Thus, (A,B) is controllable i↵ (V AV �1, V B) is controllable.
A transformation of the form A 7�! V AV �1 is called a similarity transformation; we say A

and V AV �1 are similar.

Invariance under state feedback

Consider applying the control law u = Fx+ v to the system ẋ = Ax+Bu. Here F 2 Rm⇥n and v
is a new independent input. The new state model is

ẋ = (A+BF )x+Bv.

That is, if u = Fx+ v (or u 7�! Fx+ u), then

(A,B) 7�! (A+BF,B).

Notice that the implementation of such a control law requires that there be a sensor for every
state variable. To emphasize this, consider the maglev example. Think of the sensors required to
implement u = Fx+ v.

You can prove that under state feedback, the set of reachable states remains unchanged; con-
trollability can be neither created nor destroyed by state feedback.

Decomposition

If we have a model ẋ = Ax+Bu where (A,B) is not controllable, it is natural to try to decompose
the system into a controllable part and an uncontrollable part. Let’s do an example.

Example 2 carts, 1 force
We had these matrices:

A =

2

6

6

4

0 1 0 0
�1 0 1 0
0 0 0 1
2 0 �2 0

3

7

7

5

, B =

2

6

6

4

0
�1
0
2

3

7

7

5

.

And the controllability matrix is

W
c

=

2

6

6

4

0 �1 0 3
�1 0 3 0
0 2 0 �6
2 0 �6 0

3

7

7

5

.
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The rank equals 2. The set of reachable states is the 2-dimensional subspace spanned by the first
two columns. Let {e

1

, e
2

} denote these two columns; thus {e
1

, e
2

} is a basis for Im W
c

. Add two
more vectors to get a basis for R4, say

e
3

= (0, 0, 1, 0), e
4

= (0, 0, 0, 1).

Now, the matrix A is the matrix representation of an LT in the standard basis. Write the matrix
of the same LT but in the basis {e

1

, . . . , e
4

}. As you recall, you proceed as follows: Write Ae
1

in
the new basis and stack up the coe�cients as the first column:

Ae
1

= e
2

.

So the first column of the new matrix is (0, 1, 0, 0). Repeat for the other basis vectors. The result
is the matrix

2

6

6

4

0 �3 �1 0
1 0 0 0
0 0 0 1
0 0 0 0

3

7

7

5

.

There’s a more streamlined way to describe this transformation. Form the matrix V by putting
{e

1

, . . . , e
4

} as its columns:

V =

2

6

6

4

0 �1 0 0
�1 0 0 0
0 2 1 0
2 0 0 1

3

7

7

5

.

Now transform the state via x = V x̃. Then A,B transform to V �1AV, V �1B:

V �1AV =

2

6

6

4

0 �3 �1 0
1 0 0 0
0 0 0 1
0 0 0 0

3

7

7

5

, V �1B =

2

6

6

4

1
0
0
0

3

7

7

5

.

These matrices have a very nice structure, indicated by the partition lines:

V �1AV =

2

6

6

4

0 �3 �1 0
1 0 0 0
0 0 0 1
0 0 0 0

3

7

7

5

, V �1B =

2

6

6

4

1
0
0
0

3

7

7

5

.

Let us write the blocks like this:

V �1AV =



A
11

A
12

A
21

A
22

�

, V �1B =



B
1

B
2

�

.

Thus, the state x has been transformed to x̃ = V �1x, and the state equation ẋ = Ax+Bu to

˙̃x
1

= A
11

x̃
1

+A
12

x̃
2

+B
1

u

˙̃x
2

= A
21

x̃
1

+A
22

x̃
2

+B
2

u.
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Note these key features: B
2

= 0, A
21

= 0, and (A
11

, B
1

) is controllable. With these, the model is
actually

˙̃x
1

= A
11

x̃
1

+A
12

x̃
2

+B
1

u

˙̃x
2

= A
22

x̃
2

.

In this form, x̃
2

represents the uncontrollable part of the system—the second equation has no input.
And x̃

1

represents the controllable part. There is coupling only from x̃
2

to x̃
1

. ⇤

Now we describe the general theory. The matrix W
c

is the controllability matrix and the
subspace Im W

c

is the set of reachable states. It’s convenient to rename this subspace as the
controllable subspace. Now, if we have a model ẋ = Ax + Bu where (A,B) is not controllable,
we can decompose the system into a controllable part and an uncontrollable part.

The decomposition construction follows the example. Let {e
1

, . . . , e
k

} be a basis for Im W
c

.
Complement it to get a full basis for state space:

{e
1

, . . . , e
k

, . . . , e
n

}.

Let V denote the square matrix with columns e
1

, . . . , e
n

. Then

V �1AV =



A
11

A
12

0 A
22

�

, V �1B =



B
1

0

�

.

Furthermore, (A
11

, B
1

) is controllable. The lower-left block of the new A equals zero because Im W
c

is A-invariant; the lower block of the new B equals zero because Im B ⇢ Im W
c

.

4.3 The PBH (Popov-Belevitch-Hautus) Test

If we have the model ẋ = Ax + Bu and we want to check if (A,B) is controllable, that is, if there
is enough control authority, we can check the rank of W

c

. This section develops an alternative test
that is frequently more insightful.

Observe that the n⇥ n matrix A� �I is invertible i↵ � is not an eigenvalue. In other words

rank(A� �I) = n () � is not an eigenvalue.

The PBH test concerns the n⇥ (n+m) matrix
⇥

A� �I B
⇤

.

Theorem 4.3.1 (A,B) is controllable i↵

rank
⇥

A� �I B
⇤

= n 8 eigenvalues � of A.

Proof
(=)) Assume rank

⇥

A� �I B
⇤

< n for some eigenvalue. Then there exists x 6= 0 (x will be
complex if � is) such that

x⇤
⇥

A� �I B
⇤

= 0
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(i.e., x ? every column of
⇥

A� �I B
⇤

), where * denotes complex-conjugate transpose. Thus

x⇤A = �x⇤, x⇤B = 0.

So

x⇤A2 = �x⇤A = �2x⇤

etc.

) x⇤Ak = �kx⇤.

Thus

x⇤
⇥

B AB · · · An�1B
⇤

=
⇥

x⇤B �x⇤B · · · �n�1x⇤B
⇤

= 0.

So (A,B) is not controllable.

((=) Assume (A,B) is not controllable. As in the preceding section, there exists V such that

(Ã, B̃) = (V �1AV, V �1B)

have the form

Ã =



A
11

A
12

0 A
22

�

, B̃ =



B
1

0

�

.

Thus rank [Ã� �I B̃] < n for � an eigenvalue of A
22

. So rank [A� �I B] < n since

⇥

Ã� �I B̃
⇤

= V �1

⇥

A� �I B
⇤



V 0
0 I

�

.

⇤

In view of this theorem, it makes sense to define an eigenvalue � of A to be controllable if

rank
⇥

A� �I B
⇤

= n.

Then (A,B) is controllable i↵ every eigenvalue of A is controllable.

Example 2 carts, 1 force
We had these matrices:

A =

2

6

6

4

0 1 0 0
�1 0 1 0
0 0 0 1
2 0 �2 0

3

7

7

5

, B =

2

6

6

4

0
�1
0
2

3

7

7

5

.

The eigenvalues of A are {0, 0,±
p
3j}. The controllable ones are {±

p
3j}, which are the eigenvalues

of A
11

, the controllable part of A. ⇤
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4.4 Controllability from a Single Input

In this section we ask, when is a system controllable from a single input? That is, we consider
(A,B) pairs where A is n⇥ n and B is n⇥ 1.

A matrix of the form
2

6

6

6

6

6

4

0 1
0 0

. . .

0 1
�a

1

�a
2

· · · �a
n�1

�a
n

3

7

7

7

7

7

5

is called a companion matrix. Its characteristic polynomial is

sn + a
n

sn�1 + · · ·+ a
2

s+ a
1

.

Companion matrices arise naturally in going from a di↵erential equation model to a state model.

Example Consider the system modeled by

...
y + a

3

ÿ + a
2

ẏ + a
1

y = b
3

ü+ b
2

u̇+ b
1

u.

The transfer function is

b
3

s2 + b
2

s+ b
1

s3 + a
3

s2 + a
2

s+ a
1

and then the controllable realization is

A =

2

4

0 1 0
0 0 1

�a
1

�a
2

�a
3

3

5 , B =

2

4

0
0
1

3

5

C =
⇥

b
1

b
2

b
3

⇤

, D = 0

⇤

Notice that if A is a companion matrix, then there exists a vector B such that (A,B) is con-
trollable, namely,

B =

2

6

6

6

4

0
...
0
1

3

7

7

7

5

.

Example The controllability matrix of

A =

2

4

0 1 0
0 0 1

�a
1

�a
2

�a
3

3

5 , B =

2

4

0
0
1

3

5



58 CHAPTER 4. CONTROLLABILITY

is

W
c

=
⇥

B AB A2B
⇤

=

2

4

0 0 1
0 1 �a

3

1 �a
3

�a
2

+ a2
3

3

5 .

The rank of W
c

equals 3, so (A,B) is controllable. ⇤

Now we’ll see that if (A,B) is controllable and B is n ⇥ 1, then A is similar to a companion
matrix.

Theorem 4.4.1 Suppose (A,B) is controllable and B is n ⇥ 1. Let the characteristic polynomial
of A be

sn + a
n

sn�1 + · · ·+ a
1

.

Define

Ã =

2

6

6

6

6

6

4

0 1
0 0

. . .

0 1
�a

1

�a
2

· · · �a
n�1

�a
n

3

7

7

7

7

7

5

, B̃ =

2

6

6

6

4

0
...
0
1

3

7

7

7

5

.

Then there exists a W such that

W�1AW = Ã, W�1B = B̃.

Proof Assume n = 3 to simplify the notation. The characteristic poly of A is

s3 + a
3

s2 + a
2

s+ a
1

.

By Cayley-Hamilton,

A3 + a
3

A2 + a
2

A+ a
1

I = 0.

Multiply by B:

A3B + a
3

A2B + a
2

AB + a
1

B = 0.

Hence

A3B = �a
1

B � a
2

AB � a
3

A2B.

Using this equation, you can verify that

A
⇥

B AB A2B
⇤

=
⇥

B AB A2B
⇤

2

4

0 0 �a
1

1 0 �a
2

0 1 �a
3

3

5 . (4.1)
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Define the controllability matrix W
c

:=
⇥

B AB A2B
⇤

and the new matrix

M =

2

4

0 0 �a
1

1 0 �a
2

0 1 �a
3

3

5 .

Note that MT is the companion matrix corresponding to the characteristic polynomial of A. From
(4.1) we have

W�1

c

AW
c

= M. (4.2)

Regarding B, we have

B =
⇥

B AB A2B
⇤

2

4

1
0
0

3

5 ,

so

W�1

c

B =

2

4

1
0
0

3

5 . (4.3)

Now define

Ã =

2

4

0 1 0
0 0 1

�a
1

�a
2

�a
3

3

5 , B̃ =

2

4

0
0
1

3

5 .

These are the matrices we want to transform A,B to. Define their controllability matrix

W̃
c

:=
⇥

B̃ ÃB̃ Ã2B̃
⇤

.

Then, as in (4.2) and (4.3),

W̃�1

c

ÃW̃
c

= M, (same M !) (4.4)

W̃�1

c

B̃ =

2

4

1
0
0

3

5 . (4.5)

From (4.2), (4.4) and (4.3), (4.5),

W�1

c

AW
c

= W̃�1

c

ÃW̃
c

, W̃�1

c

B = W̃�1

c

B̃.

Define W = W
c

W̃�1

c

. Then

W�1AW = Ã, W�1B = B̃.

⇤

Let’s summarize the steps to transform (A,B) to (Ã, B̃) :
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Procedure

Step 1 Find the characteristic poly of A:

sn + a
n

sn�1 + · · ·+ a
1

.

Step 2 Define

W
c

=
⇥

B AB · · · An�1B
⇤

, W̃
c

=
⇥

B̃ ÃB̃ · · · Ãn�1B̃
⇤

, W = W
c

W̃�1

c

.

Then W�1AW = Ã, W�1B = B̃.

Example

A =

2

4

3 �2 9
�2 2 �7
�1 1 �4

3

5 , B =

2

4

�3
3
1

3

5

char poly A = s3 � s2 � 2s+ 1

Ã =

2

4

0 1 0
0 0 1

�1 2 1

3

5 , B̃ =

2

4

0
0
1

3

5

W
c

=

2

4

�3 �6 �10
3 5 8
1 2 3

3

5 , W̃
c

=

2

4

0 0 1
0 1 1
1 1 3

3

5

W =

2

4

2 �3 �3
�3 2 3
�1 1 1

3

5

⇤

4.5 Pole Assignment

This section presents the most important result about controllability: That eigenvalues1 can be
arbitrarily assigned by state feedback. This result is very useful and is the key to state-space
control design methods. The result was first proved by W.M. Wonham, a professor in our own ECE
department.

As we saw, the control law u = Fx+ v transforms (A,B) to (A+BF,B). This leads us to pose
the pole assignment problem:

Given A,B.

Design F so that the eigs of A+BF are in a desired location.

1It is customary to call the eigenvalues of A its “poles.” Of course this more properly refers to the poles of the
relevant transfer function.
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We might like to specify the eigenvalues of A+BF exactly, or we might be satisfied to have them
in a specific region in the complex plane, such as a truncated cone for fast transient response and
good damping:

desired poles
region

The fact is that you can arbitrarily assign the eigs of A+BF i↵ (A,B) is controllable. We’ll prove
this, and also get a procedure to design F .

Single-Input Case

Example

A =

2

4

0 1 0
0 0 1
1 �1 �1

3

5 , B =

2

4

0
0
1

3

5

This A is in companion form, and also B is as in Theorem 4.4.1. Let us design F =
⇥

F
1

F
2

F
3

⇤

to place the eigs of A+BF at
⇥

�1 �2 �3
⇤

. We have A+BF is a companion matrix with final
row

⇥

1 + F
1

�1 + F
2

�1 + F
3

⇤

.

Thus its characteristic poly is

s3 + (1� F
3

)s2 + (1� F
2

)s+ (�1� F
1

).

But the desired char poly is

(s+ 1)(s+ 2)(s+ 3) = s3 + 6s2 + 11s+ 6.

Equating coe�cients in these two equations, we get the unique F :

F = �
⇥

7 10 5
⇤

.

⇤

The example extends to general case of A a companion matrix with final row
⇥

�a
1

· · · �a
n

⇤
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and

B =

2

6

6

6

4

0
...
0
1

3

7

7

7

5

as follows: Let {�
1

, . . . ,�
n

} be the desired set of eigenvalues, occurring in complex-conjugate pairs.
The matrix F has the form F =

⇥

F
1

· · · F
n

⇤

, so A+BF is a companion matrix with final row

⇥

�a
1

+ F
1

· · · �a
n

+ F
n

⇤

.

Equate the coe�cients of the two polynomials

sn + (a
n

� F
n

)sn�1 + · · ·+ (a
1

� F
1

), (s� �
1

) · · · (s� �
n

),

and solve for F
1

, . . . , F
n

.

Let us turn to the general case of (A,B) controllable, B is n⇥ 1. The procedure to compute F
to assign the eigenvalues of A+BF is as follows:

Step 1 Using Theorem 4.4.1, compute W so that

Ã := W�1AW, B̃ := W�1B

have the form that Ã is a companion matrix and

B̃ =

2

6

6

6

4

0
...
0
1

3

7

7

7

5

.

Step 2 Compute F̃ to assign the eigs of Ã+ B̃F̃ to the desired locations.

Step 3 Set F = F̃W�1.

To see that A+BF and Ã+ B̃F̃ have the same eigs, simply note that

W�1(A+BF )W = Ã+ B̃F̃ .

Example 2 pendula
We had

x =

2

6

6

4

✓
1

✓̇
1

✓
2

✓̇
2

3

7

7

5

, u = d̈.
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Taking L
1

= 1, L
2

= 1/2, g = 10, we have

A =

2

6

6

4

0 1 0 0
10 0 0 0
0 0 0 1
0 0 20 0

3

7

7

5

, B =

2

6

6

4

0
�1
0

�2

3

7

7

5

.

Suppose the desired eigs are {�1,�1,�2± j}

Step 1

eigs A =
n

±
p
10, ±

p
20
o

char poly A = s4 � 30s2 + 200

Ã =

2

6

6

4

0 1 0 0
0 0 1 0
0 0 0 1

�200 0 30 0

3

7

7

5

, B̃ =

2

6

6

4

0
0
0
1

3

7

7

5

W
c

=

2

6

6

4

0 �1 0 �10
�1 0 �10 0
0 �2 0 �40

�2 0 �40 0

3

7

7

5

W̃
c

=

2

6

6

4

0 0 0 1
0 0 1 0
0 1 0 30
1 0 30 0

3

7

7

5

W = WW̃�1

c

=

2

6

6

4

20 0 �1 0
0 20 0 �1
20 0 �2 0
0 20 0 �2

3

7

7

5

Step 2 Desired char poly is

(s+ 1)2(s+ 2� j)(s+ 2 + j) = s4 + 6s3 + 14s2 + 14s+ 5.

Char poly of Ã+ B̃F̃ is

s4 � F̃
4

s3 + (�30� F̃
3

)s2 � F̃
2

s+ (200� F̃
1

).

Equate coe↵s and solve:

F̃ =
⇥

195 �14 �44 �6
⇤

.

Step 3
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F = F̃W�1 =
⇥

�24.5 �7.4 34.25 6.7
⇤

.

This result is the same as via the MATLAB command acker. ⇤

We have now proved su�ciency of the single-input pole assignment theorem:

Theorem 4.5.1 The eigs of A+BF can be arbitrarily assigned i↵ (A,B) is controllable.

The direction (=)) is left as an exercise. It says, if (A,B) is not controllable, then some
eigenvalues of A+BF are fixed, that is, they do not move as F varies.

Note that in the single-input case, F is uniquely determined by the set of desired eigenvalues.

Multi-Input Case

Now we turn to the general case of (A,B) where B is n ⇥ m, m > 1. As before, if (A,B) is not
controllable, then some of the eigs of A + BF are fixed; if (A,B) is controllable, the eigs can be
freely assigned.

To prove this, and construct F , we first see that the system can be made controllable from a
single input by means of a preliminary feedback.

Lemma 4.5.1 (Heymann 1968) Assume (A,B) is controllable. Let B
1

be any nonzero column of
B (could be the first one). Then 9F such that (A+BF,B

1

) is controllable.

Before proving the lemma, let’s see how it’s used.

Theorem 4.5.2 (Wonham 1967) The eigs of A+BF are freely assignable i↵ (A,B) is controllable.

Proof (=)) For you to do.

((=)

Step 1 Select, say, the first column B
1

of B. If (A,B
1

) is controllable, set F̃ = 0 and go to
Step 3.

Step 2 Choose F̃ so that (A+BF̃ ,B
1

) is controllable.

Step 3 Compute ˜̃F so that A+BF̃ +B
1

˜̃F has the desired eigs.

Step 4 Set F = F̃ +

2

6

6

6

4

1
0
...
0

3

7

7

7

5

˜̃F. Then

A+BF = A+BF̃ +B
1

˜̃F.
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⇤
Two comments: A random F̃ will work in Step 2; In general F is not uniquely determined by

the desired eigenvalues.
Now we turn to the proof of the lemma.

Proof (Hautus ’77)
The proof concerns an artificial discrete-time state model, namely,

x(k + 1) = Ax(k) +Bu(k), x(1) = B
1

. (4.6)

Suppose we can prove this: There exists an input sequence {u(1), . . . , u(n � 1)} such that the
resulting states {x(1), . . . , x(n)} span Rn, that is, they are linearly independent. Then define F as
follows:

u(n) = anything

F
⇥

x(1) · · · x(n)
⇤

=
⇥

u(1) · · · u(n)
⇤

. (4.7)

To see that (A+BF,B
1

) is controllable, note from (4.6) and (4.7) that

x(k + 1) = (A+BF )x(k), x(1) = B
1

,

so

⇥

x(1) · · · x(n)
⇤

=
⇥

B
1

(A+BF )B
1

· · · (A+BF )n�1B
1

⇤

.

Thus the controllability matrix of (A+BF,B
1

) has rank n.
So it su�ces to show, with respect to (4.6), that there exist {u(1), . . . , u(n� 1)} such that the

set {x(1), . . . , x(n)} is lin. indep. This is proved by induction.
First, {x(1)} = {B

1

} is lin. indep. since B
1

6= 0.
For the induction hypothesis, suppose we’ve chosen {u(1), . . . , u(k�1)} such that {x(1), . . . , x(k)}

is lin. indep. Define

V = Im
⇥

x(1) · · · x(k)
⇤

.

If V = Rn we’re done. So assume

V 6= Rn. (4.8)

We must now show there exists u(k) such that x(k+ 1) /2 V. (Note that x(k+ 1) /2 V is equivalent
to {x(1), . . . , x(k + 1)} is lin. indep.) That is, we must show (from (4.6))

(9u(k)) Ax(k) +Bu(k) /2 V. (4.9)

Suppose, to the contrary, that

(8u 2 Rm) Ax(k) +Bu 2 V.

Setting u = 0 we get

Ax(k) 2 V. (4.10)
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Then we also get

(8u 2 Rm) Bu 2 V. (4.11)

Now we will show that

AV ⇢ V, (4.12)

i.e.,

Ax(i) 2 V, i = 1, . . . , k.

This is true for i = k by (4.10); for i < k we have from (4.6) that

Ax(i) = x(i+ 1)�Bu(i)

where x(i+ 1) 2 V by definition V, and Bu(i) 2 V by (4.11). This proves (4.12).
Using (4.11) and (4.12) we get that 8u 2 Rm

ABu 2 AV ⇢ V
A2Bu 2 A2V ⇢ AV ⇢ V

etc.

Thus every column of the controllability matrix of (A,B) belongs to V. Hence Im W
c

⇢ V . But
Im W

c

= Rn, by controllability, so V = Rn. This contradicts (4.8), so (4.9) is true after all.
⇤

Finally, the following test for controllability is fairly good numerically:

1. compute the eigs of A

2. choose F at random

3. compute the eigs of A+BF

Then (A,B) is controllable () {eigs A} and {eigs A+BF} are disjoint.

4.6 Stabilizability

Recall that A is stable if all its eigenvalues have negative real parts. This is the same as saying
that for ẋ = Ax, x(t) ! 0 as t ! 1 for every x(0). Under state feedback, u = Fx+ v, the system
ẋ = Ax+Bu is transformed to

ẋ = (A+BF )x+Bv.

We say (A,B) is stabilizable if 9F such that A+ BF is stable. By the pole assignment theorem
(A,B) controllable =) (A,B) stabilizable, i.e., controllability is su�cient (a stronger property).
What exactly is a test for stabilizability? The following theorem answers this.

Theorem 4.6.1 The following three conditions are equivalent:
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1. (A,B) is stabilizable

2. The uncontrollable part of A, A
22

, is stable.

3. rank
⇥

A� �I B
⇤

= n for every eigenvalue � of A with Re � � 0.

The 2 carts, 1 force example is not stabilizable, because the uncontrollable eigenvalues, 0, 0,
aren’t stable.

Suppose (A,B) is stabilizable but not controllable, and we want to find an F to stabilize A+BF .
The way is clear: Transform to see the controllable part and stabilize that. Here are the details:
Let {e

1

, . . . , e
k

} be a basis for Im W
c

. Complement it to get a full basis for state space:

{e
1

, . . . , e
k

, . . . , e
n

}.

Let V denote the square matrix with columns e
1

, . . . , e
n

. Then

V �1AV =



A
11

A
12

0 A
22

�

, V �1B =



B
1

0

�

,

where (A
11

, B
1

) is controllable. Choose F
1

to stabilize A
11

+B
1

F
1

. Then



A
11

A
12

0 A
22

�

+



B
1

0

�

⇥

F
1

0
⇤

=



A
11

+B
1

F
1

A
12

0 A
22

�

is stable. Transform the feedback matrix back to the original coordinates:

F =
⇥

F
1

0
⇤

V �1.

4.7 Problems

1. Write a Scilab/MATLAB program to verify the Cayley-Hamilton theorem. Run it for

A =

2

4

1 0 1
0 0 1
0 �1 2

3

5 .

2. Consider the state model ẋ = Ax+Bu with

A =

2

4

�3 2 2
�1 0 1
�5 1 4

3

5 , B =

2

4

�2 2
�1 1
�3 2

3

5 .

(a) Find a basis for the controllable subspace.

(b) Is the vector (1, 1, 0) reachable from the origin?

(c) Find a nonzero vector that is orthogonal to every vector that is reachable from the origin.

3. Show that the matrix A =



0 1
�1 0

�

has the property that (A,B) is controllable for all

nonzero 2⇥ 1 matrices B.
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4. Consider the setup of two identical systems with a common input:

S

S-

-

u

(An example is two identical pendula balanced on one hand.) Let the upper and lower systems
be modeled by, respectively,

ẋ
1

= Ax
1

+Bu, ẋ
2

= Ax
2

+Bu.

Assume (A,B) is controllable.

(a) Find a state model for the overall system, taking the state to be x =



x
1

x
2

�

.

(b) Find a basis for the controllable subspace of the overall system.

5. Consider the state model ẋ = Ax+Bu with

A =

2

4

1 0 0
0 0 1
0 �1 2

3

5 , B =

2

4

1 0
�2 1
�2 1

3

5 .

(a) Transform x, A, and B so that the controllable part of the system is exhibited explicitly.

(b) What are the controllable eigenvalues?

6. Consider the system with

A =

2

6

6

4

0 0 1 0
0 0 0 1
0 0 �1 1
0 0 2 �2

3

7

7

5

, B =

2

6

6

4

0
0
1
0

3

7

7

5

.

(a) What are the eigenvalues of A?

(b) It is desired to design a state-feedback matrix F to place the eigenvalues of A + BF at
{�1,�1,�2± j}. Is this possible? If so, do it.

(c) It is desired to design a state-feedback matrix F to place the eigenvalues of A + BF at
{0, 0,�2± j}. Is this possible? If so, do it.

7. Consider a pair (A,B) where A is n ⇥ n and B is n ⇥ 1 (single input). Show that (A,B)
cannot be controllable if A has two linearly independent eigenvectors for the same eigenvalue.

8. Consider the two pendula. Find the controllable subspace when the lengths are equal and
when they’re not.
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9. Continue with the two-pendula problem. Give numerical values to L
1

6= L
2

and stabilize by
state feedback.

10. Let

A =

2

6

6

4

1 2 0 2
�2 �1.5 1.5 �1.5
1 2.5 �0.5 2.5
1 1 �1 2

3

7

7

5

, B =

2

6

6

4

0 0
1 1
1 �1
0 0

3

7

7

5

.

(a) Check that (A,B) is controllable but that (A,B
i

) is not controllable for either column
B

i

of B.

(b) Compute an F to assign the eigenvalues of A+BF to be �1± j, �2± j.

11. Let A be an n ⇥ n real matrix in companion form. Then (A,B) is controllable for a certain
column vector B. What does this imply about the Jordan form of A?

12. Consider the system model ẋ = Ax+Bu, x(0) = 0 with

A =

2

4

�3 �2 �1
11 6 2
�9 �5 �2

3

5 , B =

2

4

0
1

�1

3

5 .

Does there exist an input such that x(1) = (1,�1, 1)?

13. Consider the system model ẋ = Ax+Bu with

A =

2

6

6

6

6

4

0 1 0 0 0
0 0 0 0 0
0 0 �2 0 0
0 0 0 0 1
0 0 0 0 0

3

7

7

7

7

5

, B =

2

6

6

6

6

4

0 0
1 1
0 0
0 0
1 �1

3

7

7

7

7

5

.

(a) It is desired to design a state feedback matrix F so that the eigenvalues of A + BF all
have negative real part. Is this possible?

(b) Is it possible to design F so that each eigenvalue � of A+BF satisfies Re �  �4?

14. Consider the following 2-cart system:

M1 M2

K

u1 u2

y1 y2

There are two inputs: a force u
1

applied to the first cart; a force u
2

applied to the two carts
in opposite directions as shown. Take the state variables to be

y
1

, y
2

, ẏ
1

, ẏ
2

in that order, and take M
1

= 2,M
2

= 1,K = 2.
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(a) Find (A,B) in the state model.

(b) According to the Cayley-Hamilton theorem, A4 can be expressed as a linear combination
of lower powers of A. Derive this expression for the 2-cart system.

15. Many mechanical systems can be modeled by the equation

Mq̈ +Dq̇ +Kq = u,

where q is a vector of positions (such as joint angles on a robot), u is a vector of inputs, M
is a symmetric positive definite matrix, and D and K are two other square matrices. Find a

state model by taking x =



q
q̇

�

. What can you say about controllability of this state model?

16. (a) Let

A =

2

6

6

4

0 1 0 0
0 0 1 0
0 0 0 1

�2 1 0 2

3

7

7

5

, B =

2

6

6

4

0
0
0
1

3

7

7

5

.

Find F so that the eigenvalues of A+BF are

�1± j,�2± j.

(b) Take the same A but

B =

2

6

6

4

�1
0
2
6

3

7

7

5

.

Find the controllable part of the system.

17. Consider the system

ẋ =

2

4

�1 1 0
0 �1 0
0 0 �1

3

5x+

2

4

0
1
1

3

5u

Is the vector (4, 1, 4) reachable from the origin?

18. Is the following (A,B) pair controllable?

A =

2

6

6

4

0 �6 0 4
1 4 �1 0
1 8 0 0
1 11 0 0

3

7

7

5

, B =

2

6

6

4

1 1
0 0
0 1
1 0

3

7

7

5

19. Let A =

2

4

0 1 1
1 �1 0
0 2 0

3

5, B =

2

4

1
0
1

3

5
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(i) Check that (A,B) is controllable.

(ii) Find a feedback law u = Fx such that the closed-loop poles are all at �1.

20. Prove that (A,B) is controllable if and only if (A+BF,B) is controllable for some F . Prove
that (A,B) is controllable if and only if (A+BF,B) is controllable for every F .


