
Chapter 8

Optimal Control

In this chapter we study the simplest optimal control problem, linear quadratic regulation (LQR).
There are many approaches to optimal control—dynamic programming, calculus of variations, Pon-
tryagin’s maximum principle, and others. But none is entirely just right for the LQR problem. At
some point you have to wave your hands in the derivation of the solution. After that, there are
rigorous proofs that the controller you derived by waving your hands really is optimal.

We’re going to adopt the method of Lagrange multipliers for the hand-waving part. This is
quite interesting and useful in its own right.

8.1 Minimizing Quadratic Functions with Equality Constraints

The optimal control problem that we’ll solve involves minimizing a quadratic function with an
equality constraint. Let’s begin with a very simple such example:

Example In the plane, find the point on a given line that is closest to a given point:

given point

given line

optimal point

Obviously, you can get the closest point by drawing the perpendicular from the given point to the
given line.

Before we solve this problem, let’s clarify some notation. The norm of x = (x
1

, x
2

) is

kxk =
�

x2
1

+ x2
2

�

1/2

,

107
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and this can also be written kxk = (xTx)1/2, that is,

xTx =
⇥

x
1

x
2

⇤



x
1

x
2

�

= x2
1

+ x2
2

.

To develop a solution method, suppose the given point is v = (1, 2) and the equation of the
given line is

x
2

= 0.5x
1

+ 0.2.

Let x = (x
1

, x
2

) be the point being sought. Define

cT =
⇥

�0.5 1
⇤

, b = 0.2.

Then x is on the line i↵ cTx = b. Also, the distance from v to x is kv � xk. Note that kv � xk
is minimum i↵ kv � xk2 is minimum. Thus we have arrived at the following equivalent problem:
minimize the quadratic function kv � xk2 of x subject to the equality constraint cTx = b. Notice
that

kv � xk2 = (v � x)T (v � x) = vT v � vTx� xT v + xTx.

The right-hand side is a quadratic function of x. Since xT v = vTx (dot product of real vectors is
symmetric), we have

kv � xk2 = vT v � 2vTx+ xTx.

So we’ve reduced the problem to

min
x, c

T
x=b

vT v � 2vTx+ xTx.

We’ll return to this after we review some calculus.
Aside: This specific problem is easy to solve this way: Substitute the constraint x

2

= 0.5x
1

+0.2
into

(1� x
1

)2 + (2� x
2

)2,

to get a function f(x
1

). Set the derivative of f to zero, solve for x
1

, then get x
2

. The answers are
x
1

= 1.52, x
2

= 0.96. ⇤

Jacobians

Suppose f : Rn �! Rm is a function. Thus, in the expression f(x), x is a vector with n components
and f is a vector with m components. So we can write

x = (x
1

, . . . , x
n

), f = (f
1

, . . . , f
m

).

The Jacobian of f , denoted
@f

@x
, is the m⇥ n matrix whose ijth element is @f

i

/@x
j

. If m = 1, then

@f

@x
is a row vector, the gradient of f , usually written rf .
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Another way to think of the Jacobian is via the directional derivative. The derivative of f at
the point x in the direction of the vector h is defined to be

d

d"
f(x+ "h)

�

�

�

�

"=0

.

This turns out to be a linear function of the vector h, and it must therefore equal Mh for some
matrix M . In fact, M equals the Jacobian of f at x.

Example

m = 1, n = 2, f(x) = c
1

x
1

+ c
2

x
2

,
@f

@x
=

⇥

c
1

c
2

⇤

More generally, if f(x) = cTx, then
@f

@x
= cT . This can be derived like this:

f(x+ "h) = cT (x+ "h)

= cTx+ "cTh

d

d"
f(x+ "h) = cTh

d

d"
f(x+ "h)

�

�

�

�

"=0

= cTh

@f

@x
= cT .

⇤

Example If

f(x) = kxk2 = x2
1

+ · · ·+ x2
n

,

then
@f

@x
= 2xT . More generally, consider f(x) = xTQx, where Q is a symmetric matrix. You can

derive that
@f

@x
= 2xTQ. ⇤

Example If f(x) = x(kxk2 � 1), f : Rn �! Rn, then

f(x+ "h) = (x+ "h)(kx+ "hk2 � 1)

= (x+ "h)(kxk2 + 2"xTh+ "2khk2 � 1)

= xkxk2 + "kxk2h+ 2"xxTh� "h+HOT.

Thus

@f

@x
= (kxk2 � 1)I + 2xxT .

⇤
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Lagrange Multipliers

Now we return to the first example in this section. It had the form

min
x, c

T
x=b

f(x), f(x) = vT v � 2vTx+ xTx, cT =
⇥

�0.5 1
⇤

, b = 0.2

We are going to use the method of Lagrange multipliers. The idea is to absorb the constraint
cTx = b, or equivalently cTx� b = 0, into the function being minimized, leaving an unconstrained
problem. Define the Lagrangian

L(x,�) = f(x) + �(cTx� b).

Here � is an unknown that multiplies the constraint equation. It turns out a necessary condition
for optimality of x is that L should be stationary with respect to both x and �, that is,

@L

@x
= 0,

@L

@�
= 0.

These two equations give

@f

@x
+ �cT = 0, cTx� b = 0,

or, using the form of f ,

�2vT + 2xT + �cT = 0, cTx� b = 0.

Finally, taking transpose and rearranging, we have

2x+ �c = 2v, cTx = b.

These can be assembled into one equation:



2I c
cT 0

� 

x
�

�

=



2v
b

�

.

Let’s put in our values for v, c, b:

2

4

2 0 �0.5
0 2 1

�0.5 1 0

3

5

2

4

x
1

x
2

�

3

5 =

2

4

2
4
0.2

3

5 .

This has a unique solution because the matrix is invertible:

x = (1.52, 0.96), � = 2.08.

The x is the optimal x, the closest point, and the � can be discarded—it was introduced only to
solve the problem. ⇤

Let’s look at a somewhat more general problem by the Lagrange multiplier method.
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Example We’ll solve the problem

minimize
x

kc�Axk

subject to the constraint Bx = d. Here x, c, d are vectors and A,B matrices. Assume A has full
column rank and B has full row rank.

Define

J(x) = kc�Axk2 = (c�Ax)T (c�Ax)

= cT c� cTAx� xTAT c+ xTATAx

= cT c� 2cTAx+ xTATAx

and

L(x,�) = J(x) + �T (Bx� d).

Here the Lagrange multiplier has to be a vector. Di↵erentiating with respect to x then �, we get

�2cTA+ 2xTATA+ �TB = 0, Bx� d = 0.

Transposing the first gives

�2AT c+ 2ATAx+BT� = 0, Bx� d = 0.

Collect as one equation:


2ATA BT

B 0

� 

x
�

�

=



2AT c
b

�

.

If it can be proved that the matrix on the left is invertible, then the optimal x is

x =
⇥

I 0
⇤



2ATA BT

B 0

��1



2AT c
b

�

.

So let’s see that the matrix


2ATA BT

B 0

�

is invertible. It su�ces to prove that the only solution to the homogeneous equation


2ATA BT

B 0

� 

x
�

�

= 0

is the trivial solution. So start with


2ATA BT

B 0

� 

x
�

�

= 0.

Thus

2ATAx+BT� = 0, Bx = 0.
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Since A has full column rank, the matrix ATA is positive definite, hence invertible. Thus

x+ (2ATA)�1BT� = 0, Bx = 0.

Multiply the first equation by B and use the second:

B(2ATA)�1BT� = 0.

Pre-multiply by �T :

�TB(2ATA)�1BT� = 0.

Since (2ATA)�1 is positive definite, it follows that BT� = 0. Then, since BT has full column rank,
� = 0. Finally, from the equation

x+ (2ATA)�1BT� = 0,

we get that x = 0. Thus x = 0,� = 0 is the only solution of


2ATA BT

B 0

� 

x
�

�

= 0.

⇤

Why the Lagrange multiplier method works

Consider the problem of minimizing a function f(x) subject to an equality constraint g(x) = 0.
To be able to draw pictures, let’s suppose

f, g : R2 �! R.

The set of all x satisfying the constraint g(x) = 0 typically is a curve. For a given constant c, the
set of all x satisfying f(x) = c is called a level set of f . Now assume x⇤ is a locally optimal point
for the problem min

g(x)=0

f(x). That is, if x is nearby x⇤ and g(x) = 0, then f(x) > f(x⇤).

Claim The gradients rf(x⇤), rg(x⇤) are collinear.

Proof The picture near x⇤ looks like this:

g = 0

level sets of f

f decreasing�f
�g

x�
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From this, the claim is clear. ⇤

Thus there is a scalar �⇤ such that rf(x⇤) + �⇤rg(x⇤) = 0. This implies the gradient of the
function

f(x) + �⇤g(x)

equals zero at x⇤. Finally, this implies the Lagrangian

L(x,�) = f(x) + �g(x)

satisfies

@L

@x
(x⇤,�⇤) = 0,

@L

@�
(x⇤,�⇤) = 0.

In conclusion, a necessary condition for a point x⇤ to be a local optimum for the problem min
g(x)=0

f(x)
is that there exist a point �⇤ such that the derivative of the Lagrangian L(x,�) equals zero at x⇤,�⇤.

8.2 The LQR Problem and Solution

As with several other control problems (e.g., controllability), the LQR problem is posed initially as
a rather idealized. formal problem, and then used in applications in a di↵erent way (controllability
is posed as reachability and then used as a condition for arbitrary pole assignment). So be prepared
for a formal problem statement.

The Linear Quadratic Regulator (LQR) Problem can be stated as follows. We consider
the usual state-space model:

x(0) = x
0

ẋ = Ax+Bu.

The initial state, x
0

, is fixed and the desired state is zero. More specifically, the goal is to have
x(t) �! 0 optimally, in some sense. So at time t, kx(t)k is a measure of the error—the distance
from x(t) to the origin. The integral-squared error is

Z 1

0

kx(t)k2dt.

Note that

kx(t)k2 = x(t)Tx(t).

A somewhat more general measure of error is x(t)TQx(t), where Q is symmetric and positive
semidefinite. E.g.,

Q =

2

4

1 0 0
0 10 0
0 0 0

3

5 .
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Aside A symmetric matrix Q is positive semidefinite if

xTQx � 0, 8x.

It is a fact that the eigenvalues of a symmetric matrix are all real, and a symmetric matrix is positive
semidefinite i↵ all its eigenvalues are � 0. E.g.,

Q =

2

4

2 �1 0
�1 10 0
0 0 0

3

5

is positive semidefinite. Eigs: 0, 1.8769, 10.1231. A symmetric matrix Q is positive definite if

xTQx > 0, 8x 6= 0.

It is a fact that a symmetric matrix is positive definite i↵ all its eigenvalues are > 0. E.g.,

Q =

2

4

2 �1 0
�1 10 1
0 1 4

3

5

is positive definite. Eigs: 1.8695, 3.8505, 10.2800.

In this way we’re led to the problem: Given A,B,Q, x
0

and

x(0) = x
0

ẋ = Ax+Bu,

find u to minimize
Z 1

0

x(t)TQx(t)dt.

The trouble with this problem formulation is that u will want to be unbounded. So a better
cost to minimize is

J =

Z 1

0

⇥

x(t)TQx(t) + u(t)TRu(t)
⇤

dt,

where R is symmetric, positive definite; e.g., R = I. As we will see, it turns out under some mild
technical assumptions that the sequence that minimizes J has the form u(t) = Fx(t), that is, the
optimal control law is state feedback. Furthermore, A+ BF is stable. So the solution of the LQR
problem provides an alternative way to stabilize an unstable plant; in fact, this way is more sound
numerically than eigenvalue assignment.

The matrix F is uniquely determined by the data (A,B,Q,R). The MATLAB command is

F = �lqr(A,B,Q,R)

Typically, Q and R are used as design parameters: One proceeds as follows:

1. Choose any Q, R.



8.2. THE LQR PROBLEM AND SOLUTION 115

2. Compute F by solving the LQR problem.

3. Simulate the controlled system.

4. To improve the response, modify Q, R and return to step 2.

It is interesting to note that the cost function J can be reformulated in terms of an artificial
output. We have

xTQx+ uTRu =



x
u

�

T



Q 0
0 R

� 

x
u

�

.

Being positive semidefinite, Q and R have positive semidefinite square roots. Defining

C =



Q1/2

0

�

, D =



0
R1/2

�

,

we get



Q 0
0 R

�

=



CT

DT

�

⇥

C D
⇤

.

The further definition

y = Cx+Du,

gives

xTQx+ uTRu =



x
u

�

T



Q 0
0 R

� 

x
u

�

=



x
u

�

T



CT

DT

�

⇥

C D
⇤



x
u

�

= yT y

and therefore

J =

Z 1

0

y(t)T y(t)dt =

Z 1

0

ky(t)k2dt.

To see where we’re going, we’ll now give the solution of the LQR problem. The assumptions are
these:

1. Q is positive semidefinite and R is positive definite.

2. (A,B) is stabilizable.

3. (Q,A) is detectable.

Then the optimal control law is u = Fx, where F is defined as follows:
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1. Form the matrix

H =



A �BR�1BT

�Q �AT

�

.

This is called the Hamiltonian matrix.

2. It turns out that H has no eigenvalues on the imaginary axis, n eigenvalues in < s < 0, and
n in < s > 0. Thus its Jordan form, H

JF

, must, after possible re-ordering of blocks, have the
form

H
JF

=



H� 0
0 H+

�

,

where H� has all eigenvalues in < s < 0 and H+ has all eigenvalues in < s > 0. That is,
there exists an invertible 2n⇥ 2n matrix V satisfying

V �1HV =



H� 0
0 H+

�

.

Partition V as

V =
⇥

V � V +

⇤

,

each part being 2n⇥ n.

3. Now partition V � as

V � =



X
1

X
2

�

,

where X
1

, X
2

2 Rn⇥n. It turns out that X
1

is nonsingular. Define X := X
2

X�1

1

.

4. Then F = �BTR�1X.

Example A very simple example is

A = B = Q = R = 1.

Then

H =



1 �1
�1 �1

�

.

The MATLAB command

[V,H
JF

] = eig(H)

yields

V =



�0.3827 �0.9239
�0.9239 0.3827

�

, H
JF

=



�1.414 0
0 1.414

�

.
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Thus X
1

= �0.3827, X
2

= �0.9239, X = 2.414, F = �2.414. ⇤

Example Maglev. Let’s consider again the magnetic levitation system. The schematic diagram
and equations are as follows:

u

y

R

L i

+

−

We took the numerical values M = 0.1 Kg, R = 15 ohms, L = 0.5 H, K = 0.0001 Nm2/A2, g = 9.8
m/s2. The problem is to design a controller that will stabilize the ball at y = 0.01 m.

Define state variables x = (x
1

, x
2

, x
3

) = (i, y, ẏ). Then the linearized model is

˙�x = A�x+B�u, �y = C�x,

where � denotes displacement away from equilibrium, and

A =

2

4

�30 0 0
0 0 1

�19.8 1940 0

3

5 , B =

2

4

2
0
0

3

5 , C =
⇥

0 1 0
⇤

.

As a base, since we’re trying to control y, start with

Q = diag(0, 1, 0), R = I.

Here R is 1⇥ 1. The next graph shows a plot of �y(t) versus t, where

˙�x = (A+BF )�x, �y = C�x, �x(0) = (0, 0.001, 0).

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012
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The feedback gains are

F =
⇥

�44.3 7352 166.1
⇤

.

If we want to alter the response, we play with Q (no point in playing with R, because it’s a scalar).
Obviously we have to do a full nonlinear simulation of all signals to see what’s feasible. ⇤

8.3 Hand Waving

The solution involves the Hamiltonian matrix

H =



A �BR�1BT

�Q �AT

�

.

Where on earth does this come from? This section gives some motivation for how it arises.
It’s convenient to scale J by 1/2:

J =
1

2

Z 1

0

[x(t)TQx(t) + u(t)TRu(t)]dt.

Write the plant model in the form

�ẋ+Ax+Bu = 0.

We intend to think of the problem as minimizing J subject to this equality constraint. The method
of Lagrange multipliers is perfectly suited for such a problem. So we define a new function, denoted
L for Lagrangian:

L =

Z 1

0

⇢

1

2
x(t)TQx(t) +

1

2
u(t)TRu(t) + �(t)T [�ẋ(t) +Ax(t) +Bu(t)]

�

dt.

That is, we have added the equality constraint into the cost function; the equality constraint has a
multiplier �, which enters as a dot product. We regard L as a function of x, u,�.

We get necessary conditions for optimality by di↵erentiating the integrand with respect to x, u,�.
First, �:

�ẋ+Ax+Bu = 0.

Next, u:

uTR+ �TB = 0.

Solving this equation we get u(t) = �R�1BT�(t). Substituting this into the first equation gives

ẋ = Ax�BR�1BT�.

Finally, to di↵erentiate L with respect to x, we get rid of ẋ by integrating by parts, ignoring the
term �(1)x(1)� �(0)x(0):

L =

Z 1

0

⇢

1

2
x(t)TQx(t) +

1

2
u(t)0Ru(t) + �̇(t)Tx(t) + �(t)T [Ax(t) +Bu(t)]

�

dt.
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Then

xTQ+ �̇T + �TA = 0,

i.e.,

�̇ = �Qx�AT�.

Combining the ẋ and �̇ equations, we get



ẋ

�̇

�

=



A �BR�1BT

�Q �AT

� 

x
�

�

. (8.1)

And, voilà, there’s H!
To recap, the matrix H arises in a Lagrangian formulation of the optimal control problem. We

argued that if u is an optimal control, then u = �R�1BT�, where x and � satisfy (8.1).
Let us return to the definition of J :

J =
1

2

Z 1

0

⇥

x(t)TQx(t) + u(t)TRu(t)
⇤

dt.

Since R is positive definite, for J to be finite, it seems reasonable that u should satisfy u(t) ! 0 as
t ! 1. From

u = �R�1BT�0,

a su�cient condition for this is that �(t) ! 0. We shall also impose that x(t) ! 0 as t ! 1.

Recap We’ve argued that if u(t) is an optimal control signal for the LQR problem, then it has the
form u = �R�1BT� where � is a companion signal (a Lagrange multiplier) to x that together are
stable solutions of the equation (8.1). The Lagrange multiplier is also known as the co-state. So
the optimal state, co-state, and control are defined by the conditions



ẋ

�̇

�

= H



x
�

�

u = �R�1BT�

x(t),�(t) �! 0.

Define w = (x,�) so that

ẇ = Hw.

How can we characterize the stable solutions? Answer: The solution w(t) converges to 0 i↵ w(0) is
in the stable eigenspace of H, namely, Im V �. But

Im V � = Im



I
X

�

X
1

= Im



I
X

�

.
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Thus

w(0) 2 Im



I
X

�

.

Since eigenspaces are invariant subspaces

w(t) 2 Im



I
X

�

, 8t.

Thus

⇥

�X I
⇤

w(t) = 0

and hence �(t) = Xx(t). Finally

u = �R�1BT� = u = �R�1BTXx,

so F = �R�1BTX.

8.4 Sketch of Proof that F is Optimal

Now that we’ve arrived at a formula for a feedback matrix F , we turn to the proof that u = Fx
actually is the optimal control. We’re going to skip the proofs that �(H) is symmetric about the
imaginary axis, that it has no imaginary eigenvalues, that X

1

is invertible, and that X is positive
semidefinite.

We have

V �1HV =



H� 0
0 H+

�

,

and so

HV � = V �H�.

Thus

H



X
1

X
2

�

=



X
1

X
2

�

H�

and hence

H



I
X

�

X
1

=



I
X

�

X
1

H�

so finally

H



I
X

�

=



I
X

�

X
1

H�X�1

1

. (8.2)
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Lemma 8.4.1 X satisfies the algebraic Riccati equation

ATX +XA�XBR�1BTX +Q = 0

and A�BR�1BTX is stable.

Proof Start with (8.2). Pre-multiply by
⇥

X �I
⇤

:

⇥

X �I
⇤

H



I
X

�

= 0.

This is precisely the Riccati equation. Pre-multiply (8.2) by
⇥

I 0
⇤

to get

A�BR�1BTX = X
1

H�X�1

1

.

Thus A�BR�1BTX is stable because H� is. ⇤

Theorem 8.4.1 The control signal that minimizes J is u = Fx and it is the unique optimal control.

Proof The proof is a trick using the completion of a square. Let u be an arbitrary control input
for which J is finite. We shall di↵erentiate the quadratic form x(t)0Xx(t) along the solution of the
plant equation. To simplify notation, we suppress dependence on t. We have

d

dt
(xTXx) = ẋTXx+ xTXẋ

= (Ax+Bu)TXx+ xTX(Ax+Bu)

= xT (ATX +XA)x+ 2uTBTXx

= xT (XBR�1BTX �Q)x+ 2uTBTXx from the Riccati equation

= �xTQx+ xTXBR�1BTXx+ 2uTBTXx

= �xTQx+ xTXBR�1BTXx+ 2uTBTXx+ (uTRu� uTRu)

—this was the completion of squares trick

= �xTQx� uTRu+ kR�1/2BTXx+R1/2uk2.

Rearranging terms we have

xTQx+ uTRu = � d

dt
(xTXx) + kR�1/2BTXx+R1/2uk2.

Now integrate from t = 0 to t = 1 and use the fact (not proved) that for J to be finite, x(t) must
go to zero:

J = xT
0

Xx
0

+

Z 1

0

kR�1/2BTXx+R1/2uk2dt.

Thus J is minimum i↵ R�1/2BTXx+R1/2u ⌘ 0, i.e., u = Fx. ⇤

The LQR solution provides a very convenient way to stabilize an LTI plant. Given A,B, select
Q,R with Q � 0, (Q,A) detectable, and R > 0. Then the optimal F stabilizes A+BF . This is the
preferred method over pole assignment.
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8.5 Problems

1. Dynamic programming (DP) is a clever solution to certain types of optimization problems.
As an example, let {x

1

, . . . , x
n

} be a finite sequence of real numbers and consider the problem
min

i

x
i

of finding the minimum. The DP method of solving involves defining the value
function

V (i) = min {x
i

, . . . , x
n

},

that is, V (i) is the minimum “cost-to-go” starting at x
i

. The value V (1) is what we seek.

Of course, V (n) = x
n

. Suppose we know V (i) for some i, 1 < i < n. Then

V (i� 1) = min {x
i�1

, . . . , x
n

}
= min {x

i�1

, V (i)}.

Thus the DP algorithm is

V (n) = x
n

for i = n� 1, n� 2, . . . , 1: V (i� 1) = min {x
i�1

, V (i)}

Thus the minimization problem is reduced to a recursion of small minimization problems over
just pairs of numbers. Write a MATLAB script for this problem and try an example.

2. Another application of DP is to find a minimum-cost path through a graph. Consider this
graph:

n01 n11

n12

n13 n23

n22

n21 n31

The nodes are labeled n
ij

, where i is interpreted as the stage and j as the node number at
that stage. Thus there’s one node at stage 0, three nodes at stage 1, etc. One wants to travel
from the start node n

01

to the end node n
31

with minimum cost. Each link has a cost, labeled
like this (not all are shown):

c0
11

c0
12

c0
13

c1
11

c1
12
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Thus, ck
ij

is the cost from node i at stage k to node j at stage k + 1. The cost of a path is
defined to be the sum of the costs of the links.

We define the value function, a real-valued function of the nodes, as follows: V (n
ij

) is the
minimum cost to go from node n

ij

to the end node. The value function at stage 3 is obviously
0. Thus V (n

31

) = 0. The value function at stage 2 is obviously just the cost of the last link:

V (n
21

) = c2
11

, V (n
22

) = c2
21

, V (n
31

) = c2
31

.

We label these at the nodes:

V (n31)V (n21)

V (n22)

V (n23)

n11

Now to the value function at stage 1. We will invoke the so-called principle of optimality:
Consider an optimal path from n

01

to n
31

; if this path goes through node n
1j

at stage 1,
then the subpath from node n

1j

to n
31

is optimal too. That is, for every optimal path, the
cost-to-go is minimum at each point along the path. Note that we’re not saying the initial
subpath is optimal, but rather the cost-to-go is. Thus at node n

11

, since there are just three
links out, we have

V (n
11

) = min {c1
11

+ V (n
21

), c1
12

+ V (n
22

), c1
13

+ V (n
23

)}.

After the other values are computed at stage 1, one computes V (n
01

), which equals the
minimum cost path from start to end. After the value function is computed at every node,
it’s easy to find optimal paths by moving left to right. Try an example.

The end


