
Chapter 7

Tracking and Regulation

Now we treat the problem of tracking a reference and/or rejecting a disturbance. The reference
and disturbance signals are assumed to satisfy known di↵erential equations, and only asymptotic
tracking or disturbance rejection is required—transient response is not an explicit specification.

7.1 Review of Tracking Steps

Besides feedback stability, another common control requirement is to be able to track a constant
reference signal. A familiar example is cruise control. We set the desired car speed and then require
the car to maintain that constant speed.

We continue with the block diagram

C(s) P (s)
r(t) e(t) u(t) y(t)

�

Suppose r(t) is an arbitrary constant value and we require y(t) to converge to that constant value.
By linearity, it su�ces to meet this requirement for just r(t) = 1. So the problem is: Given r(t) = 1,
design C(s) to achieve feedback stability and lim

t!1 y(t) = 1, or equivalently, lim
t!1 e(t) = 0.

Let’s address this problem using transfer function methods. The Laplace transform of r(t) = 1
is R(s) = 1/s. Let G(s) denote the closed-loop transfer function from r to the tracking error e.
Then

E(s) = G(s)
1

s
.

By the final-value theorem, lim
t!1 e(t) = 0 i↵ all the poles of G(s) lie in < s < 0 and G(0) = 0.

Having all the poles of G(s) lie in < s < 0 will follow from the requirement of feedback stability.
Since

G =
1

1 + PC
,

the condition G(0) = 0 is equivalent to the condition that P (s)C(s) has a pole at s = 0. If P has a
pole at s = 0, then C merely has to stabilize the feedback loop. If P does not have a pole at s = 0,
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88 CHAPTER 7. TRACKING AND REGULATION

then C must have one. If, furthermore, P has a zero at s = 0, then the problem isn’t solvable;
remember: there can be no unstable pole-zero cancellation. Here’s an example where the problem
is not solvable: a cart/pendulm where y is the angle of the pendulum. Obviously the angle cannot
be maintained at a nonzero constant value unless the cart is constantly accelerating, which would
indicate an unstable system. Finally, if P doesn’t have a pole or zero at s = 0, we can solve the
tracking problem by taking C of the form

C(s) =
1

s
C
1

(s)

and designing C
1

to stabilize the feedback loop. For example we could design an observer-based
controller C

1

(s) to stabilize P (s)/s. Thus integral control is the key to tracking constant references.

7.2 Distillation Columns

This is a brief description of a multivariable control regulator problem. It was first written by
Professor Jorg Raisch, now of the Technical University of Berlin, and is based on a real experimental
setup at Stuttgart University. In what follows, the pronoun “we” refers to Professor Raisch and
other Stuttgart researchers.

A binary distillation control problem

The plant

Distillation is one of the most important processes in the chemical industries. Its objective is to
separate a mixture of chemical components, in this case two alcohols, methanol and propanol. These
boil at di↵erent temperatures, so by heating the mixture to a temperature between their boiling
points, they can be separated; the one that vaporized has to be condensed back into a liquid. In
this case methanol boils at a lower temperature.

The Stuttgart system is shown in Figure 1. It is a staged distillation column of 10 metres height
and consists of 40 trays, consecutively numbered from top to bottom, a reboiler, and a condenser.
The methanol and propanol mixture is continuously fed (labeled “feed”) into the column on tray
22. The purpose of control is to maintain bottom and top product purity despite variations in feed
flow and feed concentration of up to ±20%. Product purity is defined by the concentration of the
high-boiling component (propanol) in the bottom product and the concentration of the light-boiling
component (methanol) in the distillate. Both concentrations should be greater than 0.999.

Choice of sensors and actuators

Although we ultimately want to control the concentration of propanol and methanol at the top and
the bottom of the column, we do not measure them. Concentration measurements are expensive.
They also introduce additional time delays into the control loop. Fortunately, as in most binary
distillation processes, there is a one-to-one correspondence between temperature and concentrations
on each tray. We can therefore control tray temperatures instead of concentrations.
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Figure 1: Schematic representation of distillation column

Nonlinear dynamic simulation was used to find a suitable steady-state and to assess
the e⇥ects of feed disturbances on temperatures on di⇥erent trays. The simulation model
is based on material balances, energy balances and thermodynamical correlations on each
tray. It consists of a set of 320 nonlinear di⇥erential and algebraic equations, which are im-
plemented in the simulation package DIVA, developed (primarily) at the ISR at Stuttgart
University. In Figure ??, suitable steady-state profiles of concentrations and temperature
are shown along the vertical axis of the column. As can be seen from Figure ??, distur-
bances in feed flow and feed concentration primarily cause the regions of high mass transfer
(those parts of the profile where changes in concentration and temperature with respect to
tray location are most pronounced) to move towards the top or the bottom of the column.
It is also clear from Figure ??, that temperatures on trays 14 and 28 (T14, T28) are amongst
the most sensitive ones with respect to feed disturbances. Therefore, temperature sensors
are placed on those trays. By keeping T14 and T28 within a specified range around their
steady-state values, specifications for top and bottom product purity can be met. As is
often done in binary distillation problems, we choose heat input E and reflux ratio � = L

VK

as control inputs.

1.3 The Linear Model

From step responses to E and �, a simple linear input-output plant model is fit:
�

�T14

�T28

⇥
= G(s)

�
��
�E

⇥
(1)

2

Nonlinear dynamic simulation was used to find a suitable steady-state and to assess the e↵ects
of feed disturbances on temperatures on di↵erent trays. The simulation model is based on mass
balances, energy balances, and thermodynamical correlations on each tray. It consists of a set of
320 nonlinear di↵erential and algebraic equations, which are implemented in a simulation package
at Stuttgart University. From simulation experiments it was found that the temperatures on trays
14 and 28 (T

14

, T
28

) are among the most sensitive ones with respect to feed disturbances. Therefore,
temperature sensors were placed on those trays. By keeping T

14

and T
28

within a specified range
around their steady-state values, specifications for top and bottom product purity can be met. So
these two temperatures are the plant outputs to be regulated.

As is often done in binary distillation problems, we chose heat input E (the energy input to the
reboiler) and reflux ratio ✏ = L/V

K

as the control inputs.

The Linear Model

From step responses to E and ✏, a simple linear input-output plant model was fit:
✓

�T
14

�T
28

◆

= G(s)

✓

�✏
�E

◆

(7.1)

The symbol � means ‘deviation from set point’. A state-space realization for G(s) was developed,
the units being E in kW , temperature in degrees Kelvin, and all time constants in hours. The
linearity assumption is quite far from reality, as—for the particular steady-state considered—gain
and time constants in each transmission channel can vary by up to 300% depending on the size and
sign of the input step. Nevertheless, if the controller is fast enough and confines the plant to a small
vicinity of the steady state, the plant model (7.1) and a simple (and rather “tight”) uncertainty
model have been found adequate for controller design.
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Disturbance model

We don’t have an explicit disturbance model, but the following makes sense: A step disturbance
of ±20% in both feed flow and feed concentration (of propanol) corresponds (roughly) to a ramp
disturbance of the size shown here:
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This disturbance is acting on the measured variables, T
14

, T
28

; this is referred to as “equivalent
output disturbance”.

Performance specifications

We want

• zero steady-state error

• to reject disturbances fast enough so that we stay within the range of validity of the linear
model.

7.3 Problem Setup

Now we turn to the state-space theory of tracking and regulation—the plant output should track a
reference signal, such as a step, ramp, or sinusoid, and/or a plant disturbance should be rejected.

Consider a cart/spring with control force u, disturbance force d, and position y:

u
d

y
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We want the cart to follow a reference r in spite of the disturbance. To keep things simple, let’s
take the plant equation to be

Mÿ = u�Ky � d.

This is an “f = ma equation” where M is the mass and K the spring constant. To make things
even simpler, let’s take M = K = 1:

ÿ = u� y � d.

Suppose we know that r is a constant (or a step) but we don’t know its value; and we know that d
is a sinusoid of frequency 10 rad/s but of unknown amplitude and phase. Then we know equations
that can generate these signals, namely,

ṙ = 0, d̈+ 100d = 0.

We call these two equations together the exomodel, “exo” meaning “from outside the plant”.
The only unknowns are the initial conditions of these equations. Since we’re not saying anything
about the magnitudes of these signals, the most we could try to achieve is asymptotic regulation:
r(t)� y(t) tends to zero. We want to design a controller to achieve this. We restrict the controller
to have input r � y and output u.

We’re going to develop a state-space theory for this problem, so it’s convenient to make a state
model of the plant and exomodel. The setup we want is a plant with state x

1

and an exomodel
with state x

2

like this:

ẋ
1

= A
1

x
1

+A
3

x
2

+B
1

u

ẋ
2

= A
2

x
2

e = D
1

x
1

+D
2

x
2

.

The output e is the signal that we want to go to zero, typically, a tracking error. The exogenous
signal x

2

also enters the plant via A
3

x
2

, a disturbance. It is natural to assume that all the
eigenvalues of A

2

are unstable (but no assumption is made yet about A
1

). For conciseness, the two
states can be combined:

ẋ = Ax+Bu, e = Dx, x =



x
1

x
2

�

, A =



A
1

A
3

0 A
2

�

, B =



B
1

0

�

, D =
⇥

D
1

D
2

⇤

.

Let us set up the cart example like this. Taking the state variables

x
1

= (y, ẏ), x
2

= (r, d, ḋ)

and the output e = r � y, we have

A =

2

6

6

6

6

4

0 1 0 0 0
�1 0 0 �1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 �100 0

3

7

7

7

7

5

, B =

2

6

6

6

6

4

0
1
0
0
0

3

7

7

7

7

5

, D =
⇥

�1 0 1 0 0
⇤

.
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The partition lines indicate the blocks

A =



A
1

A
3

0 A
2

�

, B =



B
1

0

�

, D =
⇥

D
1

D
2

⇤

.

We see that the eigenvalues of A
2

are 0,±10j, the frequencies of r and d. So A
2

is completely
unstable—no stable eigenvalues.

The regulator problem is to design a controller, with input e and output u, such that the
feedback loop is stable, meaning the plant state x

1

(t) and the controller state go to zero when
x
2

(0) = 0, and the output is regulated, meaning e(t) goes to zero for all initial conditions.

7.4 Tools for the Solution

In this section we develop the tools to solve the regulator problem. The notation is local to this
section; for example, there will be an A

1

but it won’t be the same as in other sections; however, A
2

will be the same.
Consider the system

ẋ = Ax, e = Dx, A =



A
1

A
3

0 A
2

�

, D =
⇥

D
1

D
2

⇤

where A
1

is stable and A
2

has all its eigenvalues in the closed right half-plane. We’re interested in
when e(t) goes to 0 for every x(0). If A

3

= 0, that is, A is block diagonal, the question is easy: e(t)
goes to 0 for every x(0) i↵ D

2

= 0. This follows from the equation

e(t) = D
1

eA1tx
1

(0) +D
2

eA2tx
2

(0).

To answer the question when A
3

6= 0, it would be beneficial to transform A so that it becomes block
diagonal.

The lower-left block of A being 0 is the sign of an invariant subspace, namely, the subspace of
all vectors of the form x = (x

1

, 0). That is, if x has this form, so does Ax:

x = (x
1

, 0) =) Ax = (A
1

x
1

, 0).

The invariant subspace can therefore be written as

Im T
1

, T
1

=



I
0

�

.

Note that

AT
1

=



A
1

A
3

0 A
2

� 

I
0

�

=



A
1

0

�

=



I
0

�

A
1

,

i.e., AT
1

= T
1

A
1

. This equation relates to Lemma 3.4.1.
Trying to transform A

from



A
1

A
3

0 A
2

�

to



A
1

0
0 A

2

�
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is related to finding another invariant subspace of A. Suppose we could find a matrix T
2

such that
AT

2

= T
2

A
2

and T
2

has the form

T
2

=



X
I

�

.

Putting T
1

and T
2

together we would have


A
1

A
3

0 A
2

� 

I X
0 I

�

=



I X
0 I

� 

A
1

0
0 A

2

�

.

That is, the similarity transformation T�1AT , where T =
⇥

T
1

T
2

⇤

, would block diagonalize A
into



A
1

0
0 A

2

�

.

Now the equation

AT
2

= T
2

A
2

, T
2

=



X
I

�

is exactly the same as

A
1

X �XA
2

+A
3

= 0.

To recap, if this equation has a solution X, then A can be block diagonalized.
Thus, we need this result:

Lemma 7.4.1 Assume A
1

is stable and A
2

has all its eigenvalues in the closed right half-plane.
There exists a unique matrix X satisfying the equation

A
1

X �XA
2

+A
3

= 0. (7.2)

Proof If A
2

= 0, obviously X exists, namely, X = �A�1

1

A
3

. Likewise, if A
2

= cI, with c a positive
constant, then the equation is

(A
1

� cI)X +A
3

= 0.

This has a unique solution because c is not an eigenvalue of A
1

. The proof in the general case is a
bit involved and is therefore omitted. ⇤

Using this X, we can block-diagonalize A by a similarity transformation:

T =



I X
0 I

�

, T�1AT =



A
1

0
0 A

2

�

.

Under the same transformation, D becomes

DT =
⇥

D
1

D
1

X +D
2

⇤

.

Thus, e(t) goes to 0 for every x(0) i↵ D
1

X +D
2

= 0.
Let’s summarize:
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Lemma 7.4.2 Suppose

ẋ = Ax, e = Dx, A =



A
1

A
3

0 A
2

�

, D =
⇥

D
1

D
2

⇤

where A
1

is stable and A
2

has all its eigenvalues in the closed right half-plane. Then e(t) goes to 0
for every x(0) i↵ D

1

X +D
2

= 0, where X is the unique solution of

A
1

X �XA
2

+A
3

= 0.

A special case is A
2

= 0. This will correspond to the case of constant references and/or distur-
bances. In this case X = �A�1

1

A
3

. The result is this:

Corollary 7.4.1 Suppose

ẋ = Ax, e = Dx, A =



A
1

A
3

0 0

�

, D =
⇥

D
1

D
2

⇤

where A
1

is stable. Then e(t) goes to 0 for every x(0) i↵ �D
1

A�1

1

A
3

+D
2

= 0.

This result is quite intuitive when one notices that �D
1

A�1

1

A
3

+D
2

equals the DC gain matrix
from x

2

to e for the system

ẋ
1

= A
1

x
1

+A
3

x
2

e = D
1

x
1

+D
2

x
2

.

7.5 Regulator Problem Solution

To review, the setup is a plant with state x
1

and an exomodel with state x
2

like this:

ẋ
1

= A
1

x
1

+A
3

x
2

+B
1

u

ẋ
2

= A
2

x
2

e = D
1

x
1

+D
2

x
2

.

The two states can be combined:

ẋ = Ax+Bu, e = Dx, x =



x
1

x
2

�

A =



A
1

A
3

0 A
2

�

, B =



B
1

0

�

, D =
⇥

D
1

D
2

⇤

.

We assume that all the eigenvalues of A
2

are unstable (but no assumption is made yet about A
1

).
It is also natural to assume that (D,A) is observable because we’re going to use an observer and
we’re going to want to have no restriction on where to place poles.

The solution is in two parts. We first look for a state feedback controller, u = Fx. Then we
implement it via u = Fx̂ where x̂ is from an observer with input e.

So let u = Fx. Then the controlled system is

ẋ = (A+BF )x, e = Dx,
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where

A+BF =



A
1

A
3

0 A
2

�

+



B
1

0

�

⇥

F
1

F
2

⇤

=



A
1

+B
1

F
1

A
3

+B
1

F
2

0 A
2

�

.

Clearly feedback stability is equivalent to stability of A
1

+ B
1

F
1

. Then asymptotic regulation is
equivalent to the condition that e(t) goes to 0 for every x(0).

Theorem 7.5.1 Assume A
2

has only unstable eigenvalues. Then the regulator problem is solvable
by some u = Fx i↵ (A

1

, B
1

) is stabilizable and there exist matrices X,U such that

A
1

X �XA
2

+A
3

+B
1

U = 0, D
1

X +D
2

= 0. (7.3)

Proof Necessity. Assume u = Fx solves the regulator problem. Certainly (A
1

, B
1

) is stabilizable.
By Lemma 7.4.2, asymptotic regulation implies there exists a matrix X such that

(A
1

+B
1

F
1

)X �XA
2

+A
3

+B
1

F
2

= 0, D
1

X +D
2

= 0. (7.4)

These can be written

A
1

X �XA
2

+A
3

+B
1

U = 0, D
1

X +D
2

= 0,

where U = F
1

X + F
2

.
Su�ciency. Choose F

1

so that A
1

+B
1

F
1

is stable. Solve (7.3) for X,U and set F
2

= U �F
1

X.
Then (7.4) holds, so asymptotic regulation follows from Lemma 7.4.2. ⇤

Let us look at the solvability condition for the case A
2

= 0, constant exogenous signals. Equa-
tion (7.3) becomes

A
1

X +A
3

+B
1

U = 0, D
1

X +D
2

= 0,

that is,


A
1

B
1

D
1

0

� 

X
U

�

+



A
3

D
2

�

= 0.

This is a linear matrix equation in X,U and it has a solution i↵

rank



A
1

B
1

A
3

D
1

0 D
2

�

= rank



A
1

B
1

D
1

0

�

.

If the plant is square, that is, dimu = dim e, then the matrix


A
1

B
1

D
1

0

�

is square, and a su�cient condition for solvability of (7.3) is that this matrix is invertible.

Now we turn to designing a controller with input e, not x. Assuming (D,A) is observable, we
can select L so that A+ LD is stable. The full-state observer is

˙̂x = Ax̂+Bu+ L(Dx̂� e).
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Setting u = Fx̂, we get the observer-based controller

˙̂x = (A+BF + LD)x̂� Le, u = Fx̂.

Thus the controller transfer function is

C(s) =



A+BF + LD �L

F 0

�

.

Theorem 7.5.2 Assume (D,A) is observable and A
2

has only unstable eigenvalues. Then the
regulator problem is solved by the observer-based controller if u = Fx is a state-feedback solution.

Instead of the proof, let’s do the cart example from start to finish.

Example We start with

A =

2

6

6

6

6

4

0 1 0 0 0
�1 0 0 �1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 �100 0

3

7

7

7

7

5

, B =

2

6

6

6

6

4

0
1
0
0
0

3

7

7

7

7

5

, D =
⇥

�1 0 1 0 0
⇤

.

We check that A
2

has no stable eigenvalues, that (D,A) is observable, and that (A
1

, B
1

) is stabi-
lizable, in fact controllable.

Next, we select F
1

to stabilize A
1

+B
1

F
1

. Arbitrarily selecting the eigenvalues to be �1, we get

F
1

=
⇥

0 �2
⇤

.

Next, we have to check solvability of

A
1

X �XA
2

+A
3

+B
1

U = 0, D
1

X +D
2

= 0.

for X,U . The easiest way to do this is to try to solve them. So write

X =



x
11

x
12

x
13

x
21

x
22

x
23

�

, U =
⇥

u
1

u
2

u
3

⇤

and substitute them into the equations. You will get 9 equations in the 9 unknowns. These indeed
have a unique solution:

X =



1 0 0
0 0 0

�

, U =
⇥

1 1 0
⇤

.

Then

F
2

= U � F
1

X =
⇥

1 1 0
⇤

.

Finally, assigning the eigenvalues of A+ LD at �1, we get

L =
⇥

5 �91 �0.01 490 �9005
⇤

T

.
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The resulting controller transfer function

C(s) =



A+BF + LD �L

F 0

�

. =
�672s4 + 8015s3 � 679s2 + 8007s+ 1

s(s4 + 7s3 + 20s2 + 700s� 8000)
.

The controller has poles at 0,±10j, as it must to track the step and reject the disturbance. The
structure has the familiar block diagram:

r u

d

y

�

�
C(s)

1
s2 + 1

e

⇤

7.6 Unobservability

What happens when (D,A) is not observable and we can’t construct an observer with input e and
arbitrary pole locations? Here are some examples to illustrate.

Example Consider the cart with neither spring nor disturbance:

ÿ = u

A =

2

4

0 1 0
0 0 0
0 0 0

3

5 , B =

2

4

0
1
0

3

5 , D =
⇥

�1 0 1
⇤

.

Here (D,A) is not observable. The reason is that the setup is redundant: Since the plant is a double
integrator, step-tracking will automatically follow from feedback stability. So modeling r
is unnecessary. In fact, we should not have modeled r, but since we did model it, the model needs
pruning.

The precise way to prune the model is to take out the unobservable part. We learned how to
do this in the Observability chapter. The unobservable subspace of (D,A) is spanned by the single
vector (1, 0, 1). Make this the third column of a transformation matrix W :

W =

2

4

1 0 1
0 1 0
0 0 1

3

5 .

Take the first two columns to be the standard basis vectors. Then W�1AW,W�1B,DW are

Ã =

2

4

0 1 0
0 0 0
0 0 0

3

5 , B̃ =

2

4

0
1
0

3

5 , D̃ =
⇥

�1 0 0
⇤

.
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The unobservable part is the third state, which in the new basis is the exomodel state. Pruning out
that state, we have the reduced model

Ā =



0 1
0 0

�

, B̄ =



0
1

�

, D̄ =
⇥

�1 0
⇤

.

In this model there is no exomodel and the regulator problem is just a stabilization problem. We
select F̄ to stabilize Ā+ B̄F̄ . For the eigenvalues to be �1, we get

F̄ =
⇥

�1 �2
⇤

.

Finally, again assigning the eigenvalues of Ā+ L̄D̄ at �1, we get

L̄ =
⇥

2 1
⇤

T

.

The resulting controller from e to u is

C(s) =
4s+ 1

s2 + 4s+ 6
.

The block diagram is

r u y

�
C(s)e 1

s2

⇤

The general idea is that the plant model would always itself be controllable, observable, so a
lack of observability in (D,A) comes from redundancy in the exomodel. So the pruning is to get rid
of that redundancy while preserving the plant. Therefore, the structure of W should be like this:
Let’s say the plant is dimension n

1

and the unobservable subspace of (D,A) is dimension q. Then
the first n

1

columns of W should be the first n
1

columns of the identity matrix (this preserves A
1

and keeps the lower-left block of A to be zero) and the last q columns of W should be a basis for
the unobservable subspace.

Example Consider the cart without the spring but subject to the disturbance:

ÿ = u� d.

We have

A =

2

6

6

6

6

4

0 1 0 0 0
0 0 0 �1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 �100 0

3

7

7

7

7

5

, B =

2

6

6

6

6

4

0
1
0
0
0

3

7

7

7

7

5

, D =
⇥

�1 0 1 0 0
⇤

.

We check that A
2

has no stable eigenvalues, that (D,A) is unobservable, and that (A
1

, B
1

) is
controllable. The unobservable subspace of (D,A) is spanned by the single vector (1, 0, 1, 0, 0).
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Make this the fifth column of a transformation matrix W , taking the first four columns to be the
standard basis vectors. Then compute W�1AW,W�1B,DW . You will see that the fifth state
variable is unobservable, so prune it from the model. The result is

Ā =

2

6

6

4

0 1 0 0
0 0 �1 0
0 0 0 1
0 0 �100 0

3

7

7

5

, B̄ =

2

6

6

4

0
1
0
0

3

7

7

5

, D̄ =
⇥

�1 0 0 0
⇤

.

So what we’ve done is prune out the part of the exomodel corresponding to r, keeping the part
corresponding to d. Proceeding as before we get

C(s) =
�580s3 + 8515s2 + 6s+ 1

s4 + 6s3 + 15s2 + 600s� 8500
.

⇤

Example This plant is a pure integrator:

ẏ = u.

Suppose the goal is to have y track a ramp r. The exomodel is a double integrator, so the plant
already has “half” an internal model. So there’s a redundancy and we need somehow to prune the
exomodel down to a single integrator. The setup is

A =

2

4

0 0 0
0 0 1
0 0 0

3

5 , B =

2

4

1
0
0

3

5 , D =
⇥

�1 1 0
⇤

.

The rest is left as an exercise. ⇤

Example This continues the platoon example of Chapter 1. We want carts to move in a straight
line like this: A designated leader should go at constant speed: the second should follow at a fixed
distance d; the third should follow the second at the distance d; and so on.

leader under

cruise control

follower should stay 

distance d behind

Let’s consider the control problem of the second vehicle, the follower. Denote its position by x
1

and its velocity by u. Then

ẋ
1

= u.

Let the position and velocity of the leader be y
l

and ẏ
l

. Then the goal is to have

y
l

� x
1

= d.
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So we define the error,

e = d� (y
l

� x
1

).

To formulate a problem we can solve, we’ll consider the situation where the leader is going at
constant speed, i.e., ÿ

l

= 0. Thus the exomodel has

ḋ = 0, ÿ
l

= 0.

Notice that we’re modeling d in the exomodel even though we know its actual value. The state of
the exomodel is taken to be

x
2

= (d, y
l

, ẏ
l

).

So

ẋ
2

= A
2

x
2

, A
2

=

2

4

0 0 0
0 0 1
0 0 0

3

5 .

We now combine the two states: x = (x
1

, x
2

). Then

ẋ = Ax+Bu, e = Dx,

where

A =

2

6

6

4

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

3

7

7

5

, B =

2

6

6

4

1
0
0
0

3

7

7

5

, D =
⇥

1 1 �1 0
⇤

.

The partition lines indicate the blocks

A =



A
1

A
3

0 A
2

�

, B =



B
1

0

�

, D =
⇥

D
1

D
2

⇤

.

We see that the eigenvalues of A
2

are 0, 0, 0. So A
2

is completely unstable—no stable eigenvalues.
Also, (D,A) is not observable.

See Scilab code next page. The resulting controller, with input e and output u, is

C(s) = � 3s+ 1

s(s+ 3)
.

The final configuration is

� �
1
s

� 3s + 1
s(s + 3)

d x1

yl
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// controller for a follower in a platoon.

//initial model

A=[0 0 0 0;0 0 0 0;0 0 0 1;0 0 0 0];
D=[1 1 -1 0];
B=[1 0 0 0]';

// unobservable subspace is spanned by (0,1,1,0), (1,0,1,0)
// transform to At etc (A tilde)

T=[1 0 0 1;0 0 1 0;0 0 1 1;0 1 0 0];
At=inv(T)*A*T;
Dt=D*T;
Bt=inv(T)*B;

// new,reduced model

A1=At(1,1);
A3=At(1,2);
A2=At(2,2);
D1=Dt(1,1);
D2=Dt(1,2);
B1=Bt(1);

// stabilize A1 + B1 F1

F1=-ppol(A1,B1,-1);

// solve for F2

F2=1;

// observer

A=[A1 A3;0*A2 A2];
D=[D1 D2];
F=[F1 F2];
B=[B1;0*B1];

L=-ppol(A',D',[-1 -1]);
L=L';

// controller state matrices

Ac=A+B*F+L*D;
Bc=-L;
Cc=F;

// controller transfer function

[Con]=syslin('c',Ac,Bc,Cc);
[C]=ss2tf(Con);

There is a general theory about pruning the unobservable part of (D,A) in the regulator problem.
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In the interests of time we’ll skip it. For us, we’ll use the pruning procedure to get a controller and
then check afterwards if it solves the regulator problem.

7.7 More Examples

We’ll do additional examples to illustrate some things that can happen, such as non-solvability of
the problem.

Example Consider the cart/spring with no disturbance:

ÿ = u� y.

This is a pure step-tracking problem with

A =

2

4

0 1 0
�1 0 0
0 0 0

3

5 , B =

2

4

0
1
0

3

5 , D =
⇥

�1 0 1
⇤

.

We check that A
2

has no stable eigenvalues—in fact A
2

= 0—that (D,A) is observable, and that
(A

1

, B
1

) is controllable.
Next, we select F

1

to stabilize A
1

+B
1

F
1

. For the eigenvalues to be �1, we get the same F
1

,

F
1

=
⇥

0 �2
⇤

.

Next, we have to check solvability of

A
1

X +A
3

+B
1

U = 0, D
1

X +D
2

= 0.

for X,U . We can write these as


A
1

B
1

D
1

0

� 

X
U

�

= �


A
3

D
2

�

.

The matrix on the left is invertible, so we get



X
U

�

= �


A
1

B
1

D
1

0

��1



A
3

D
2

�

.

This yields

X =



1
0

�

, U = 1.

Then F
2

= U � F
1

X = 1.
Finally, again assigning the eigenvalues of A+ LD at �1, we get

L =
⇥

2 2 �1
⇤

T

.

The resulting controller is

C(s) =
5s2 � 4s+ 1

s(s2 + 5s+ 9)
.
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⇤

Example Now, an example plant where step-tracking is not feasible. We just need the plant to
have a zero at s = 0:

ÿ = u̇� y

A =

2

4

0 1 0
�1 0 0
0 0 0

3

5 , B =

2

4

0
1
0

3

5 , D =
⇥

0 �1 1
⇤

.

Again, A
2

= 0, (D,A) is observable, and (A
1

, B
1

) is controllable. We have to check solvability of



A
1

B
1

D
1

0

� 

X
U

�

= �


A
3

D
2

�

.

The numbers are
2

4

0 1 0
�1 0 1
0 �1 0

3

5



X
U

�

= �

2

4

0
0
1

3

5 .

This isn’t solvable. ⇤

The situation may arise where the reference value r is actually known. For example, for the
maglev problem we had pre-specified that we wanted to regulate the ball exactly at 1 cm. Then
the problem is really one of stabilization about a nonzero equilibrium point, as illustrated by an
example.

Example The cart/spring system

ÿ = u� y

where the desired position is y = r = 1, a fixed known value. Of course, we could use regulator
theory, but we don’t need to. The model is

ẋ = Ax+Bu, y = Cx, x =



y
ẏ

�

, A =



0 1
�1 0

�

, B =



0
1

�

, C =
⇥

1 0
⇤

.

We want to stabilize the system at

x = (1, 0).

Consider the control law

u = Fx+ u,

where u is a constant to be determined. Then

ẋ = (A+BF )x+Bu.
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If A+BF is stable, then x(t) converges to �(A+BF )�1Bu. Let’s take

F =
⇥

0 �2
⇤

.

Then the solution of

�(A+BF )�1Bu =



1
0

�

is u = 1. If only y, not the full state, is sensed, an observer-based controller can be used:

˙̂x = Ax̂+Bu+ L(Cx̂� y)

u = Fx̂+ u.

Again, y(t) converges to the desired value. ⇤

7.8 Problems

1. Consider the 2-cart system

M1 M2

K

u1

y1 y2

Take M
1

= M
2

= 1, K = 2. The control input is u
1

and we want y
1

to follow a step r. Solve
the regulator problem.

2. Solve the regulator problem for the following cases:

plant spec r d

ẏ = y + u r � y �! 0 ramp
ẏ = u r � y �! 0 ramp

ẏ = y + d+ u r � y �! 0 ramp step
ẏ = d+ u y �! 0 sinusoid of freq. 2 rad/s
ẏ = d+ u r � y �! 0 ramp sinusoid of freq. 2 rad/s

ẏ = �y + d+ u r � y �! 0 ramp sinusoid of freq. 2 rad/s

3. Consider the plant

ẋ
1

= A
1

x
1

+B
1

u, A
1

=



0 1
0 0

�

, B
1

=



0
1

�

.

The goal is to get x
1

(t) to track asymptotically a point x
2

(t) moving at unit speed counter-
clockwise around the unit circle in R2.

(a) Find an exomodel ẋ
2

= A
2

x
2

.
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(b) Is the tracking problem solvable?

(c) Repeat with

B
1

=



1 0
0 1

�

.

4. Two cars, 1 and 2; car 1 is the leader and car 2 the follower. Car 1 wants to move at constant
speed v

ref

, while car 2 wants to keep a distance d
ref

behind. Here’s the schematic and the
block diagram:

p1
p2

1
M s

1
M s

v1

v2

!

!

1
sp1 ! p2

!

v1 ! v2

vr ef

dr ef

u1

u2

C1

C2

Car 1 has the model Mv̇
1

= u
1

; likewise for car 2. Controller C
1

has input the speed error,
while controller C

2

has input the relative position error. The symbols v
i

stand for speed and
p
i

for position.

Take MKS units, take v
ref

to be the equivalent in m/s of 100 km/hr, take d
ref

to be 5 m,
and take M to be 1500 kgm. Design sensible controllers C

1

and C
2

.

5. This model is taken from the Mathworks website. Use Scilab/MATLAB for this problem. The
problem relates to the design of a controller for the yaw motion of a Boeing 747 jet transport
plane. The plant is fourth order, with state variables sideslip angle, yaw angle, roll rate, and
bank angle. There are two inputs, rudder angle and aileron angle. The units are radians for
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angles and radians/sec for angle rates. The plant matrices are

A
1

=

2

6

6

4

�0.0558 �0.9968 0.0802 0.0415
0.5980 �0.1150 �0.0318 0
�3.0500 0.3880 �0.4650 0

0 0.0805 1.0000 0

3

7

7

5

, B
1

=

2

6

6

4

0.0729 0
�4.75 0.00775
0.153 0.1430
0 0

3

7

7

5

.

To get a feel for the open-loop dynamics, simulate and plot yaw angle for an initial value of
10 degrees. Now design a controller so that the yaw angle asymptotically tracks a constant
value (step reference). Your controller will first be of the form u = F

1

x
1

+ F
2

x
2

. Try to
place the poles of A

1

+ B
1

F
1

so that when you simulate the yaw angle for a step command
of 10 degrees (starting from 0 degrees), the response seems not unreasonable in comparison
to the open-loop one. Remember: It’s a jumbo jet. Finally, design an observer so that your
controller has the yaw angle tracking error as input.


