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Preface

Cooperative control of multi-agent systems has been actively studied in the field of systems and
control in the past two decades. Such systems typically consist of a large number of distributed
agents, which locally interact with one another such that they jointly pursue a global goal. Research
results on cooperative control of multi-agent systems have found wide applications in robotics
(swarms of vehicles/drones) [bWRKGQd, |MC1d, bVC+16ﬂ, engineering (sensor/power networks)
k;AYMlQ,IDw,&O?I], physics (systems of oscillators) [IDCBIE*,IPRULESOQ], epidemics (spreading
processes) [YLAC2 |,|KBG14,bGNK13i], and social/political science (opinion dynamics) [,

IEJ B16,| L15]. The literature has grown in near-intractable volumes, but excellent textbooks (e.g.
ul2d, [FM1d, BAW L], MEL], RBod]) and surveys (e.g. [oPAL],DB14,[cYRC1d, [6S1d, osEmod))

have kept the content in organized manners.

This monograph aims to provide a new perspective of the research work on cooperative control
of multi-agent systems. This perspective is based on different types of graph Laplacian matrices.
The standard (conventional) Laplacian matrix is defined based on a nonnegative adjacency matriz
, }, which describes the interaction (graph) topology of a multi-agent system. This
type of Laplacian matrix is fundamental in describing the dynamics of a number of multi-agent
cooperative control problems including consensus, averaging, synchronization, regulation flocking,

and optimization [JTLMO03,INK19,CI11CT1%,Ren08,Lun12,WSA 11|, KCK 20,0806, XHC*17,ZYC2d].

The algebraic properties of this type of Laplacian matrix have been found to characterize stability

and performance of the corresponding cooperative control algorithms. These algebraic properties
are also closely related to the connectivity properties of the interaction graph.

More recently, two other types of Laplacian matrices have been proposed in designing cooperative
control algorithms. One type is defined from a complex-valued (entry-wise) adjacency matrix, and
is called complex Laplacian. A complex Laplacian matrix has been found useful in solving a class of
formation control and localization in the 2D plane [LDY+13, LWHF14, LFD15,LHZF16, LWHF 1.

The other type of Laplacian matrix is defined from a general real adjacency matrix which need not be

nonnegative. This type of Laplacian matrix is called signed Lapalcian, and has been found effective
in designing cooperative control algorithms to solve formation control and localization in 3D and
higher-dimensional spaces [ILWC"‘1d,tha1d,lHLZ+1ﬂ,bWL+17|,bLC+16ﬂ. For both types — complex

and signed Laplacian matrices — their algebraic properties are again essential in characterizing

stability and performance of the corresponding cooperative control algorithms. In addition, these
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algebraic properties are also related to certain connectivity properties of the interaction graph.
The above works based on different types of Laplacian matrices thus provide us with a new
angle to overview the relevant literature on multi-agent cooperative control. Although there are
many different cooperative control problems in their appearances, they have a few basic points
in common. The interaction topology of the agents can be described by graphs, the dynamics
of multi-agent systems is hence underlied by Laplacian matrices, and the algebraic properties of
these Laplacian matrices dictate stability /performance of the corresponding cooperative control
algorithms. These common points therefore allow us to interlink and organize different cooperative
control problems and their solutions by different types of Laplacian matrices and the corresponding

algebraic properties.
Organization

There are three ways we have in mind in organizing the content of this monograph. In all cases,
Part I (including Chapter 1) presents the required mathematical preliminaries for the rest of the
monograph. This part is expected to be read first if the reader is not familiar with the content.

The rest of the monograph can be viewed in three ways:

First, eight different cooperative control problems are presented through Chapters 2-9.

Second, Parts IT and III (including Chapters 2-5) are based on standard Laplacians, Part IV
(Chapters 6-7) on complex Laplacians, and Part V (Chapters 8-9) on signed Laplacians.

Third, Parts II, III, IV, and V are based respectively on different connectivity conditions of
directed graphs.

These different views are to provide flexibility to the reader with different purposes. One may
choose to read different problems independently, or different types of graph Laplacians indepen-

dently, or graph connectivity conditions progressively.
Focus

The focus of this monograph is on linear dynamics, time-invariant, and directed graphs. Relevant
work on nonlinear dynamics, time-varying, and undirected graphs is introduced in the section “Notes

and References” at the end of each chapter.
Intended Audience

This monograph is written for applied science and engineering students in the graduate level
or higher undergraduate levels, as a textbook or a reference for a relevant course. The mono-
graph is also intended for researchers in systems control, robotics, signal processing, and computer

engineering with interests in multi-agent systems, networked control, and cooperative behaviors.
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Part 1

Mathematical Preliminaries

This part introduces the basic concepts of directed graphs and their associated matrices. Three
types of graph Laplacian matrices are defined, and their algebraic properties presented. These con-
cepts and properties lay a theoretical foundation for the multi-agent cooperative control problems

introduced later in the book.
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CHAPTER 1

Graphs and Laplacian Matrices

We introduce basic elements of directed graphs, including nodes, edges, subgraphs, neighbors,
and degrees. Then graph connectivity concepts that are key for distributed control problems are
introduced; these concepts include strongly connectedness, strong components, spanning trees,
and spanning multiple trees. We then introduce relevant matrices of directed graphs, including
adjacency matrices, degree matrices, and Laplacian matrices. In particular, we define three types
of Laplacian matrices and analyze their algebraic properties (eigenstructures and ranks). Key
relations between these algebraic properties of graph matrices and graph connectivity conditions

are established.

1.1 Directed graphs

A directed graph (or simply digraph) G = (V, ) consists of a non-empty finite set V of elements
called nodes, and a finite set £ of ordered pairs of nodes called edges. Thus € C V x V. The set V
is called the node set and £ the edge set of digraph G.

Three examples of digraphs are displayed in Fig. @:

Gr = ({v1,v2,v3,v4}, {(v1,v2), (v1,v3), (V2,v4), (v3,v2), (v3,v4), (v4,v1), (V4,v2)})
G2 = ({v1,v2,v3}, {(v1,v2), (v1,3), (v3,v2)})

Gz = ({v1,v2,v3}, {(v1,v1), (v1,v2), (v1,v3), (v3,v2)})

For an edge (u,v) the first node w is its tail and the second node v is its head. The edge (u,v)
is said to leave u and enter v. The head and tail of an edge are its end-nodes. A loop is an edge
whose end-nodes are the same node. An edge is multiple if there is another edge with the same

end-nodes. A digraph is simple if it has no loops or multiple edges.ﬁ]

n this book, unless otherwise specified, only simple digraphs are considered.

13



14 Chapter 1. Graphs and Laplacian Matrices

() ORI ® (@ (@)
Gi G Gs
Figure 1.1: Directed graphs (digraphs)

For example, consider the digraphs in Fig. El] Here, digraph G; is simple; digraph G5 has

multiple edges, namely (v1,v2); and digraph G3 has a loop, namely (v, v1).

In the special case where for every edge (u,v) € &, the edge (v, u) of opposite direction satisfies
(v,u) € € as well, G = (V,€) is called an undirected graph. Two examples are given in Fig. @,

where the edges are customly drawn without arrows.

) (o

G Gy

Figure 1.2: Undirected graphs

Subdigraphs

Let G = (V, &) be a digraph. G’ = (V',£’) is said to be a subdigraph of G if V' CVand &' CE. If
moreover V' =V, then G’ is a spanning subdigraph of G. For a digraph G = (V, £) and a non-empty
subset V' C V| the induced subdigraph by V' is G' = (V', &), with & = €N (V' x V).
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For example, consider the digraphs displayed in Fig. B Here Gi11, Gi2, and Gy are all
subdigraphs of G; = (V,€) in Fig. @ Only Gi5 is a spanning subdigraph, while only
Gi3 is the induced subdigraph by V' = {v;,v9,v4} C V. Note that Gj; is not the induced
subdigraph by V' = {v1,v2,v4} because edge (vy,v2) is absent and £ G €N (V' x V).

() ey @ e @ ()
Gn Gia G13
Figure 1.3: Subdigraphs

Neighbors and degrees

The local structure of a digraph is described by the neighbors and the degrees of its nodes. For
a digraph G = (V, &) and a node v € V, the neighbor set of v is N, := {u € V| (u,v) € £}, while
the out-neighbor set of v is N := {u € V| (v,u) € £}. The nodes in N, and N? are respectively
the (in-)neighbors and out-neighbors of v.

The degree, d,, of a node v is the cardinality of the neighbor set N, written d,, = |[N,|. Similarly,
the out-degree, d2, of a node v is the cardinality of the out-neighbor set N2, i.e. d2 = |N2|.

A node v with d, = df is called balanced. A digraph G is balanced if every node is balanced.
Every undirected graph is balanced.

As an illustration, consider the digraph G; displayed in Fig. ll:l] For node vy, its neighbor
set is V,, = {vs4} and out-neighbor set N? = {vz,v3}; hence its degree is d,, = 1 and
out-degree dj = 2. As a result, v; is not balanced. Next consider the digraph Gi; in
Fig. B Observe that every node has degree 1 and out-degree 1, so every node is balanced
and digraph G;; is balanced.
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1.2 Connectivity of digraphs

A (directed) path in a digraph G = (V, ) is a sequence of nodes
vive v (k>1)

such that (v;,v;41) € € for every i = 1,2,...,k—1. The path is said to be from vy to vg. If vi = vy,
the path is called a cycle. The length of a path is the number of the consisting edges. Hence the
path above has length & — 1. It is allowed that k& = 1, in which case the path is of length 0. Also
note that a loop is a cycle of length 1.

Let u,v € V be two nodes of G. We say that v is reachable from w if there is a path from u
to v; written v — v. If v is not reachable from u, we write u 4 v. Every node v is reachable
from itself, i.e. v — v, by the (trivial) path of length 0. For any node v, the set of nodes
reachable from v is V(v7) = {v/ € V | v — v}, while the set of nodes from which v is reachable
isV(v) ={v € V| v = v} We call V(v7) the reachable set of v, and V(7v) the backward
reachable set of v. Both V(v™) and V(7 v) are nonempty, because v belongs to both.

A digraph G = (V, &) is strongly connected if
(Vu,v € V)u = v

namely every node is reachable from every other node. In this case, V(v™) = V(7 v) = V for every
node v € V.

Gi G>

Figure 1.4: Reachability and strongly connected digraphs

For example, consider digraph G; in Fig. @ Although for ¢ = 1,2, 3 there holds V(v;?) =
V(i) =V, for i = 4,5 only V(v;”) = {v4,v5} & V. The latter means that nodes v, vs
cannot reach vy,vs,v3. Hence G; is not strongly connected. By contrast, G, is strongly
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connected: V(v;?) =V(7v;) =V foralli=1,2,3.

A strongly connected digraph G contains at least one cycle. Given a strongly connected digraph
G containing m(> 1) cycles, let I1,..., 1, be the lengths of all these cycles and denote by p their

greatest common divisor, i.e.

p:=g.cd{ly,....ln}.

If p > 1, we say that G is periodic with period p. Otherwise (p = 1), we say that G is aperiodic.
Note that a strongly connected digraph with a loop is aperiodic (as in this case p = 1).
In a digraph G = (V,£), a node r € V is called a root if

My eV)r —w

that is, every node is reachable from 7 (equivalently V(r—) = V). Note that in a strongly connected
digraph G, every node is a root.

Let r be a root of digraph G = (V, ). A spanning subdigraph G’ = (V, ') is called a spanning
tree (with root r) if

o 7 has no neighbor, i.e. N, = 0;

o every node v € V \ {r} has exactly one neighbor, i.e. d, = 1.

Definition 1.1 Let G = (V,€) be a digraph. We say that G contains a spanning tree if there

exists a spanning subdigraph of G that is a spanning tree.

Consider the digraphs displayed in Fig. @ Digraph G; is a spanning tree with root vs.
G» is strongly connected, and (so) it contains a spanning tree (say Gi). Gs is not strongly
connected, but contains a spanning tree (G;). Finally G4 neither is strongly connected nor

contains a spanning tree.

Note that if G is strongly connected, then G contains a spanning tree; but the reverse need not
hold. Nevertheless whether or not G contains a spanning tree may be verified by inspecting its
strongly connected subdigraphs.

Strong components

Let G’ = (V',&’) be a subdigraph of G = (V,€), where ) # V' CVand & = EN (V' x V).
Namely G’ is an induced subdigraph of G by V'. We say that G’ is a strong component of G if G’
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Gs on

Figure 1.5: Strongly connected digraphs and spanning trees

is strongly connected and for every other induced subdigraph G” = (V" ,&") with V' C V" and
E' C&”, G" is not strongly connected. In other words, G’ is a mazimal strongly connected induced
subdigraph of G (which need not be unique). Let Gy = (V1,&1) and Gy = (Va,&2) be two strong
components of G = (V,€). Then they are either identical (i.e. Vi = V5, & = &) or disjoint (i.e.
ViNVy=0,ENE =0).

A strong component G’ = (V', &) is said to be closed if
(Vu e V)V e V\ Vv A u
namely no edge enters any node in V’. In this case, V' = V(7 u) C V(u™) for every node u € V'.

Fig. @ provides examples of induced subdigraphs, G;, G2, and Gs, of the first digraph G,
where G; is not a strong component, G, is a closed strong component, and G3 is a strong

component but not closed.
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G () (v) (v
e
Gs

Figure 1.6: Strong components and closed strong components

Theorem 1.1 Let G = (V,E) be a digraph. The following are equivalent:
(i) G contains a spanning tree;

(ii) G contains a unique closed strong component.

Proof. (i) = (ii). Suppose that G = (V,€) contains a spanning tree. Let V, be the subset of

all roots, i.e.
Ve i={reV|Vr7)=V}

Thus V, # 0. Let G, be the induced subdigraph by V.. It will be shown that G, is the unique
closed strong component of G.
If V. = V, namely every node is a root, then G, = G is strongly connected, and maximality,

closedness, and uniqueness follow trivially.

If v, ; V (i.e. V, is a strict subset of V), first note that G, is closed. To see this, suppose on the
contrary that there exist » € V. and v € V' \ V,. such that v — r. Since r is a root, v is also a root,
but this contradicts v ¢ V,.. Next, note that G, is strongly connected. This follows from the fact
that every node in V, is a root and G, is closed. Moreover, no node in V \ V, (i.e. non-root) can be
added to V, while preserving strongly connectedness, so G, is a strong component of G. Finally, we
prove that G, is unique. Let G| = (V/,&!) be another closed strong component of G. Then either
VINV, =0 or V. =V, Since all nodes V, are roots, they can reach all nodes in V/, but this
contradicts closedness of G/.. Hence, it is only possible that V. = V.., and G.. = G, after all. This

establishes that G, is the unique closed strong component of G.
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(ii) = (i). Suppose that G contains a unique closed strong component G, = (V,.,&,). We will
prove that G contains a spanning tree by showing that every node in V, is a root.

Suppose on the contrary that there is a node r € V,. such that it is not a root. Then V(r™) g V.
Let U := V\ V(r7); thus U # (. Note that no node in V(r™) can reach any node in U, because
otherwise r could also reach some node in &. Hence the induced subdigraph G, by U is closed. In
the following, it will be shown that G, contains at least one closed strong component.

Select an arbitrary node uw; € U, and check if V(7uy) C V(u7’). If so, it follows that the
induced subdigraph G; by V(" uy) is a closed strong component of G,,. If the condition fails, then
select another arbitrary node ug € V \ V(7uy), and check if V(7 uz) € V(uy"). Note that here
V(7 uz) € V\ V(7 u1) necessarily holds, for otherwise u; could be reached from uy. If the condition
holds, then the induced subdigraph Go by V(7 us) is a closed strong component of G,,. If not, repeat
the above procedure. Since the node set U is finite, in the worst case after (say) k repetitions and
check failures, the subset V(7 uky1) € V\V(7uq) \ -+ \ V(7 ug) contains a singleton node uj41.
Since V(T ur41) € V(uy),,) holds trivially, the induced subdigraph Gry1 by V(7 ug41) is a closed
strong component of G, .

We have thus proved that G, contains a closed strong component, say G/,. Since G, is closed in
G, G! is also a closed strong component of G. But G/, is different from G,., which is a contradiction
to the assumed unique strong component of G. Therefore, every node in V, is a root and G contains

at least one spanning tree. O

To illustrate Theorem @, consider the digraphs in Fig. @ G1 contains two strong compo-
nents, but only the one induced by {v1,v2,v3} is closed. Hence G; contains a spanning tree
with root (say) vi. Go contains only one strong component, namely itself, which is (trivially)
closed. So again G, contains a spanning tree with root (say) vs. On the other hand, consider
digraph G, in Fig. @ We have identified that G4 does not contain a spanning tree. Indeed,
this digraph contains 4 strong components, two of which are closed: one induced by {v;}
and the other by {vs}.

Spanning multiple trees

Let us now generalize the concept of spanning trees to allow multiple roots.

Consider a digraph G = (V,€). Let R CV be a subset of nodes, and k := |R|. Consider k > 2,
i.e. R contains at least two nodes. Let v € V \ R. We say that v is k-reachable from R if there
is a path from a node in R to v after removing arbitrary k£ — 1 nodes except for v itself; written

R — v. More formally, R — v if

VU CV\{vDHU|=k—-1= Fre RNV \U))r — vin G induced by V\ U.
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If v is not k-reachable from R, we write R 4 v.
The subset R of k(> 2) nodes is called a k-root subset if

Mo e V\R)R = v

that is, every node (not in R) is k-reachable from R. Note that in G = (V,€), if R is a k-root
subset, then for every r € R, R\ {r} is a (k — 1)-root subset in the induced subgraph by V\ {r}. In
the special case k = 2, i.e. R = {ry,r2}, r1 (resp. r2) is a root of the induced subgraph by V\ {ra}

(resp. by V\ {r1}).

AN

G G2

U1
‘ “

(%] (W

U3

Gs G4
Figure 1.7: k-reachability

Consider the digraphs in Fig. @ In Gy, vy is 2-reachable from {vq,vs}, and {vy,v3} is a
2-root set. By contrast, in Ga, v; is not 2-reachable from {vq, v3}, because after removing vg,

vy is no longer reachable from vs. Similarly, in G3, v; is 3-reachable from {v2,v3,v4}, and
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{vg, v3,v4} is a 3-root set. But in G4, v; is not 3-reachable, because after removing vy and vs,
v1 is not reachable from vy. Finally, removing vs in Gy, v3 is a root of the induced subgraph
by {v1,vs3}; also removing vy in Gs, {va,v3} is a 2-root subset of the induced subgraph by

{’1)1,’()2,1}3}.

Let R be a k-root subset of G = (V,£). A spanning subdigraph G’ = (V, £’) is called a spanning
k-tree (with k-root subset R) if

« every root r € R has no neighbor, i.e. N, = 0;

o every node v € V \ R has exactly k neighbors, i.e. d, = k.

Definition 1.2 Let G = (V, ) be a digraph and k > 2. We say that G contains a spanning

k-tree if there exists a spanning subdigraph of G that is a spanning k-tree.

As an illustration, G, in Fig. B contains a spanning 2-tree G{, which is displayed in Fig. @
For another example, G3 in Fig. B contains a spanning 3-tree G5 in Fig. @

g Gy

Figure 1.8: Spanning k-tree

A counterpart of Theorem @ is the following, which establishes the relation between G con-

taining a spanning k-tree and the number of closed strong components.

Theorem 1.2 Let G = (V,E) be a digraph and k > 2. If G contains a spanning k-tree, then

G contains | € [1,k] closed strong components.
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Proof. Suppose on the contrary that G contains k+1 closed strong components: Gy, ..., Gk, Gr41.
It will be shown that there cannot exist a k-root subset, and consequently G does not contain a
spanning k-tree.

Consider an arbitrary subset V' of k nodes in G. Then there exists a closed strong component
Gi = Vi, &) (i € 1,k + 1]) such that V' NV; = 0. Namely G; does not contain any node in V'.
Now choose a node v; in G;, so v; € V; and v; ¢ V'. Then remove k — 1 nodes from the other k
closed strong components (G; excluded). Since G; is closed, the chosen node v; cannot be reached
from the subset V'. This by definition means that V'’ is not a k-root subset. Since V' is arbitrary,

we conclude that there cannot exist a k-root subset in G. This completes the proof. O

To illustrate Theorem @, first consider £k = 2. Both G; in Fig. @ and G in Fig. @
contain a spanning 2-tree. While G; contains 1 closed strong component (induced by {vs}),
G1 contains 2 closed strong components (induced respectively by {vws} and {vs}). Next
consider k£ = 3. The digraphs in Fig. @ contain a spanning 3-tree. G} has 1 closed strong
component (induced by {vs,vs,v4}), while G) has 2 closed strong components (induced
respectively by {vs,v4} and {v3}). In addition, the spanning 3-tree G} in Fig. @ has 3
closed strong components (induced respectively by {va}, {vs}, and {v4}).

& ()
G g

Figure 1.9: Number of closed strong components in digraphs containing a spanning multiple tree

1.3 Matrices of digraphs

Given a digraph G = (V, &) with V = {v1,...,v,}, we may assign each edge (v;,v;) € £ a weight
a;j. Otherwise the pair (v;,v;) ¢ & is associated with a;; = 0. The weight a;; may be a positive

real number, or any real number, or even a complex number. With weights assigned, the digraph
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G is called a weighted digraph.

The adjacency matriz of a weighted digraph G is an n x n matrix A = (a;;). Depending on
the field where a;; belongs, A may be a nonnegative matrix (entry-wise nonnegative) if a;; > 0, an
arbitrary real matrix if a;; € R, or a complex matrix if a;; € C. In the special case of undirected
weighted graphs, the adjacency matrix A is symmetric, i.e. A= AT.

Conversely for a given n x n matrix A = (a;;), we may construct a weighted digraph G(A) of n

nodes such that an edge (v;,v;) exists with weight a;; if and only if a;; # 0.

Figure 1.10: Adjacency matrices

Tllustration of adjacency matrices is provided in Fig. . Given a weighted digraph G of
five nodes, its adjacency matrix A is a 5 x 5 matrix with each entry a;; the weight on edge
(vj,v;). Conversely for a given 4 x 4 matrix A’ its corresponding digraph G(A’) has four
nodes, and an edge (v;,v;) with weight a;; exists whenever a;; # 0. Note that the two loops

in G(A’) are due to the nonzero diagonal entries aj; and a4q.

We write A > 0 if A is a nonnegative matrix, and A > 0 if A is a positive matrix (entry-
wise positive). The same notation is used for nonnegative and positive vectors (which are special
one-column matrices).

When the adjacency matrix A is a nonnegative matrix (i.e. A > 0), there are several important

properties concerning its spectrum (the Perron-Frobenius Theorem) that we shall introduce in the
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sequel. To this end, we introduce two types of nonnegative matrices in order: irreducible matrices

and primitive matrices.

A square matrix P is a permutation matriz if for each row and each column, there is exactly one
entry equal to 1. That is, the columns of a permutation matrix are a reordering of the standard
basis vectors. Indeed, if P is a permutation matrix and M an arbitrary matrix, then the operation
M + PM amounts to reordering the rows of M; further PM + PMPT amounts to doing the

same reordering of the columns of PM. A permutation matrix P is orthogonal: PTP = PPT =1.

Let A € R™*™ be a nonnegative matrix, i.e. A > 0. We say that A is reducible if either n = 1
and A = 0, or there exists a permutation matrix P such that PAPT is block upper triangular, as

follows:

B C
0 D

where B and D are square matrices. Otherwise A is irreducible.

For example, consider two nonnegative matrices

0 0 0 1 0 0 0 1
2 0 3 0 2

A = , A= 000
0 0 0 O 0 3 0 0
0 4 5 0 0 4 5 0

A1 is reducible because there exists the following permutation matrix

such that PA;PT =

S O O =
o O = O
[ (e () ()
S = O O

On the other hand, A, is irreducible: no permutation matrix P can render PA;P T in the

block upper triangular form.

Irreducibility of matrices is elegantly characterized by connectivity of digraphs.

Theorem 1.3 Let G be a weighted digraph with n nodes and A > 0 the corresponding

nonnegative adjacency matriz. Then A is irreducible if and only if G is strongly connected.
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For the example A;, Ay above, they are respectively the nonnegative adjacency matrices of
digraphs G; and G, in Fig. . Aj is reducible and digraph G; is not strongly connected;

whereas As is irreducible and digraph Gs is strongly connected.

Gi Go

Figure 1.11: Irreducibility of nonnegative matrices characterized by graph connectivity

To prove Theorem @, the following lemma is useful, which establishes a link between positivity
of entries in adjacency matrix powers and reachability of the corresponding nodes. For an arbitrary
positive integer k > 1, denote by afj the (4, j)-entry of the matrix A*.

Lemma 1.1 Let G be a weighted digraph with n nodes and A > 0 the corresponding non-

negative adjacency matriz. Then for every i,j € {1,...,n} and every positive integer k > 1,

afj > 0 if and only if there exists a path of length k from node v; to node v;.

Proof. The proof is by induction on k£ > 1. For the base case where k = 1, the assertion holds
by the definition of nonnegative adjacency matrix A. Namely, a;; > 0 if and only if there is an edge
(vj,v;) € € (i.e. path of length 1 from v; to v;).

For the induction step, suppose that the assertion holds for k£ — 1. Note from A* = A*~1A that

n

k _ § : k—1 )

aij = Qs Amj-
m=1

Thus afj > 0 if and only if there is m € {1,...,n} such that a*~1 > 0 and a,,; > 0. That is, there
exist a path of length k¥ — 1 from node v, to v; and a path of length 1 from v; to v,,. These two
paths constitute a path of length & from v; to v;. This finishes the induction step, and thereby

establishes the assertion for any positive integer k > 1. |
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Proof of Theorem @ (If) Suppose on the contrary that A is reducible. By definition, there

is a permutation matrix P such that

B C
D

PAPT =

Then the matrix I + A is also block upper triangular, and so is its n — 1 powers (I + A)"~!.
Consequently (I + A)"~! is not a positive matrix. Note that

(I+A)"t=pPI+A)"'PT
so neither is (I + A)"~! positive. Since in general
(I4+A)" P =T+ A+ A%+ +cp, 1 A™!

and the combinatorial coefficients ¢y, ...,c,—1 are all positive, there exist i,5 € {1,...,n} (i # j)
such that for every k € {1,...,n — 1} it holds that afj = 0. But this means (by Lemma @) that
there is no path of any length k € {1,...,n — 1} from node v; to node v;. Namely v; /4 v;; hence
digraph G is not strongly connected.

(Only if) Suppose on the contrary that G is not strongly connected. By definition, there exist
two nodes v;,v; such that v; /4 v;. Thus the set of nodes that cannot reach v; is nonempty, i.e.
VA\V(7v;) # 0 (vj belongs). In fact, there does not exist any path from any node in V\ V(7 v;) to
any node in V(7v;). To see this, suppose that there exist v; € YV \ V(7v;) and v, € V(7v;) such
that v; = v,,. Since v, — v;, we have v; — v;, but this contradicts v; ¢ V(" v;). By this fact, we
reorder the nodes according to the partition of the node set: {V\ V(7 v;), V(7 v;)}. The reordering
amounts to a permutation of the indices of nodes, and correspondingly there is a permutation

matrix P such that

B C
D

PAPT =

But this means that A is reducible. O

Next we introduce primitive matrices. Let A € R™"*™ be a nonnegative matrix, i.e. A > 0. We

say that A is primitive if
(3k > 1)A% > 0.

A primitive matrix is irreducible, but the converse need not hold. This is evident from the fol-

lowing graphical characterization of primitive matrices, as compared to that of irreducible matrices
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in Theorem @

Theorem 1.4 An n x n nonnegative matriz A is primitive if and only if G(A) is strongly

connected and aperiodic.

Consider again the matrix As which is the adjacency matrix of digraph G, in Fig. . We
have analyzed that A, is irreducible, as Go is strongly connected. Moreover Gs is aperiodic:
there are two cycles in Gy of length 3 and 4, respectively; hence p = g.c.d.{3,4} = 1. By
Theorem @, Ay is primitive. Indeed, it is checked that A is a positive matrix.

Let us consider two more matrices

As

|
o o v o
o w o o
m o o o
©c o o

2

|
o o v o
o w o o
o o o
o o o -

First, As is not primitive because digraph G(As) in Fig. is not aperiodic. Indeed G(Aj)
is a strongly connected digraph of period 4. Hence Aj is irreducible but not primitive. On
the other hand, A4 is the same as As except for the positive (1,1) entry. This diagonal
entry is crucial, however, since digraph G(A4) in Fig. is aperiodic due to the loop at vy.
Therefore A, is primitive (in fact A > 0).

w @

V4 4

G(As) G(Aq)

Figure 1.12: Primitivity of nonnegative matrices characterized by graph connectivity

The proof of Theorem @ requires the following lemmas.
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Lemma 1.2 Let my,mg > 1 be two positive integers. If g.c.d.{my,ma} = 1, then there is

an integer k > 0 such that for any integer k > k,
k = ami + fmg
for some nonnegative integers a, 3.

Proof. Since

g.c.d{my,ma} =1,

1 is an integer combination of m; and my, i.e.
1=aym; — fima
for some nonnegative integers v, 31. Let k := fym2. Thus k > 0 and for all k > k,
k= pim3+i-ma+j

for some integers i, j satisfying ¢ > 0 and 0 < j < my. Substituting 1 = aym; — Bymq into the

above equation yields

k= pim3+i-mo+7-(crmi — Bima)

= (j-a1) -my+ (Bi(ma —j) + i) - ma.

Let
a::j-al andﬁzﬁl(m2_])+7’

Then a, f are nonnegative integers due to j < msg. Therefore, the conclusion follows. ]

The next result shows the relationship between the period of a strongly connected digraph and
the period of each node in the digraph. For an arbitrary node v in a strongly connected digraph
G, let 1, 1,...,lym be the lengths of all m(> 1) cycles from v to v. Denote by p, their greatest

common divisor, i.e.

Py = g.C.d-{lv717 e ,l'u,’m,}

and we say that p, is the period of node v.

Lemma 1.3 Consider a strongly connected digraph G. Let p be the period of a digraph G
and p; be the period of node v;, i € {1,...,n}. Thenp=p; = -+ = p,.
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Proof. Let i € {1,...,n}. We will establish p = p; by showing that p divides p; and p; divides p.

First let £ := {l1,...,lx} be the set of all the lengths of all k(> 1) cycles in digraph G. Then
by definition, p is the greatest common divisor of the elements in £. Note that for every path from
v; to v, it is either a (simple) cycle or consists of a number of cycles. So the length [, of any path
from v; to v; is an integer combination of ;, j € {1,...,k}, with nonnegative integer coefficients.
This means that every l; € £ divides l,,. Therefore p divides [,,, which further implies p divides
pi-

On the other hand, consider an arbitrary cycle in digraph G, and let its length be [; € L. If the
cycle goes through v;, then p; divides [;. If not, then the cycle necessarily goes through some other
node, say v,,. Since G is strongly connected, there must exist a cycle going through v; and v,,.
Denote by I; ,,, the length of this cycle. Thus p; divides [; ,,,. Note that these two cycles constitute
a path of length [; ,,, +; from v; to v;. So p; divides l; ,,, +1; and therefore p; divides ;. Hence, p;
divides any [; in £. This means that p; divides p.

Based on the above established two facts that p; divides p and p divides p;, we conclude that
p=p; for every i € {1,...,n}. |

Lemma 1.4 Let A be an n X n nonnegative matriz. If G(A) is strongly connected and

p-periodic, then a¥. = 0 for any i € {1,...,n} and for any k that is not a multiple of p.
Proof. Let p;, i € {1,...,n}, be the period of the node v; in G(A). Thus by Lemma

pP=p1=-=pn

since G(A) is strongly connected. Hence the length of any path from v; to v; is a multiple of p.
Namely there is no path from v; to v; with length k£ that is not a multiple of p. So it follows from
Lemma @ that a¥. = 0 for every i € {1,...,n} and any k that is not a multiple of p. O
With the three lemmas above, we present the proof of Theorem @
Proof of Theorem @ (If) Since G(A) is strongly connected and aperiodic, by Lemma B the
period of G(A) and the period of each node v; are equal to 1. For any node v;, let I§ 12 (I} #12)
be the lengths of two paths from v; to v;. By Lemma @ there is sufficiently large k; such that for
any k > k;, k may be expressed by a nonnegative integer combination of l})i and l%i, which means
that there is a path of length &k from v; to v;. Let v; be another node. Since G(A) is strongly
connected, there is a path from v; to vj; let its length be l;;. Thus for any k > g;; := E, + l;; there

is a path of length k from v; to v;. It follows from Lemma @ that afj > 0 for all £ > g;5. Let
¢ :=max{g; |i,j=1,...,n}

Then we have afj >0 for all 4,5 = 1,...,n and k > q. Therefore by definition, A is a primitive
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matrix.

(Only if) Suppose on the contrary that G(A) is not strongly connected, or that it is strongly
connected but not aperiodic. For the first case that G(A) is not strongly connected, there is a pair
of nodes v; and v; such that v; is not reachable from v;. So by Lemma Ell, afj =0 for all £ > 0.
Hence there is no positive integer k such that A* is positive and consequently A is not primitive.

For the second case, G(A) is strongly connected but not aperiodic, that is, it is p-periodic where
p > 1. It follows from Lemma @ that afi/ = 0 for any positive integer &k’ that is not a multiple of
p. Hence there is no positive integer k such that A* is positive, as otherwise if there were a positive
integer k* such that A¥" is positive, then A¥ is positive for any k > k*, which contradicts aﬁl =0
for any positive integer &’ that is not a multiple of p. Therefore, A is not primitive. O

We are now ready to introduce the Perron-Frobenius Theorem. Denote by o(A) the spectrum of
matrix A, i.e. the set of all eigenvalues of A, and p(A) the spectrum radius of A, i.e. the maximum

magnitude of the eigenvalues of A.

Theorem 1.5 (Perron-Frobenius Theorem) Consider a nonnegative matriz A. If A is

irreducible, then

e p(A) >0;

o p(4) is a simple eigenvalue of A;

e p(A) has a positive eigenvector and a positive left—eigem;ector.B
Moreover, if A is primitive, then

o (VA ea(A)A # p(4) = Al < p(A4).

Left-eigenvector w corresponding to an eigenvalue X\ of A satisfies w' A = w'.

Of particular interest is specialization of the Perron-Frobenius Theorem to a special class of
nonnegative matrices. A nonnegative matrix A is called row-stochastic (resp. column-stochastic)
if every row (resp. every column) of A sums up to one; if A is both row-stochastic and column-

stochastic, it is called doubly-stochastic.

Lemma 1.5 If A is a row-stochastic (column-stochastic, doubly stochastic) matriz, then
p(A) =1.

Proof. We prove the statement for row-stochastic matrices; the proofs for column-stochastic and

doubly-stochastic matrices are similar.

Since A is row-stochastic, we have A1 = 1. This means that 1 is an eigenvalue of A. Hence
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p(A) > 1. On the other hand,

p(A) = max{|}\| | A is an eigenvalue of A}
= max{||A\z||« | A is an eigenvalue of A,z is a corresponding eigenvector, ||z||c = 1}
= max{||A\z||c | A is an eigenvalue of A,z is a corresponding eigenvector, ||z|jc = 1}
= max{||Az||« |  is an eigenvector of A, ||z||-c = 1}
< max{[| Az | [[¢]oo =1}

= [l All

= maXZ la;;| = 1.
K]
J

The last equality follows from the fact that every row of A sums to one. Therefore p(A) =1. O

Theorem 1.6 (Perron-Frobenius Theorem for Stochastic Matrices) Consider
a row-stochastic (column-stochastic, doubly stochastic) matriz A. If A is irreducible,
then p(A) = 1 is a simple eigenvalue of A, with a positive eigenvector and a positive

left-eigenvector. Specifically:

o if A is row-stochastic, then eigenvalue 1 has a positive eigenvector 1 (A1 =1) and a

positive left eigenvector m (n A=, );

o if A is column-stochastic, then eigenvalue 1 has a positive eigenvector w, (Am, = m,)
and a positive left eigenvector 1 (1TA=1T);

o if A is doubly-stochastic, then eigenvalue 1 has a positive eigenvector 1 (A1 =1) and
a positive left eigenvector 1 (1TA=1T).

Moreover, if A is primitive, then

. (VA€o(ADA£1=|A < 1.

Laplacian matrix

For a weighted digraph G, the weighted degree d; of a node i is the sum of the weights of all edges
entering i, i.e. d; = Z;-lzl ay;. Similarly, the weighted out-degree df of a node i is the sum of the
weights of all edges leaving 4, i.e. df = 22‘;1 aj;. A node ¢ with d; = df is called weight-balanced.
A digraph G is weight-balanced if every node is weight-balanced.

The degree matriz of a weighted digraph G is D := diag(ds,...,d,). Let A be the adjacent
matrix of G; then D = diag(A1), where 1 is the vector of all ones.
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The Laplacian matriz of a weighted digraph G is L := D — A. By definition L1 = 0; namely
each row of L sums to zero. Thus 0 is an eigenvalue of L, with a corresponding eigenvector 1.
We distinguish three types of Laplacian matrices depending on their entries. Each type is useful

for a set of cooperative control problems.

o If A is nonnegative, then L has nonnegative diagonal entries and nonpositive off-diagonal

entries. This L is called standard Laplacian matriz.
o If Ais (arbitrary) real, then L is called signed Laplacian matriz.
o If A is complex, then L is called complex Laplacian matrix.
Continuing the example in Fig. , the degree matrix is D := diag(d;, da, ds, d4, ds), where

dy = a12, d2 = az1, d = az1 + asz + ass, dg = as1 + a43 + ass, and ds = asz + ass. Thus the

Laplacian matrix is

dq —aio 0 0 0

—a921 do 0 0 0
L:=| —a31 —az d3 0 —azs
—ay1 0 —agz3  dy  —ags

0 —as2 0 —asq4  ds

Since 0 is by definition an eigenvalue of Laplacian matrix L, its kernel (i.e. null space) is at
least one-dimensional. It turns out that the dimensions of the kernel of Laplacian matrices play a

central role in characterizing the types of allowable cooperative behaviors.

Remark 1.1 [t is sometimes convenient to define degree matriz and Laplacian matriz with respect
to the out-degrees of modes. Consider a weighted digraph G and its adjacency matriz A. The
out-degree matrix of G is D° := diag(dg,...,d%); hence D° = diag(1T A). Correspondingly, the

out-degree Laplacian matrix of G is L° := D°— A. By this definition 17 L° = 0; namely each column

of L° sums to zero. Thus 0 is again an eigenvalue of L°, with a corresponding left-eigenvector 1.

1.4 Standard Laplacian Matrices

Let G be a weighted digraph with n nodes, A the associated adjacency matrix, and D(= diag(A1))
the degree matrix. In this section we consider that A is nonnegative, and L = D — A the standard
Laplacian matrix.

The null space of L is at least one-dimensional, for L has at least one eigenvalue 0. The following
is a graphical condition that characterizes when the null space of L is exactly one-dimensional

(namely the 0 eigenvalue of L is simple).



34 Chapter 1. Graphs and Laplacian Matrices

Theorem 1.7 Let G be a weighted digraph with n nodes and L the standard Laplacian

matriz. Then dim(ker L) = 1 if and only if G contains a spanning tree.

Note that dim(ker L) = 1 is equivalent to rank(L) = n — 1. To prove Theorem @, it is useful

to first present the following sufficient condition for rank(L) =n — 1.

Lemma 1.6 Let G be a weighted digraph with n nodes and L the standard Laplacian matriz.
If G is strongly connected, then rank(L) =n — 1.

Proof. Suppose that G is strongly connected. Then by Theorem B, the nonnegative adjacency
matrix A of G is irreducible and the degree matrix D is invertible. As a result, the Laplacian matrix

L =D — A can be written as
L=D(I—-D'A).

Let A:= D 'Aand L := D"'L =T — A. Then A is also nonnegative and has zeros at the same
locations as A does; the latter means that A is irreducible too.

Note moreover that every row of A sums up to 1. Thus A is row-stochastic and its spectral
radius equals one by Lemma @, ie. p(fl) = 1. It then follows from the Perron-Frobenius Theorem
for Stochastic Matrices (Theorem @) that p(A) = 1 is a simple eigenvalue of A. By spectrum
mapping, we derive that 0 is a simple eigenvalue of L = I — A, i.e. rank(ﬂ) = n — 1. Therefore
rank(L) =rank(DL) = n — 1. O

Remark 1.2 In the proof of Lemma , the Perron-Frobenius Theorem for Stochastic Matrices
(Theorem ) is invoked to show that rank(L) = n — 1, namely the eigenvalue 0 of L is simple.
Not needed in the above proof but will be useful later (in Chapters 2 and 3 of averaging/optimiza-
tion problems), the Perron-Frobenius Theorem for Stochastic Matrices also asserts that the simple
eigenvalue 0 of L has a positive left-eigenvector. That is, there exists m > 0 such that 7] L = 0.
Similarly for the standard out-degree Laplacian matriz L° in Remark , if G is strongly
connected, then the eigenvalue 0 of L° is simple (hence rank(L°) = n — 1) and has a positive

eigenvector. That is, there exists m. > 0 such that L°m, = 0.

Now we prove Theorem @

Proof of Theorem @ (Only if) Suppose on the contrary that that the (weighted) digraph
G does not contain a spanning tree. Then by Theorem @7 G contains at least two (disjoint) closed
strong components, say G; and Gy. It follows from Lemma @ that their Laplacian matrices Ly

and Lo (say) each have a simple eigenvalue 0. Since G; and Gy are closed, the Laplacian matrix L
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of G has the following structure:

Ly 0 0
L=10 Ly 0
x %k

Consequently L has at least two eigenvalues 0, which implies rank(L) < n — 1.

(If) Suppose that G contains a spanning tree. Let V,. be the subset of all possible roots, i.e.
Ve ={reV|Vr7)=V}
Thus V, # 0.

If V. = V, namely every node is a root, then G is strongly connected, and by Lemma @ we
have rank(L) =n — 1.

Ify, g V (i.e. V, is a strict subset of V), then the induced subdigraph G, is the unique closed
strong component of G (by Theorem @) Thus every node in V), can reach every node in V \ V,,
whereas no node in V\ V), can reach any node in V,.. Consider without loss of generality the case that
the nodes are ordered according to the partition V,. U (V' \ V,.) (re-ordering corresponds merely to a
permutation of node indices and the associated similarity transformation does not change spectrum
of the matrices involved). Then the nonnegative adjacency matrix A and degree matrix D have the

following forms:

A D
A= "1 0, p-|Pr O
A2 A3 0 D3
Note that A; = D; = 0 if and only if V), is a singleton set (i.e. containing a single node). Accordingly

the Laplacian matrix L is block (lower) triangular:

D; 0
0 Ds

A 0
Ay As

L=D-A= -

oo
| Ly Ls

Since G, is strongly connected, its Laplacian matrix L; has rank(L;) = n — 1 (by Lemma @)

Thus 0 is a simple eigenvalue of L1, and it remains to show that L3 does not have an eigenvalue 0.

To that end, let D := D if V, contains more than one node; and

- 1
D = 0
lO Dg]
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if V, contains exactly one node. Thus the defined D is invertible. Use D~! to define

Ly 0
Lo L

A0
Ay A,

A:=D1'A= , L=D'L=1-A=

Note that A is nonnegative and every row sums up to 1. Hence for every integer k > 1, it holds
that A* is nonnegative and every row sums up to 1. Let us focus on A” (i.e. k = n), which has the

form

Ar 0
X Az

AT .

Since every node in V, can reach every node in V \ V,, it follows from Lemma @ that all the
entries of the (2,1)-block X are positive. Hence the largest row sum of flg is smaller than one, i.e.
| A%]|oe < 1. By the same proof of Lemma @, we derive p(A%) < ||A%||oe < 1. Therefore p(As) < 1
and l~/3 =1- 1213 has no eigenvalue 0. This implies that ig has full rank, and so does L3 = D31~}3.
The latter means that L3 has no eigenvalue 0. Therefore L has a simple eigenvalue 0 (which is from
L;), and rank(L) = n — 1. O

We end this section with a result which is a generalization of Theorem @ The result states

that the dimension of ker L is equal to the number of (disjoint) closed strong components in G.

Theorem 1.8 Let G be a weighted digraph with n nodes and L the standard Laplacian
matriz. Consider an integer k € [1,n]. Then dim(ker L) = k if and only if G contains k

closed strong components.

Proof. (If) Suppose that G contains k (€ [1,n]) closed strong components, denoted by G =
V1,&1)y -+, Gk = (Wi, Ek). Let Vi1 be the set of remaining nodes (if any), i.e. Vgy1 :=V\ (V1 U
-+ UVg). To show dim(ker L) = k, it is equivalent to show rank(L) =n — k.

Renumber (if necessary) the nodes in the order of Vi, ..., Vi, Vit1, and permute the correspond-
ing rows and columns in the Laplacian matrix L. Since the k strong components Gy, ..., Gy are

closed, the above permutation yields a matrix L (similarly transformed from L) of the following

form:
iy 0 - 0 0]
0 0 0
L=
0 0 Ly 0
X1 X Xi Liga)
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Since L and L are similar via a permutation matrix, rank(L) = rank(I:). Moreover, since every
strong component G; (i € [1, k]) is strongly connected, its Laplacian matrix L; has rank(L;) =n—1
(by Lemma @), hence rank(L;) = n — 1 for all i € [1,k]. Given the block lower triangular
structure of L, to show rank(L) = rank(L) = n — k, it suffices to establish that L, does not have
an eigenvalue 0. This is along the same lines as the sufficiency proof of Theorem @, but with a

higher dimension in general.

To proceed, let A and D be the adjacency matrix and degree matrix corresponding to L:

A, 0 0 0 Dy 0 0 0

0 0 0 0 0 0
A: . . . ? -D:: . .

0 0 --- A, 0 0 0 - D, 0

Vi Y o Vi A [0 0 -+ 0 Dy

Let D; := D; (i € [1,k]) if V; contains more than one node; D; :=1if V; contains exactly one node.
Also let Dk+1 = Dk+1- Note that DkJr] # 0 regardless of the number of nodes in V41 (as long as
Vit1 # 0). This is because the induced digraph Gi1 by Vi41 is not closed; otherwise Gy1 would

contain a closed strong component (as shown in the proof of Theorem El]) Thus define

Dy 0 0 0
0 0 0
D=
0 0 D, 0
[0 0 0 D]

A0 0 0 Li 0 0 0

0 0 0 0 0
A=DA= T , L=D"'L=1-A= . .

0 0 --- A, 0 0 0 - Lp 0

Vi Yy oo Vi Ay X1 Xp o X Liga

Note that A is nonnegative and every row sums up to 1. Hence for every integer m > 1, it holds

that A™ is nonnegative and every row sums up to 1. Let us focus on A™ for m > n — k, which has
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the form
[Am 0 0o 0 |
0 0 0
Am = . . .
0 0 -~ Ay 0
|2 Z2 - Zi ARl
We claim that for every row of Z :=[Z; --- Zj], there exists at least one positive entry.

First since Giy1 is not closed, there is a node u; € Vi1 and v; € V; for some i € [1, k] such that
(vi,u1) € € (i.e. an edge exists with tail v and head u1). It then follows from G; being a strong
component that there is a node v} € V; such that v, — u; with a path of any length [ > 1. Next
let Viyo := Vi1 \ {u1}. If Veyo # 0, then the induced digraph Gy o is again not closed. Thus
there is a node ug € Vi4o and v € Vi U--- UV, U{uy} such that (v,uz) € €. Since there is an edge
(vi,u1), it follows from a similar argument to above that there is a node v’ € V; U--- U Vg such
that v/ — ug with a path of any length [ > 2. Note that V41 has at most n — k nodes. Repeating
the above argument at most n — k times leads to the conclusion that for every m > n — k, there is
a path of length m from some node in V; U--- UV to every node in Vi11. This proves our claim
by invoking Lemma .

Therefore the largest row sum of fl’kﬂ“ is smaller than one, i.e. ||141§€”+1HOO < 1, which implies
that p(A}% ) < |4} [lec < 1. Hence p(Ary1) < 1 and Lpyy = I — Ay has no eigenvalue 0. It
follows that i/k;+1 has full rank, and so does ﬁkH = Dk+1[~/]c+1. The latter means that ﬁkﬂ has
no eigenvalue 0. The sufficiency proof is now complete.

(Only if) Suppose that G contains k" € [1, n] closed strong components and &’ # k. Then by the
above proved sufficiency result, dim(ker L) = k' # k. O

1.5 Complex Laplacian Matrices

Let G be a weighted digraph with n nodes, A the associated adjacency matrix, and D(= diag(A1))
the degree matrix. In this section we consider the second type that A is a complex matrix, and
L = D — A is the complex Laplacian matrix.

The following is a graphical condition that suffices to ensure that the null space of L is at most

2-dimensional.

Theorem 1.9 Let G be a weighted digraph with n nodes and L the complex Laplacian matriz.

If G contains a spanning 2-tree, then dim(ker L) < 2 for L with almost all complex entries.
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The phrase “almost all complex entries” means for all complex entries except for those in some
set of zero Lebesgue measure.

Unlike Theorem B, the graphical condition in Theorem @ that G contains a spanning 2-tree
is sufficient but not necessary to establish dim(ker L) < 2 (for L with almost all complex entries).
The reason that the condition is not necessary follows from Theorem @: a digraph G containing
two closed strong components also gives rise to dim(ker L) = 2 for standard Laplacian matrix L
which is a special case of complex Laplacian matrix; however, such a digraph need not contain a

spanning 2-tree.

An example to illustrate this point is given in Fig. . Here the digraph G contains two
closed strong components, but it does not contain a spanning 2-tree. Consider the unit
weight for all edges in G. Then the Laplacian matrix is displayed in Fig. , which has

rank 3. Hence we indeed have dim(ker L) = 2, but G does not contain a spanning 2-tree.

1 0 0 —-10
0 1 -1 0 0
() L=|0 -1 1 0 0
-1 0 0 1 0
0 0 -1 -1 2
@@
G rank(L) = 3

Figure 1.13: Digraph G contains two closed strong components but does not contain a spanning
2-tree

Note that dim(ker L) < 2 means that rank(L) > n — 2. To show this lower bound on rank(L),
it is sufficient to show that there exists a non-zero minor of L with size n — 2.

A minor with size k € [1,n] of L is the determinant of a k x k submatrix of L (by deleting n — &
rows and columns). If a minor with size k is non-zero, it implies that there are at least k linearly
independent columns of L, hence giving a lower-bound k on the rank of L. In fact, rank(L) is equal
to the maximum size of a non-zero minor of L.

To prove Theorem @, it is convenient to establish the following lemma.

Lemma 1.7 Let G be a weighted digraph with n nodes and L the complex Laplacian matriz.

If G contains a spanning tree, then rank(L) = n — 1 for L with almost all complex entries.
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The conclusion of this lemma is analogous to the sufficiency part of Theorem @ But since
we are dealing with complex L, the proof for Theorem @ does not apply here, and a new proof

technique is needed.

Proof of Lemma @ Suppose that G = (V, ) contains a spanning tree T = (V, 7). Here
E7 C &£. Without loss of generality let v; € V be the root. Then the standard Laplacian matrix T
of T has the following form:

0 O
Ty Ty

Since T is a spanning tree, by Theorem @ we have rank(T") = n — 1. Hence the determinant of T

is non-zero, i.e. det(7Ty) # 0. This is a non-zero minor with size n — 1.

Now consider the complex Laplacian matrix L’ of 7, which has the same form as T: namely

0 O
L = |}/ I
1 2

However, the entries of L, L} are complex numbers. According to the fact that a polynomial is

either constantly zero or non-zero almost everywhere, it follows from det(75) # 0 that det(L5) # 0

for L}, with almost all complex entries.

Finally consider the complex Laplacian matrix L of G which generally has more edges than 7

(i.e. &+ C€&). As a result, L generally contains more non-zeros entries than L':

* *
L:=
lLl L,

Again according to the fact that a polynomial is either constantly zero or non-zero almost every-
where, it follows from det(L%) # 0 that det(Ls2) # 0 for Ly with almost all complex entries. This

means that for L with almost all complex entries, there is a non-zero minor with size n — 1, equiv-

alently rank(L) is at least n — 1. On the other hand, since 0 is an eigenvalue of L, rank(L) can be

at most n — 1. This concludes that rank(L) = n — 1 for L with almost all complex entries. ]
Now we prove Theorem @

Proof of Theorem @ Suppose that G = (V,€) contains a spanning 2-tree. Without loss

of generality let v1,v9 € V be the two roots, and write the complex Laplacian matrix L of G as
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follows:
[y ho hs - i
lor lag laz -+ oy
L:i=|lz1 I3 lzz - l3p
jnl ln2 ln3 e lnn_

Remove the first row and the first column of L (all the following holds if the second row and the

second column of L are removed). Denote the resulting submatrix by

R
I lzo I3z -+ I3n
ln2 lnS T lnn

The above removal corresponds to removing from the digraph G the root v; and all those edges
where vy is head or tail. Denote the resulting subdigraph G’. Since G contains a spanning 2-tree, G’
contains a spanning tree. Then it follows from Lemma B that rank(L') = n —2 for L’ with almost
all complex entries. This means that for L’ with almost all complex entries, there is a non-zero
minor of L' with size n — 2. Since L’ is a submatrix of L, we derive that for L with almost all
complex entries, there is a non-zero minor of L with size n — 2, equivalently rank(L) > n — 2. This

establishes the conclusion that dim(ker L) < 2 for L with almost all complex entries. O

Combining the conclusion of Theorem @ and the fact that 0 is an eigenvalue of an arbitrary
complex Laplacian L, we derive that if G contains a spanning 2-tree, then either dim(ker L) = 1 or
dim(ker L) = 2 holds for L with almost all complex entries. For the special case that the digraph
G is a spanning 2-tree, the following corollary asserts that the null space of its complex Laplacian

matrix L is exactly 2 for L with almost all complex entries.

Corollary 1.1 Let G be a weighted digraph with n nodes and L the complex Laplacian

matriz. If G is a spanning 2-tree, then dim(ker L) = 2 for L with almost all complex entries.

Proof. By Theorem @, we know that dim(ker L) < 2. Without loss of generality let vy, vo € V
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be the two roots; thus the complex Laplacian matrix L of G has the following form:

[0 0 0 - 0]
o 0 o0 - 0
L:=[lsn ls2 I3z - I3
_lnl ln2 ln3 e lnn_
It follows from the above structure that dim(ker L) > 2. Therefore dim(ker L) = 2 after all. O

1.6 Signed Laplacian Matrices

Let G be a weighted digraph with n nodes, A the associated adjacency matrix, and D(= diag(A1))
the degree matrix. In this section we consider the third type that A is an arbitrary real matrix,
and L = D — A is the signed Laplacian matrix.

Let k € [2,n—1] be an integer. The following is a graphical condition that is sufficient to ensure

that the null space of L is at most k-dimensional.

Theorem 1.10 Let G be a weighted digraph with n nodes, L the signed Laplacian matriz,
and k € [2,n — 1] an integer. If G contains a spanning k-tree, then dim(ker L) < k for L

with almost all real entries.

The conclusion is a generalization of Theorem @ for k£ not only equal to 2 but also greater than
2; meanwhile a restriction, however, to the case of real entries.

Like Theorem @, the graphical condition that G contains a spanning k-tree is only sufficient but
not necessary to establish dim(ker L) < k (for L with almost all real entries). The reason that the
condition is not necessary again follows from Theorem @: a digraph G containing k closed strong
components also gives rise to dim(ker L) = k for standard Laplacian matrix L which is a special

case of signed Laplacian matrix; however, such a digraph need not contain a spanning k-tree.

For example, consider the digraph in Fig. . This digraph G contains three closed strong
components, but it does not contain a spanning 3-tree. Consider the unit weight for all
edges in G. Then the Laplacian matrix is displayed in Fig. , which has rank 3. Hence

we indeed have dim(ker L) = 3, but G does not contain a spanning 3-tree.

Note that dim(ker L) < k means that rank(L) > n — k. To show this lower bound on rank(L),
it will be shown that there exists a non-zero minor of L with size n — k.
Proof of Theorem . The proof is by induction on k € [2,n — 1].
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1 0 0 =1 0 0]
0 1 -1 0 0 0
0 -1 1 0 0 0
v »( ), —
@ ®L—1oo1oo
0O 0 0 0 0 0
0 0 -1 -1 -13

g rank(L) = 3

Figure 1.14: Digraph G contains three closed strong components but does not contain a spanning
3-tree

Base case. Suppose that G contains a spanning 2-tree. Since a signed Laplacian matrix is a

special complex Laplacian matrix, the conclusion for this case follows from Theorem @

Induction step. Suppose that if G contains a spanning k-tree (k € [2,n—2]), then dim(ker L) <
k for L with almost all real entries. The latter means that rank(L) > n — k for L with almost all
real entries, and equivalently there exists a non-zero minor of L with size n — k. Let G contain a
spanning (k 4+ 1)-tree; without loss of generality let v1,...,v5+1 € V be the k 4 1 roots, and write

the signed Laplacian matrix L of G as follows:

li1 li2 li3 lin |
lo1 lao lo3 lon
L=
lesr larne lesns o lesn
L lnl ln2 ln3 lnn i

Remove the first row and the first column of L (all the following holds if the ith row and the ith
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column of L are removed for any i € [2, k + 1]). Denote the resulting submatrix by

l22 l23 e lon
L= lgsn2 Lot o lgtn
L ln2 lnS e lnn i

The above removal corresponds to removing from the digraph G the root v; and all those edges
where v; is head or tail. Denote the resulting subdigraph G’. Since G contains a spanning (k + 1)-
tree, G’ contains a spanning k-tree. Then it follows from the hypothesis that for L’ with almost
all real entries, there is a non-zero minor of L’ with size n —1 —k =n — (k4 1). Since L' is a
submatrix of L, we derive that for L with almost all real entries, there is a non-zero minor of L
with size n — (k + 1), equivalently rank(L) > n — (k + 1). This establishes dim(ker L) < k 4 1 for
L with almost all real entries.

Following the above induction on k € [2,n — 1], the proof is now complete. a

Now combining the conclusion of Theorem and the fact that 0 is an eigenvalue of an arbitrary
signed Laplacian L, we derive that if G contains a spanning k-tree, then dim(ker L) € [1,k] for L
with almost all real entries. For the special case that the digraph G is a spanning k-tree, the
following corollary asserts that the null space of its signed Laplacian matrix L is exactly k for L

with almost all real entries.

Corollary 1.2 Let G be a weighted digraph with n nodes, L the signed Laplacian matriz,
and k € [2,n — 1] an integer. If G is a spanning k-tree, then dim(ker L) = k for L with

almost all real entries.

Proof. By Theorem , we know that dim(ker L) < k. Without loss of generality let
v1,...,0; € V be the k roots; thus the signed Laplacian matrix L of G has the following form:

0 0 0 0
0 0 0 0
L=
I+t larne lerns o letn
L lnl ln2 ln3 lnn n

It follows from the above structure that dim(ker L) > k. Therefore dim(ker L) = k after all. O
We end this section by noting that the proofs above for Theorem and Corollary @ hold
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true even if “real entries” are replaced by “complex entries”. This gives rise to the following theorem,
which is a general result subsuming Theorems @, and Corollaries @, @

Theorem 1.11 Let G be a weighted digraph with n nodes, L the complex Laplacian matriz,
and k € [2,n — 1] an integer.

o If G contains a spanning k-tree, then dim(ker L) < k for L with almost all complex

entries.

o If G is a spanning k-tree, then dim(ker L) = k for L with almost all complex entries.

1.7 Notes and References

The material on digraphs, their connectivity and associated matrices is standard, and can be found

in textbooks on graph theory, e.g.
o C. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001
« R.B. Bapat, Graphs and Matrices, Springer, 2010
The concepts of spanning multiple trees, complex and signed Laplacian matrices originate from

e Z. Lin, L. Wang, Z. Han, M. Fu, A graph laplacian approach to coordinate-free formation
stabilization for directed networks, IEEE Transactions on Automatic Control, vol.61, pp.1269—
1280, 2016

e Z. Lin, L. Wang, Z. Chen, M. Fu, Necessary and sufficient graphical conditions for affine
formation control, IEEE Transactions on Automatic Control, vol.61, pp.2877-2891, 2016

Theorems 1.9, 1.10, and 1.11 are also adapted from the above.
Theorems 1.1, 1.2, 1.3, 1.4, 1.7, and 1.8 are adapted from

e 7. Lin, Distributed Control and Analysis of Coupled Cell Systems, VDM Verlag, 2008
o F. Bullo, Network Systems, Kindle Direct Publishing, 2020
Theorems 1.5 and 1.6 (Perron-Frobenius Theorem) can be found in e.g.

¢ R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, 2013
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Part 11
Strongly Connected Digraphs:

Averaging and Optimization

This part introduces two basic cooperative control problems — distributed averaging and opti-
mization over digraphs. The necessary graphical condition for solving these two problems is that
digraphs are strongly connected. The type of Laplacian matrices involved in these two problems is
the standard Laplacian matrices. For agent dynamics, discrete-time linear time-invariant first-order

systems are considered.
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CHAPTER 2

Averaging

The first cooperative control problem we introduce is distributed averaging. Averaging is simple
and useful in many contexts of networked systems. One example is load balancing: if there are
five machines and ten jobs, having each machine process two jobs is the most efficient. Another
example is environment measuring by sensor networks: if each sensor has measured an environment
parameter, say temperature, contaminated by white noise, then the average of these measurements
is the unbiased, minimum mean-squared error estimate of the true temperature. Other examples
include cyclic pursuit, clock synchronization, and social influencing.

Networked systems and the interactions among component agents (via sensing or communi-
cation) are naturally modeled by digraphs. In this chapter, we show that a necessary graphical
condition to achieve distributed averaging is that the digraph is strongly connected, namely every
agent is reachable from every other agent. This is intuitively evident, as for locally computing the
global average, each agent needs a ‘channel’; direct or indirect, to receive information from every
other agent.

If the digraph is furthermore balanced, meaning roughly that each agent receives equal amount
of in-flow information and out-going information, then averaging is easily solvable by a distributed
algorithm (the consensus algorithm to be introduced in Chapter H) However, balanced is neither
a mild graphical condition nor a necessary condition for averaging. Hence we will assume only
strongly connected digraphs (possibly unbalanced), and design a distributed algorithm that achieves

averaging.

2.1 Problem Statement

Consider a network of n (> 1) agents. Each agent i (€ [1,n]) has a state variable z;(k) € R, where
k > 0 is a nonnegative integer and denotes the discrete time.

We model the interconnection structure of the networked agents by a digraph G = (V, £): Each
node in ¥V = {1, ...,n} stands for an agent, and each (directed) edge (7,¢) in € C ¥V x V denotes that
agent j communicates to agent 7 (namely, the information flow is from j to ¢). The (in-)neighbor
set of agent 7 is NV; := {j € V : (j,4) € £}, while the out-neighbor set N? :={j € V: (i,5) € £}

49
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We say that an algorithm is distributed if every agent ¢ updates its state z;(k) based only on

the information received from N;, and sends information only to N?.

Averaging Problem:
Consider a network of n agents interconnected through a digraph G. Design a distributed

algorithm to update the agents’ states x;(k), ¢ = 1,...,n, such that

(¥ € [1,n]) (Va:(0) € R) Jim (k) = %Zmo).

Figure 2.1: Tllustrating example of averaging problem with four agents

Example 2.1 We provide an example to illustrate the averaging problem. As displayed in
Fig. @, four agents are interconnected through a digraph G. The (in-)neighbor sets of the
agents are N1 = {4}, No = {1,3,4}, N3 = {1}, Ny = {2,3}; and the out-neighbor sets are
NP ={2,3}, N9 = {4}, N§ ={2,4}, N2 = {1,2}.

Suppose that the initial states of the agents are x1(0) = 1, x2(0) = 2, 23(0) = 3, 24(0) = 4.
Then the average is 2.5. The averaging problem is to design a distributed algorithm such

that each agent’s state asymptotically converges to the average value 2.5.

A necessary graphical condition for solving the averaging problem is given below.

Proposition 2.1 Suppose that there exists a distributed algorithm that solves the averaging

problem. Then the digraph G is strongly connected.

Proof. The proof is by contradiction. Suppose that the digraph G = (V, &) is not strongly
connected. Then at least one node (agent) in V is not a root of G. Let R denote the set of roots.
Then R # V. We consider two cases separately: R = () and R # 0.

If R =), i.e. G does not contain a spanning tree, then it follows from Theorem Ell that G has at

least two (distinct) closed strong components (say) Gi,G2. In this case, consider an initial condition
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such that the agents in G; have initial state ¢; € R, those in G have ¢ € R, and ¢ # ¢o. Since
Gy and Gy are closed, information cannot be communicated from one to the other. Consequently,
there exists no distributed algorithm that can solve the averaging problem.

It is left to consider R # 0. In this case, G contains a spanning tree, and again by Theorem El]
that R is the unique closed strong component in G. Consider an initial condition such that all
agents in R have initial state ¢ € R, those in V\ R have ¢/ € R, and ¢ # ¢’. Since R is closed,
information cannot be communicated from V \ R to R. Consequently, there exists no distributed
algorithm that can solve the averaging problem. (|

Owing to Proposition @, we shall henceforth assume that the digraph G is strongly connected.

Assumption 2.1 The digraph G modeling the interconnection structure of the networked agents is

strongly connected.

2.2 Distributed Algorithm

Example 2.2 Consider again Ezample @ To achieve averaging, a natural idea is that
each agent iteratively computes the (local) average of the state values received from neighbors

and its own state value. Namely, for i € [1,4]

b+ 1) = Ty @k + 3 a,(0)

JEN;

For the initial states of the agents ©1(0) = 1, x2(0) = 2, x3(0) = 3, 24(0) = 4, let us compute

by the above equation the new states at k = 1:

71(1) = 21(0) + 5 (24(0) — 21(0)) = 571(0) + 774(0) = 25
va(1) = 2(0) + 7(21(0) — 72(0)) + § (@3(0) ~ 22(0)) + 3 (@a(0) — 2(0)) = 2.5
25(1) = 25(0) + 5 (@1(0) — 73(0)

= = DN

Wl |~~~

Wl = N

24(1) = 24(0) + = (22(0) — 24(0)) + = (x3(0) — 24(0)) = 3.

Observe that the state sum at time k = 1 s 2?21 x;(1) = %, while the initial state sum
Z?Zl x;(0) = 10. The state sum has changed (by %) after one update, and this is in fact
due to unbalanced structure of the digraph G in Fig. @ Indeed, let a;; = ﬁ be the
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(posz’tive) weight of edge (j,1) € E; then the wez’ghted degrees are dy = % dy =3, d3 =
dy = , while the weighted out-degrees d = , ds = %, dg =
digraph is thus not weight-balanced.

27

12, dj = 5 — the weighted

Note that the adjacency matriz and standard Laplacian matriz of the weighted digraph G are:

00 0 2 : 0 0 -3

1 9 1 1 _1 3 _1 1

A= 411 AN B - 411 1 14 1

5 0.0 0 =z O o 0

RN 0 -t -1 3

Hence the above state-update scheme may be written in vector form:
z1(k+1) £ 0 0 % |zu(k) x1(k)
k+1)| |1 1 1 1| |®2(F)| _ (-1 z2(k)
x3(k +1) 10 L of |zs(k) x3(k)
z4(k+1) 0 & L 1| |k x4(k)

The matrixz I — L is nonnegative and every row sums up to one; thus I — L is a row stochastic
matriz. On the other hand, not every column of I — L sums up to one, so I — L is not column
stochastic (and this is caused by non-weight-balancedness of the weighted digraph G). This
means that the initial sum is not kept invariant during each state update, and consequently

asymptotic convergence to the initial average is not achievable. This is illustrated in Fig. @

The problem illustrated by Example @ suggests a plausible remedy: equip each agent ¢ with
an additional variable s;(k) to record the changes in state z;(k), such that the sum of z;(k) and

si(k) is a constant, i.e.

n

(VE>0)>  (2i(k+1) +si(k+1)) Zn: k) + si(k)).

i=1 i=1

We call s;(k) the surplus variable of agent i at time k. At k = 0, set s;(0) = 0 for all ¢; this is
intuitive because there is no change yet in state x;(0) to be recorded. Hence for every k > 0, there
holds

n

S i) + i) = 3 @:(0) + 5:(0)) = Y i(0) 1)

i=1 i=1

Namely the initial state sum is kept invariant using the surplus variables.

In the following, we describe a distributed algorithm that updates the state z;(k) and the surplus
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Figure 2.2: Failure to achieve averaging

s;(k) such that (@) holds.

Surplus-based Averaging Algorithm (SAA):
Every agent ¢ has a state variable z;(k) whose initial value is an arbitrary real number, and a

surplus variable s;(k) whose initial value is 0. At each time k& > 0, every agent ¢ performs three

operations:
1) Agent i sends its state x; (k) and weighted surplus a;;s;(k) to each out-neighbor j € N?. The

weights a;; satisfy Zjej\/;’ aj;; < 1.

2) Agent i receives the state x;(k) and weighted surplus a;;s;(k) from each (in-)neighbor j € N;.
The weights a;; satisfy Zje/\/i ai; < 1.

3) Agent ¢ updates its state x;(k) and surplus s;(k) as follows:

JEN;
sith+1) = (1= 3 az)silk) + Y ags; (k) = (wilk+ 1) = wi(k)). (2.3)
JEN? JEN;

The parameter € in (@) is a positive real number, i.e. € > 0.

Remark 2.1 In SAA, (@) 1s the state update where the first two terms on the right constitute the
averaging scheme in Example @, and the last term specifies a certain amount of surplus used to

influence the state update. On the other hand, @) is the surplus update where the first two terms
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on the right represent sending (resp. receiving) surplus to out-neighbor (resp. from in-neighbor)
agents, and the third term records the change of state. Summing up (@) from i =1 ton on both

sides, we derive

n n n

Sosilkr 1) =Y (0= X asi)+ Y aysi(k) | =Y (wilk+ 1)~ mi(k)
i=1 i=1 JEN? JEN; i=1

=Y sk + 1)+ wilk+1) =Y si(k)+ > xi(k).
i=1 i=1 i=1 i=1

Hence SAA ensures constant sum of states and surpluses for all time as in (@)

Remark 2.2 In SAA, the weights a;; are required to satisfy two conditions: ZjeN{’ aj; <1 and
Zje/\ﬁ,- a;; < 1. In Example @ the weights are chosen to be a;; = ﬁ for every j € N, and
for that example the two conditions are satisfied. However, in general this choice only ensures
Zje/\fl a;; < 1 but not necessarily ZjeN;’ aj; < 1. An example illustrating this point is a variant
of the digraph in Fig. @ with an additional edge (4,3): in this case Zje/\/f a4 = % + i + % > 1.

A simple choice that does ensure both conditions is the following:

. 1 1
s = T R
Another simple choice that requires the knowledge of the number of agents is a;; = %

Remark 2.3 Let z := [z1---2,]" € R" and s := [s;-+-8,]| € R" be the aggregated state and
surplus, respectively, of the networked agents. Then the n equations of @) become

x(k+1) = (I — L)x(k) + es(k).

Since ZjeM- a;; < 1, I — L is nonnegative. Moreover, since L has zero row sums, I — L is row
stochastic. On the other hand, the n equations of (@) become

s(k+1)=({I—-L%s(k) — (z(k+1) —z(k))
= Lx(k)+ (I — L° —el)s(k)
where L° is the out-degree Laplacian matrix. Since ZjeNp bi; < 1, I—L° is nonnegative. Moreover,

since L° has zero column sums, I — L° is column stochastic. Together, SAA is written compactly

as follows:

L I—-L°—¢l

=M [x(k)] , where M := ll_ L e ] . (2.4)
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The initial conditions are £(0) € R™ (arbitrary) and s(0) = 0. Notice that (i) the matriz M has
negative entries due to the presence of the Laplacian matriz L in the (2,1)-block; (ii) the column
sums of M are equal to one, which implies that the quantity 17 (x(k)+s(k)) is a constant for allk > 0
(cf. (@)}, and (i) the state evolution specified by the (1,1)-block of M, i.e. x(k+1) = (I —L)x(k)
is the averaging scheme in FExample @

Example 2.3 Let us revisit Example @ It is checked that the weights a;; satisfy the two
conditions Zje/\/;' aj; <1 and ZjeNi a;; < 1. We have seen the standard Laplacian matriz
L and the row-stochastic I — L. The following are the out-degree Laplacian matrixz L° and

the column-stochastic I — L°:

3 1 1 1

g = 1 g g 1

_1 1 1 1 12 1 1

o __ 4 3 4 4 _ g0 _ |4 3 4 4

L= _1 9 I 9ol =l = 1 9 5 9
2 12 2 12

1 1 3 1 1 1

0 -3 -3 1 0 3 3 1

With these matrices, the matriz M in (@) may be constructed. Fig. @ displays the case
in which averaging is achieved when the parameter € = 0.1; while Fig. @ shows that when
e = 0.5, convergence does not occur. Hence the parameter € needs to be carefully chosen (to

be small enough) so as to achieve averaging.

25

I
6 8 10 12 14 16 18 20
Time k&

Surplus s;(k), i

6 8 10 12 14 16 18 20

Figure 2.3: Convergence to average consensus when € = (.1
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Surplus s;(k), i =1,2,3,4

Figure 2.4: Failure to converge when € = 0.5

2.3 Convergence Result

The following is the main result of this section.

Theorem 2.1 Suppose that Assumption @ holds. If the parameter € > 0 is sufficiently

small, then SAA solves the averaging problem.

To prove Theorem @, we will analyze the eigenvalues and eigenvectors of matrix M in (@)

Write M in two parts: M = My + €E, where
0o I
0 —I|

I-L 0
M() = FE .=
The proof Theorem @ is structured in two steps. First, we analyze the eigenvalues and eigenvectors

)

L I—-1L°

of My. Second, we analyze the (infinitesimal) movement of Mjy’s eigenvalues upon being perturbed
by eFE.

Let us introduce two lemmas corresponding to the two steps outlined above.
Lemma 2.1 Suppose that Assumption @ holds. Then

o I — L has a simple eigenvalue 1, with a positive eigenvector 1 and a positive left-
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eigenvector m;; all the other eigenvalues A satisfy |A| < 1.

o I — L° has a simple eigenvalue 1, with a positive eigenvector m,. and a positive left-

eigenvector 1; all the other eigenvalues \ satisfy |A| < 1.

Proof. Under Assumption @, it follows from Lemma @ that the standard Laplacian matrix
L has a simple eigenvalue 0. By spectrum mapping, I — L has a simple eigenvalue 1. Since I — L
is row stochastic, p(I — L) = 1 (as shown in the proof of Lemma @) Note also that the digraph
G(I — L) constructed according to I — L is strong connected and aperiodic, since all nodes have
loops. Therefore by the Perron-Frobenius Theorem for Stochastic Matrices (Theorem @), all the
other eigenvalues A of I — L satisfy |A| < 1.

Again under Assumption Ell, the simple eigenvalue 0 of the standard Laplacian matrix L has a

positive eigenvector 1 and a positive left-eigenvector m; (Remark @) It follows from

I-L1=1-IL1=1

o (I-L)y=7 —7mL=n

that the simple eigenvalue 1 of I — L has a positive eigenvector 1 and a positive left-eigenvector ;.

The second statement concerning the out-degree Laplacian matrix can be proved similarly. [

Lemma 2.2 Consider M = My+<cE ande > 0. Let A be a semi-simple double eigenvalue of
My (i.e. algebraic and geometric multiplicities of A are both two), with (linearly independent)

eigenvectors v, vy and (linearly independent) left-eigenvectors uy, us such that the following

Al =]

If € is sufficiently small, then the two (perturbed) eigenvalues A(€) of M corresponding to X

normalization condition holds:

are A(€) = A+eXN +0(g?), where X' has two values which are the eigenvalues of the following

matric:

ulEvy uf Ev,

2.5
udEvy ul Evg (2:3)

Proof. Suppose that the positive perturbation parameter ¢ is sufficiently small. Then the two
perturbed eigenvalues A(g) of M corresponding to the semi-simple double eigenvalue A of Mj and

the corresponding two perturbed eigenvectors v(¢) may be expressed in terms of the following power
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series:

Ae)=A+eXN +N 4+ =XA+eX +0(e?)

v(e)=v+ev +e2 +- - =v+ev +0(?).

It is left to show that A\’ has two values which are the eigenvalues of the matrix in (@) Substituting
the above two power series and M = My + ¢ F into the eigenvalue-eigenvector equation M (g)v(e) =
Ae)v(e) yields
(Mo +eE)(v+ev' +0(e?) = A+ eXN +0(?)) (v +ev' + O(e?))
= Myv + e(Mv' + Ev) 4+ O(2) = v + (M + XNv) + O(e?).

Hence we obtain

Mov = v (2.6)
Mv' + Bv =M+ Nv. (2.7)

It follows from (@) that v is an eigenvector corresponding to the eigenvalue A of Mjy; thus there
exist ¢1,co € R such that v = ¢1v1 + cove. Note that at least one of ¢q, ¢o is nonzero. Next multiply
(@) by u{ from the left:
u (Mv' + Ev) = u] (MW + Nv)
= u] Mv' +u] Ev=\u] v + Nujv
= u{ Bv=Nujv
= ulTE(clvl + covg) = )\’ulT(clvl + cou9)

= ciu] Evy + couf Evy = ) N,
Similarly, multiplying (@) by ug from the left yields:
cirug Evy + coug Evy = ).
The above two equations may be written in matrix form:
]
Co Co

The above matrix is the one in (@) Since ¢1, co are not both zero, we conclude that A\’ has two

ul Ev;  uf Evy

ul Bvy  ul Bvg

values which are the two eigenvalues of this matrix. This completes our proof. O
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Now we are ready to prove Theorem @

Proof of Theorem @ Suppose that Assumption @ holds and the parameter € > 0 is sufficiently
small. Write M in (@) as M = My + ¢E, where

I-L 0

Mo =
L I1-L°

The proof is structured into the following two steps.

Step 1: analyze the eigenvalues of My. Since M, is block (lower) triangular, its spectrum is
o(My) =0(I —L)Uo(I —L°). By Lemma @, 1 is a simple eigenvalue of I — L (resp. I — L°)
and all the other eigenvalues A of I — L (resp. I — L°) satisfy |A\| < 1. Hence My has a double
eigenvalue 1 (i.e. with algebraic multiplicity two), denoted by A\; = A2 = 1; and all the other 2n — 2

eigenvalues have absolute values smaller than 1: 1 > |Ag] > -+ > |Agy].

Step 2: analyze the (infinitesimal) movement A; = A2 = 1 of My upon being perturbed by £F;
for this we invoke Lemma @ First we verify that the double eigenvalue 1 is semi-simple, namely

with geometric multiplicity two. This may be done by checking the rank of

I—-L 0 I o |-L 0
L 1-r°| o 1| |L -L°

By elementary row operations — adding rows 1,...,n respectively to rows n + 1,...,2n — the

Vo

and this matrix has rank 2n — 2. The latter follows from Lemma @ and Remark @ that
rank(—L) =rank(—L°) = n — 1 under Assumption El]) Since elementary row operations do not

My—1=

above matrix is transformed to

change rank, it holds that rank(My — I) = 2n — 2. This means that the eigenspace of 1 is two-
dimensional, namely the geometric multiplicity of eigenvalue 1 is two. This verifies that the double

eigenvalue 1 is semi-simple.

Next we need to find (linearly independent) eigenvectors vy, ve and left-eigenvectors uq, us.
Recall from Lemma El] that the simple eigenvalue 1 of I—L (resp. I—L°) has a positive eigenvector 1
(resp. m,) and a positive left-eigenvector 7; (resp. 1). Scale m;, 7, (if necessary) such that 17 m = 1

and 1" 7, =1, and consider the following:
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It is verified that

Al =]

With the above preparations, we may qualify the changes of the semi-simple eigenvalue \; =
A2 = 1 of My under a small perturbation e E by computing A; () and Aa(e) according to Lemma @;
here A;(e) and Aqa(e) are the eigenvalues of M corresponding respectively to A; and As. It follows
from Lemma @ that for sufficiently small € > 0, A1(g) = A1 + e} + O(e?) and A\a(g) = Ao + Xy +

O(g?) where A}, )\, are the eigenvalues of the following matrix

_ 0 0
7rlT7rr 7n7TlT7TT '

Hence A| = 0 and Ay = —nm," 7. < 0. This implies that A1 () stays put at 1, while A2(g) moves to

uf Bvy  uf Evy

U;El}l U;E'UQ

the left along the real axis. Then by continuity, there must exist a positive d; such that A;(d;) =1
and A2(01) < 1. On the other hand, since eigenvalues are continuous functions of matrix entries,
there must exist a positive dz such that |A\;(d2)] < 1 foralli € {3,...,2n}. Thus for any sufficiently
small € € (0, min{dy,d2}), the matrix M has a simple eigenvalue 1 and all other eigenvalues have

absolute values smaller than one. For the simple eigenvalue 1, it follows from
1 1
M| =, [1T 1T} M = [1T 1T}
0 0
that its eigenvector and left-eigenvector are

1 1
= 21 = —
Y1 0 ) 1 n

We scale z; with L such that z{ y; = 1.

Now write M in Jordan canonical form as

21
-
1 0 2
— -1 _
M=WJW"'= |y yo - yzn} lO J/] E
Z3n
where y;, 2; € C? (i € {1,...,2n}) are respectively the (generalized) right and left eigenvectors of

M; and J' € C?»=Dx(2n=1) i5 5 block diagonal matrix consisting of the Jordan blocks corresponding
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to those eigenvalues with absolute values smaller than one. Hence the kth power of M is

MF=wJFrW—t =W [1 0 ] w1

0 (J/)k
1317 I1a7
%ylle["O " , as k — oo.
Therefore based on the SAA in (@)
2()] _ o [2(0)
s(k) s(0)
1117 1117 |2(0)
%
0 0 s(0
117 L5 2;(0)1
=|n z(0) =|n iz %i(0) , ask — oc.
0 0
That is,
fim (k) = 37 a0(0), Jim (k) =0
Ju m®) = 23 ai0) - Jim s(h) =
i.e. SAA solves the averaging problem. |

2.4 Parameter Bound and Convergence Speed

Having shown that SAA solves the averaging problem for sufficiently small parameter € > 0, in
this section we aim to derive an upper bound on €. As before write the matrix M in (@) as
M = My + €E, where

I-L 0
M()Z:
L I1-L°

We have shown that the spectrum of Mj satisfies
T=X =X > |A3] > > | Agnl.

The following is the main result of this section.
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Theorem 2.2 Suppose that Assumption @ holds. SAA solves the averaging problem if the

parameter e satisfies € € (0,&), where

£i= (1 ;'2’\3|>2n. (2.8)

Remark 2.4 (Convergence Speed) By Theorem @ if the parameter £ € (0, &) with € in (@), then
SAA converges to the initial average. The speed of convergence is governed by the second largest
(in terms of absolute value) eigenvalue of the updating matriz M, i.e. |Aa(g)]. We refer to |Aa(e)|
as the convergence factor of SAA; that is, SAA converges linearly at the rate of O(|X2(¢)|¥). Note
that |X2(g)| < 1 is equivalent to averaging (as in the proof of Theorem @), and the value of |Aa(e)]
depends not only on the digraph topology G but also on the parameter €. We will illustrate this

latter point using simulation examples in Section @

To prove Theorem @, we will relate the parameter ¢ to the distance between perturbed eigen-
values of M and unperturbed eigenvalues of M. To this end, we begin by introducing a metric for
the distance between their spectra. Let o(Mp) := {A1,..., Aan} and o (M) := {A1(e),..., Aan(e) }.
The optimal matching distance d (o(My),o(M))) is defined by

d(o0(Mp),o0(M))) :=min max |A; — Ar(;)(e)] (2.9)
T {€[1,2n]
where 7 is taken over all permutations of {1,...,2n}. Thus if we draw 2n identical circles centered

respectively at Aq,..., Ao, then d(o(Mp),o(M))) is the smallest radius such that these circles

include all Ay (¢),..., A2, (¢). Here is an upper bound on the optimal matching distance.

Lemma 2.3 Consider M € R"*"™ and M = My +eE. Then

d (o(Mo), (M) < 2°7 2% (|| Mo]| + || M]))! 2= [|eE| 2=

Proof. Let ¢ € [0,1] and N(c) := (1 — ¢)Mp + ¢M. Thus the eigenvalues of N(c) trace 2n
continuous curves in the complex plane as ¢ changes from 0 to 1. The starting points of these
curves are the eigenvalues of My and the ending points are those of M. To prove the upper bound
on d(o(My),o(M))), it suffices to show that if I' is any one of these curves, and a, b are the starting
and ending points of I', then |a — b| is bounded by the upper bound.

Without loss of generality assume that | M| < ||[M|| (the other case is symmetric). Let £ be
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the straight line through a,b, and S be the segment of £ between a, b; namely

L={z|z=a+1l(b—a),l eR}
S={z|z=a+1(b—a),le0,1]}.

For each eigenvalue A; (i € {1,...,2n}) of My, let A, = a + 1;(b — a), l; € R, be the orthogonal
projection of A; on the straight line £. Also let 2 = a + (b — a) be an arbitrary point on £. Then

2n 2n 2n
[Tiz=XI=T[It-t)0b-a)|=la=b"T] 11 -&l
i=1 i=1 i=1

By Chebyshev’s inequality

2n
1
-l > —
lrgl[a)f]il;[l| |2 9dn—1

there exists a point zg = a + lo(b — a) on the segment S, for some [y € [0, 1], such that

n

la — b2
1_[|'ZO_/\;|Z 9dn—1 °
i=1

Since I' is a continuous curve between a and b, there exists a point Ag on I' such that its orthogonal
projection A\ = 29 on S. It follows from the projection relation that for every i € {1,...,2n},
[Ao — il > |AG — Af]; hence

2n 2n on
_ / ‘a_bl
|det(Mo — XoI)| = 1;[1 Ao — Ai| > 1;[1 |20 = N > S

Since Ag is a point on T', there exists ¢y € [0,1] such that )y is an eigenvalue of N(cg) =
(1 — co)My + coM. Choose an orthonormal basis e, ..., es, such that N(cp)e; = Ape;. Then it
follows from Hadamard’s inequality that
2n
[det(Mo — Ao T)| < [ (Mo = XoT)es].

i=1

Owing to the chosen basis, ||(Mo— Aol)er|| = |[(Mo— N(to))e1]| < ||[Mo— N(to)||. Fori=2,...,2n,

(Mo = AoD)es|| < [[Moeill + [Ao| < [[Mo]| + |V (o).
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Hence

|det(Mo — XoI)| < [ Mo — N (to)ll(| Mol + [N (to) [)*"
< col| Mo — MI|([[Mo]| + (1 = co)l| Mol + col| M])*"
< |[Mo = MI|([| Mol + [[M])>"~.

The last inequality is due to ||My|| < ||M]||. From the above two inequalities of |det(My — AoTl)|, we

derive

la — b|*>"

o < 1Mo = MI[([Mo] + | M}y

Taking 2nth root yields

_ L L .

ja — b < 2272 || Mo — M||27 (|| M| + [|M]))! 2=
L J

= 2°72 (|| Mo || + | M)} 2 || B

L
2n

This is the upper bound on d (6(My),o(M)), and the proof is complete. O

Now we are ready to prove Theorem @

Proof of Theorem @ Suppose that the parameter ¢ € (0,£) with £ in (@) The proof is
divided into two steps.

Step 1: we show that [A3(e)[,...,|Aan(e)] < 1.

Recall the two conditions on the weights a;; of SAA: Z?Zl aj; <1 and 2?21 a;; < 1. Since
the Laplacian matrix L is defined as L = D — A, we derive ||L||oc = 2max; > 7 a;; < 2. On the
other hand, by the definition of out-degree Laplacian matrix L° = D° — A we have ||[I — L°||oc =
|(I=D°)+ Alloe < max,(1= X1, ayi)+max; 7, ai; < 2. Hence [| Moo < | ZflootlT~L] < 4

and || Fllc < 1. It then follows from Lemma P.3 that

d (0(Mp),o(M)) <2272 (|| Mo + || M||)'~ 27 || E|| 2=
< 2273 (2| My|| + || )~ = || E|

<227 (84 )T

L
2n

< A(8+ €)enn
<1—|As].

The last inequality is due to € < € in (@) Now recall from the proof of Theorem El] that the
unperturbed eigenvalues g, ..., As, of My lie strictly inside the unit circle. Therefore, perturbing
the eigenvalues As, ..., Ay, by an amount less than £, the resulting eigenvalues Asz(e),. .., Aap(€)

will remain inside the unit circle.
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Step 2: we show that [A2(g)| < 1.

This is established by contraposition. First recall from the proof of Theorem @ that Ao = 1
and for sufficiently small € > 0, it holds that |A2(¢)| < 1. Now suppose that there exists 6 € (0, &)
such that |[A2(d)] > 1. Owing to the continuity of eigenvalues, it suffices to consider |A2(d)| = 1.
There are three such cases; for each we derive a contradiction.

Case 1: A2(d) is a complex number with nonzero imaginary part and |[A2(d)| = 1. Since M
is a real matrix, there must exists another eigenvalue X;(d), for some i € [3,2n], such that X\;(d)
is the complex conjugate of A2(d). Then |A;(§)] = |A2(d)| = 1, which is in contradiction to the
conclusion established in Step 1 above: all the eigenvalues A3(0),..., A2,(0) stay inside the unit
circle as ¢ € (0,¢).

Case 2: A2(0) = —1. This implies that the optimal matching distance d (0(My),o(M)) = 2,
which contradicts d (o(Mp),o(M)) <1 —|A3] < 1 when (@) holds.

Case 3: \2(6) = 1. This means that the algebraic multiplicity of eigenvalue 1 equals two. The

corresponding geometric multiplicity, however, equals one because rank(M — I) = 2n — 1. To see

M- I-L el _IOZ—L el .
L I—-L°—¢l 0 I L —L°—¢l

By elementary row operations — adding rows 1,...,n respectively to rows n + 1,...,2n — the

—L el
0 —L°

and this matrix has rank 2n — 1 (since rank(—L°) = n — 1 under Assumption @ as stated in
Remark @) Thus there exists a generalized eigenvector u = [u] ug]T € R?" such that (M —1I)%u =

0, and (M —1I)u is an eigenvector with respect to the eigenvalue 1. Since [17 0] is also an eigenvector

this, write

above matrix is transformed to

corresponding to the eigenvalue 1, it must hold that

(M —TDu=c[17 0]", for some scalar ¢ # 0

—L el Up 1
=c
L —L°—cl)| |us 0

{ —Luy +eug = ¢l
=

=

Luy — L°us — eug =0

= — L°ug = cl.

Since rank(L°) = n — 1 but rank([L° c1]) = n, there is no solution for ug, which in turn implies
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that the generalized eigenvector u cannot exist. Therefore the eigenvalue 1 of M is simple, which
contradicts that the algebraic multiplicity of eigenvalue 1 equals two.
Based on the impossibility of the above three cases, we conclude that for all ¢ € (0,&), the

eigenvalues of M satisfy

1= M(e) > [Aa(e)] = [A3(e)] = -+ = [Aan(e)].
Following the same lines as in the proof of Theorem Ell, the conclusion that SAA solves the averaging
problem ensues. O
2.5 Simulation Examples

Let us illustrate, by simulation examples, that using SAA the states of the agents indeed converge

to the desired average value, as well as how the convergence speed is affected by the parameter €.

SR

ga, gb gc

Figure 2.5: Three examples of strongly connected but unbalanced digraphs

Table 2.1: Convergence factor |Az(g)| with respect to different values of parameter ¢

e=001]|e=01]e=02|e=03]|e=04|e=045]|e=0.5
Go | 0.9915 0.9567 | 0.9754 | 0.9838 | 0.9990 1.0000 1.0487
Gy, | 0.9909 0.9188 | 0.9203 | 0.9316 | 0.9400 0.9931 1.0611
Ge. | 0.9906 0.9057 | 0.9062 | 0.9224 | 0.9333 0.9777 1.0000

Example 2.4 Consider the three digraphs displayed in Fig. @, with 10 nodes and respec-
tively 17, 29, and 38 edges. All the digraphs are strongly connected, but they are unbalanced
(indeed, no single node is balanced). We apply SAA by setting weights a;; as in Remark 2.2;
with these weights, these weighted digraphs are not weight-balanced.

The convergence factor |A2(g)| for seven different values of the parameter e are summarized
in Table @ Observe that small € ensures convergence of SAA (|A2(€)| < 1), whereas large
e can lead to instability. Moreover, in those converging cases the factor |A2(€)| decreases as

the number of edges increases from G, to G., which indicates faster convergence when there
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Figure 2.7: Surplus trajectories when € = 0.45
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are more communication channels available for information exchange. We also see that SAA
is more robust on digraphs with more edges, in the sense that a larger range of values of €
is allowed.

For e = 0.45, we display in Figs. @ and @ the trajectories of both states and surpluses
when SAA is applied on digraphs Ga, Gy, G (with x(0) =[5 —4 —3 —2 —112345]"
and s(0) = 0). Consistent with the stability properties indicated by |A\a(g)|, Ga results in
divergence, G, convergence to the initial average 0 but with oscillatory transient behavior

(since |A2(g)| is close to 1), and Gy, convergence to the initial average 0 most smoothly.

0.98 - |

0.96 - ]

o o
© ©
N ~
T T
L L

Convergence factor [Az(e)]
o
©

0 0.2 0.4 0.6 0.8 1
Parameter ¢

Figure 2.8: Convergence factor |\y(g)| versus parameter e

Example 2.5 We demonstrate the influence of parameter € on the speed of convergence,
specifically the convergence factor |A2(e)|. To reduce the effect of network topology in this
demonstration, we employ the Erdos-Reyni random digraph model: an edge between every
pair of nodes can exist with probability p = 1/2, independent across the network and invariant

over time; we take only those digraphs that are strongly connected.
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For SAA, consider Erdos-Reyni random digraphs of 100 nodes and uniform weights 1/100
(uniform weights are valid for SAA as asserted in Remark 2.2). Fig. @ displays the curve
of convergence factor |Aa(€)| with respect to the parameter €, each plotted point being the
mean value of |A2(¢)| over 100 random digraphs.

To account for the trend of this curve, first recall from the perturbation argument in The-
orem @ that the matriz M in @) has two (mazimum) eigenvalues 1 when € = 0, and
small € causes that one of them (denote its absolute value by A, ) moves into the unit circle.
Meanwhile, some other eigenvalues of M inside the unit circle move outward; denote the
mazimum absolute value among these by Aout. In Fig. @ it is observed that when ¢ is
small, |A2(€)] = Ain(> Aout) and \in moves further inside as perturbation becomes larger; so
|[A2(e)| decreases (faster convergence) as € increases in the beginning. Since the eigenvalues
move continuously, there exists some € such that Ay, = Aous, corresponding to the fastest
convergence speed. After that, |\2(g)| switches to Aout(> Ain) and Aout moves further out-
side as € increases; hence |A2(g)| increases and convergence becomes slower, and eventually

divergence occurs (when |A2()| > 1).

2.6 Notes and References
The surplus-based averaging algorithm (SAA) is originated in

« K. Cai and H. Ishii, Average consensus on general strongly connected digraphs, Automatica,
vol.48, pp.2750-2761, 2012

Eigenvalue perturbation result of Lemma @ is due to

o A.P. Seyranian and A.A. Mailybaev, Multiparameter Stability Theory with Mechanical Ap-
plications, World Scientific, 2004

Bound on optimal matching distance in Lemma @ is adapted from
« R. Bhatia, Matrix Analysis, Springer, 1996
In the proof of Lemma @, Chebyshev’s inequality can be found in standard texts e.g.
o T.J. Rivlin, An Introduction to the Approximation of Functions, Dover, 1981
and Hadamard’s inequality in e.g.

o F. Riesz and B. Szokefalvi-Nagy, Functional Analysis, Dover, 1990
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SAA has been generalized to address a number of other issues including time-varying and random

digraphs as well as quantization of state values.

o K. Cai and H. Ishii, Average consensus on arbitrary strongly connected digraphs with time-

varying topologies, IEEE Transactions on Automatic Control, vol.59, pp.1066—-1071, 2014

o K. Cai, Averaging over general random networks, IEEE Transactions on Automatic Control,
vol.57, pp.3186-3191, 2012

« K. Cai and H. Ishii, Quantized consensus and averaging on gossip digraphs, IEEE Transactions
on Automatic Control, vol.56, pp.2087-2100, 2011



CHAPTER 3

Optimization

The second cooperative control problem we introduce is distributed optimization. Optimization is
an important subject across mathematics, science, and engineering. Motivation of performing opti-
mization over networked systems in a distributed fashion is driven by one or several combined fac-
tors including large scales, decentralized data collections, distributed computing technologies, and
privacy concerns. One example of distributed optimization is large-scale machine learning, where
big image/video data are collected and stored at different data centers, and multiple workstations
in these centers perform optimization computation for global data classification or model predic-
tion. Another example is economic dispatching in grid-connected smart buildings, where individual
buildings process data of local energy generation and consumption which may be privacy-sensitive,
and these buildings perform optimization computation for minimizing grid-wide generation costs
subject to the constraint of meeting all consumption demands. Other application domains include
power networks, smart grids, smart cities, transportation networks, and the Internet of Things
(IoT).

In this chapter, we show that a necessary graphical condition to achieve distributed optimization
is that the digraph is strongly connected. This is the same as the necessary condition for distributed
averaging in the preceding chapter. Indeed, distributed optimization requires tracking the average
value of the iteratively updated local optima, which intuitively demands that every agent possess

a direct or indirect ‘channel’ in order to receive information from every other agent.

Owing to this close relation to averaging, we design a distributed optimization algorithm based
on the surplus-based one presented for achieving averaging over strongly connected digraphs (which
need not be balanced). Further, we will relate the distributed optimization problem to a widely
studied problem of distributed resource allocation. Hence the latter may also be solved by the same

distributed optimization algorithm.
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3.1 Problem Statement

Consider a network of n (> 1) agents. Each agent i (€ [1,n]) has a state variable z;(k) € R,
and a local cost function f; : R — R The goal of distributed optimization is that the agents

cooperatively solve the following problem:
I i(Ti 3.1
L, min ;f(w) (3.1)

subject to x1 = -+ = x,,.

Let F(§) := >, fi(€) be the global cost function for the multi-agent network. Thus prob-
lem (@) means that every agent minimizes the global cost function. We shall restrict our attention

to the case where F' has a unique optimal solution £* € R. Denote the optimal value by

F* = F(¢") = min F(6).

Under the following assumption, F' indeed admits a unique optimal solution £* (see Lemma @ in

Appendix) and a reasonable rate of convergence to the solution £* is ensured.

Assumption 3.1 Ewvery local cost function f; (i € [1,n])
o 4s continuously differentiable with gradient V f; (which is derivative for one-dimensional f;);

o s strongly convex with parameter m; > 0 (or simply m;-strongly convez), i.e.

ms;

(V&1,& € R)fi(&1) = fi(&2) + Vfi(&2) (&1 — &2) + f”fl — &lI3; (3.2)

¢ has a Lipschitz-continuous gradient with parameter l; > 0 (or l;-smooth), i.e.
(Y€1, 62 € R)IVSi(&1) = Vfi(&2)ll2 < Lil[&1 — Eallz- (3.3)

A straightforward characterization of the latter two conditions in Assumption El] in the case that
the inverse of the Hessian V2 f; (which is the reciprocal of the second derivative for one-dimensional
fi) exists is: m; < V2f; < I;. Namely, strong convexity and smoothness provide respectively lower

and upper bounds on V2f;. As a result, m; < l; always holds. Let

n

[:= l;, 1:= l; = ;. 3.4
Byl 1l e o

=1

1The choice of one-dimensional domain of function f is made deliberately for simplicity of presentation, and the
essential ideas and techniques are the same for functions of multi-dimensional domain.
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Then under Assumption Ell, the global cost function F' is m-strongly convex and [-smooth, with

the condition number Q := % > 1.

Optimization Problem:

Consider a network of n agents interconnected through a digraph G. Suppose that Assump-
tion Ell holds and £* is the (unique) optimal solution to mingegr F'(§). Design a distributed algorithm
to update the agents’ states z;(k), i = 1,...,n, such that

(Vi € [1,n))(Vz;(0) € R) lim a;(k) = £*.

k—o0

Figure 3.1: Illustrating example of optimization problem with four agents

Example 3.1 We provide an example to illustrate the optimization problem. As displayed
in Fig. @, four agents are interconnected through a digraph G. The (in-)neighbor sets of
the agents are N1 = {4}, No = {1,3,4}, N5 = {1}, Ny = {2,3}; and the out-neighbor sets
are NY = {2,3}, N3 = {4}, N¢ = {2,4}, N} ={1,2}.

Let the local cost functions of the agents be

f1(€) =log(1 4 e~¢) 4 2¢2

©)
f2(€) = 3log(1 +e7*) + €2
f3(8) =2log(1+e %) +26% +4
fa(€) = log(1 +e7%) + € +¢.
Compute V2f1(€) = ﬁ + 4, which lies in the interval (4,4.25]; thus fi is 4.05-strongly

convex and 4.25-smooth. Similarly, fo is 2.05-strongly convex and 2.75-smooth; fs is 4.05-

strongly convex and 4.5-smooth; and fy is 2.05-strongly convex and 2.25-smooth. Hence
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Assumption @ holds.
The global cost function F is

4
F(&)=> fi(§) =Tlog(1+e™ %) +66+£+4
=1

which s 12.05-strongly conver and 13.75-smooth. The wunique optimal solution to
minger F(§) is £ = 0.1819, and the optimal value is F* = 8.6247.

Suppose that the initial states of the agents are £1(0) = 1, x2(0) = 2, x3(0) = 3, 24(0) = 4.
The optimization problem is to design a distributed algorithm such that each agent’s state

asymptotically converges to the optimal solution £* = 0.1819.

A necessary graphical condition for solving the optimization problem is that the digraph G is

strongly connected (this is the same as that for solving the averaging problem).

Proposition 3.1 Suppose that there exists a distributed algorithm that solves the optimiza-

tion problem. Then the digraph G is strongly connected.

Proof. The proof is by contradiction. Suppose that the digraph G = (V,€) is not strongly
connected. Then at least one node (agent) in V is not a root of G. Let R denote the set of roots.
Then R # V. We consider two cases separately: R = @) and R # 0.

If R =0, i.e. G does not contain a spanning tree, then it follows from Theorem lill that G has
at least two (distinct) closed strong components (say) G1 = (V1,&1),G2 = (V2,&2). In this case,
consider local cost functions f; and an initial condition such that the agents in G; have initial state
c1 € R that minimizes Zievl fi(+), those in Gy have ¢o € R that minimizes ZiEV2 fi(4), and ¢1 # ca.
Since Gy and Gs are closed (i.e. information cannot be communicated from one to the other) and
the nodes in Gy (resp. G2) have the same state value that minimizes ) ;,, fi(-) (resp. Doy, fi(+)),
there cannot exist any distributed algorithm that can update the states of the nodes in Gy or Gs.
Consequently, no distributed algorithm can solve the optimization problem.

It is left to consider R # (). In this case, G contains a spanning tree, and again by Theorem Ell
that R is the unique closed strong component in G. Consider local cost functions f; and an initial
condition such that all nodes in R have the same state ¢ € R, which minimizes ), 5 fi(-); but
c # & where £* is the optimal solution for )., fi(-). Since R is closed (i.e. information cannot
be communicated from V\ R to R) and the nodes therein have the same state value that minimizes
> ier fi(+), there cannot exist any distributed algorithm that can update the states of the nodes in
R. Consequently, no distributed algorithm can solve the optimization problem. (Il

Owing to Proposition @, we shall henceforth assume that the digraph G is strongly connected.
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Assumption 3.2 The digraph G modeling the interconnection structure of the networked agents is

strongly connected.

3.2 Distributed Algorithm

Example 3.2 Consider again Ezample @ To converge to the optimal solution &%, a
natural idea is that each agent employs gradient descent with respect to its local cost function,
while iteratively computes the average of the state values received from neighbors. Namely,
fori e [1,4]

1

zilk + 1) = 2i(k) + Y Ty (k) — wih)) — eV iai(k)
A E

where € > 0 is a (small or diminishing) stepsize. In vector form we have

z1(k+1) 1.0 0 i |zi(k) e 0 0 0| |Vfi(xi(k))
b+ 1| _ |5 1 4 3| |=®)| 0 e 0 0 \Vhw) 4o
z3(k+1) 20 & 0f |zs(k) 0 0 ¢ 0| [Vfs(zz(k)) '
z4(k+1) 0 3 3 3| |za(k) 0 0 0 e [Vi(wa(k))

Denote by L the standard Laplacian matriz of the weighted digraph G in Fig. . Note that
the first matriz above is I — L, which is row stochastic but is not column stochastic. The

four eigenvalues of I — L are:
1,0.1667,0.125 4+ 0.2602j

namely there is a simple eigenvalue 1 and other eigenvalues lie within the unit circle. Thus
the spectral radius of I — L is p(I — L) = 1. The (normalized) left eigenvector corresponding
to the simple eigenvalue 1 4s: m := [0.4615 0.3077 0.4615 0.6923]"; thus n' (I — L) = ;' .
Multiplying =" on both sides of ) above yields:

4 4 4

Y mzi(k+1) = mzi(k)—e > mVfi(wi(k)).

i=1 i=1 i=1
This is a gradient descent algorithm with a different global function F'(§) := Z?:l i fi(€),
weighted by the left eigenvector m; (for a different global state ' := Z?:l ma;). Hence the
above scheme does not solve the optimization of F(§) = Z?Zl fi(&), i.e. the states do not
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asymptotically converge to the optimal solution of F. This is illustrated in Fig. @; here
e = 0.1 and the states converge to a vector [0.1035 0.2331 0.1599 0.0911] ", no component of
which equals the optimal solution £ = 0.1819.

State x;(k), i =1,2,3,4
— N w
- o N ol W o

©
(6]
T

0 5 10 15 20
Time &

Figure 3.2: States fail to converge to the optimal solution of global cost function

Since our global function F(£) = Y | f;(€) is equally weighted over the local cost functions,
if the left eigenvector m; with respect to eigenvalue 1 of I — L was 1 (the vector of all ones), then
the scheme in Example @ would have worked. In general, however, m; # 1 for strongly connected
digraphs (unless weight-balanced); instead we resort again to using surplus variables to achieve the
same effect of uniform weights. Specifically, we equip each agent ¢ with a surplus variable s;(k)
to record the changes in the gradient of the local cost function, i.e. V f;(z;(k)). At k =0, we set
$i(0) = V f;(x;(0)) for all i.

In the following, we describe a distributed algorithm that updates the state z;(k) and the surplus

Surplus-based Optimization Algorithm (SOA):
Every agent ¢ has a state variable z;(k) whose initial value is an arbitrary real number, and a

surplus variable s;(k) whose initial value is V f;(z;(0)). At each time k > 0, every agent i performs
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three operations:

1) Agent i sends its state z;(k) and weighted surplus aj;s;(k) to each out-neighbor j € N?. The
weights a; satisfy 35, o ai; < 1.

2) Agent i receives the state x;(k) and weighted surplus a;;s;(k) from each (in-)neighbor j € N;.
The weights a;; satisfy >y, aij < 1.

3) Agent i updates its state x;(k) and surplus s;(k) as follows:

vi(k+1) =a;(k) + Y aij(w;(k) — z:(k)) — es:(k) (3.6)
JEN;
sitk+1) = (1= a)sik)+ > ays;(k) + (Vfi(xi(k +1) - Vfi(xi(k))) (3.7)

The parameter € in (@) is a positive real number, i.e. € > 0. The weights may be chosen as in
Remark @ to satisfy the two conditions } ;¢ \ro aij <1and 3 ey, ai; < 1.

Remark 3.1 In SOA, (@) is state update by the gradient descent scheme as described in Exam-
ple @, by treating s;(k) as the estimate of gradient of the local cost function. On the other hand,
) is the surplus update where the first two terms represent sending (resp. receiving) surplus to

out-neighbor (resp. from in-neighbor) agents, and the third term records the change in gradients.
Summing up ) from i =1 to n on both sides, we derive

n

D silk+1) =

n

(1= a)silt)+ 3 ays;(k) |+ (Vfi(xi<k+1>) —Vfi(:ci(k:)))

IV

i=1 i=1 JEN? JEN; i=1
=Y sk +1) =Y si(k) =Y Viilwik+1) = > Vi(wi(k)).
1=1 =1 1=1 1=1

Since 5;(0) = V fi(x;(0)), we conclude for every k >0 that > ., s;(k) = Y1, V fi(xi(k)). Thus the

sum of surplus variables s;(k) is the sum of gradients of the local cost functions at time k.

Remark 3.2 (Relation with SAA) Consider (i) the special quadratic cost function f;(z;) := 32
(thus V fi(x;) = x;); and (%) change of variable §; == —s;. Substituting these into SOA, we obtain
SAA with surplus variable §;. Note that s; — 0 if and only if §; — 0. Owing to this relation, SOA

is a generalization of SAA.

Remark 3.3 Letz := [11--,]) €R", s:=[s1--8,]T €R", and Vf(x) := [Vfi(21) - Vi xn)]"
€ R™ be respectively the aggregated state, surplus, and gradients of the networked agents. Then
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SOA is written compactly as follows:

z(k+1)= (I — L)x(k) —es(k)
s(k+1)=I—-L%s(k)+ (Vf(z(k+1)) = Vf(x(k))) (3.8)

where I — L is row stochastic and I — L° column stochastic. The initial conditions are x(0) € R™
arbitrary and s(0) = V f(x(0)).

Example 3.3 Let us revisit Example @ 1t is checked that the weights a;; satisfy the two
conditions i nro @iy <1 and 3 c . aij < 1. Then SOA in vector form is:

z1(k + 1) Lo 0o i [=)] [e 0 0 o] [si(k)
wk+1)| _ |7 7 1 1| |z=®)] [0 0 0 |s(k)
z3(k +1) 20 2 0f |zs(k) 0 0 ¢ 0f [s3(k)
z4(k+1) 0 3 35 3] [za(k)] 0 0 0 el [s4(k)
si(k+1) 10 0 3 [si(k) Vii(z1(k+1)) — Vfi(z1(k))
ssk+1)| _ |7 § 1 1| |52k 4+ | Va(@2(k +1)) = V fa(x2(k))
ss(k+1) 10 3 0] [s3(k) Vis(xs(k+ 1)) — Vfs(zs(k))
sa(k+1) 0 = & 1| [sa(k) |V fa(za(k +1)) = V fa(za(k))

Fig. @ displays the case in which all states converge to the optimal solution £&* = 0.1819
when the parameter € = 0.1; while Fig. shows that when € = 0.2, convergence does not
occur. Hence similar to SAA for the averaging problem, the parameter € needs to be carefully

chosen (to be small enough) so as to ensure convergence.

3.3 Convergence Result

The following is the main result of this section.

Theorem 3.1 Suppose that Assumptions @ and @ hold. If the parameter € > 0 is

sufficiently small, then SOA solves the optimization problem.

Consider the two matrices I — L and I — L°. Under Assumption @ and by Lemma @, the
spectral radius p(I — L) = 1 is a simple eigenvalue with a positive left-eigenvector m; such that

71 =1; and p(I — L°) = 1 is also a simple eigenvalue with a positive eigenvector m, such that
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7T,,T1 = 1. Write II; := 17rlT and II, := 7, 17. The proof of Theorem @ is structured into the
following three steps. First, we construct two special vector norms || - ||m,, || - |lmr, with which I — L
and I — L° have a special contraction property. Second, when the parameter € > 0 satisfies a certain

bound, we bound several relevant norms to derive the following inequality:

|z(k +1) = Ihz(k + 1) ||, (k) — ILz(k)|m,
[Tz(k +1) — £ 1|2 <O [[z(k) — €12 (3.9)
[s(k +1) = Mps(k + 1), |s(k) — ILs(k)]lm,

where C' is a nonnegative matrix. Finally, we prove for small € > 0 that the spectral radius of C'
satisfies p(C') < 1. Hence all three eigenvalues of C' lie within the unit circle; thereby

(k) — Wy (k) ||,
(k) — €1, | — 0.
l[s(k) = ILps(k) |,

In particular z(k) — £*1, meaning all the states converge to the optimal solution £* of the global

cost function.

In the sequel, we will introduce several lemmas corresponding to the three steps outlined above.

The following lemma is for step 1.

Lemma 3.1 Suppose that Assumption @ holds. Then there exist vector norms || - ||m, and
| ||, such that

(Jo1 € (0,1))(Yv € R ||(I — L)v — |, < orfjv — ||, (3.10)
(For € (0,1))(Yv € RM)||(I — L)v — ILv||m, < orlv — L0, (3.11)

Proof. The proof is by construction of such vector norms. We will do so for (), and ()
follows similarly. Under Assumption @ and by Lemma @, we have p((I — L) —II;) < 1. Let
d€(0,1—p((I —L)—1I))); we are going to construct a matrix norm such that ||(I — L) — IL;||g, <
p(I-L)-1II;)+6 < 1.

By Schur triangularization, write (I — L) — II; = UAUH | where U is a unitary matrix, U? the
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conjugate transpose of U, and A an upper triangular matrix:

(M diz dis o dig
0 Ao dog -+ dop
U=1|0 0 A3 -+ d3n
0 0 0 - A

where \1,...,\, are the eigenvalues of (I — L) — II;. Let T := diag(t,t?,...,t"), where t > 0,
and define ||(I — L) — Ij||m, := |(TUH)((I — L) — IL,)(TUH)~1|;. First, it is verified that | - ||,
is indeed a matrix norm (i.e. satisfying homogeneity, positive definiteness, triangle inequality,

submultiplicativity). Moreover since

|(@UM) (L = L) = I)(@UH) |y = [TUHUAUFUT |,

= |ITAT |
_)\1 tildlg tizdlg oo tin+1d1n-
Ao tildgg cee tin+2d2n
= 0 0 A3 s t_n+3d3n
0 0 o A,

if ¢ is large enough then the sum of all absolute values of off-diagonal entries is smaller than §.

Specifically, let ¢ be such that

[t | + [t 2dag| + -+ [T | <6
[t dos| + -+ |7 da,| < 6

|t_1d(n71)n| <4

Then it follows from the definition of 1-norm that ||(I — L) — ILj|jm, < p((I — L) —1I;) + 6 < 1. Let
o;:=||(I = L) —II}||,; thus o; € (0,1).

Next, for the defined matrix norm || - ||;;, we can always find a compatible vector norm. Note
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that for an arbitrary vector v € R™, there holds

(I —L)—10)(v— 1) = ( o —1ITv— (I — L)ILv + 11w
=(I—-Lv—-Mw—-(I-L)1r v+ 1r 17 v
( Jo— v — 1m v+ 17 v
(I-1L)

v — IIv.

Therefore

(I = L)v — |, = [[(({ = L) — 10;)(v — 0)||m,
< | = L) = 1|, |lv — Thol|m,

= JlHU — Hﬂ)”nl.

This establishes () O

The next five lemmas are for step 2. The first two are preliminaries for the latter three; and the

latter three each derive a bound for a relevant norm in (@)

The first preliminary lemma below states that a gradient descent step (§ — eVF()) yields a
reduced distance to the optimal solution (£*) by at least a fixed ratio.

Lemma 3.2 Suppose that Assumption @ holds. Then

(V¢ € R)(Ve € (0, ])||§—€VF( ) =&l < (1 = me)[€ = &7l2-

Proof. Let £ € R and € € (0, 1. Since [ > m (Assumption El] e< 2 and thus [ < 2 —m.
Writing I := E — m, we have from Assumption that F is I’ Smooth and m-strongly convex.
Then

€ = eVE(€) = €°[13 = lI€ = €7II5 — 2eVF(€)(§ — €) + 2| VF(E)lI3

<=My ez e — — 2 IVEEIR

2
m+ U m+ U

where the inequality is due to the properties of smoothness and strong convexity (see Lemma

in Appendix) as well as VF(£*) = 0. Substituting I’ := £ — m into the above inequality yields
|6 —eVF(&) — &2 = (1 —em)?|€ — £*]|3. Since 1 — em 2 1 — % >0, we finally derive [|§ —
eVF(&) — &2 < (L —em)[|§ — &2 O

The second preliminary lemma provides a bound for ||s(k)]||2 in terms of the three relevant norms

in (@) Here three different types of vector norms are involved: 2-norm, II;-norm, and II,-norm.
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By norm-equivalence we have

(erseas ez, ea,05,¢6 > 0| -z < eall - s M- ll2 < eofl - s M- llm < esfl - [,

m, < ¢l - [Im,-

m, < sl fl2s -

-l < eall -l 111

Let ¢ := max{ey, ¢a, ¢3, ¢4, C5,¢6 . Then for any two of the above three types of vector norms (say)

| ltyper and || - [ltype2, we have

(3.12)

| - ||typel < ||type2

Lemma 3.3 Suppose that Assumption @ holds. Then for all k > 0,
|s(k)ll2 < el ||2llz(k) — (k) + UL |2l (k) — €12 + clls(k) — rs(k)|m,

where ¢ is in ) and [ in {@)

Proof. Writing s(k) = s(k) — I,.s(k) + II,.s(k), where I, = 7, 1T, we have

[s(B)ll2 < lls(k) = Trs(k)ll2 + [[TL-s(k)]12
< clls(k) = ys(k) |, + [l LT s(k)]l2- (3.13)

It follows from Remark @ that 17s(k) = 1TV f(x(k)). Thus we next bound ||z, 1TV f(x(k))|2 as

follows:

7 1TV fa(B) |2 < [l |2l Z V fi(wi(k)) — Z Vi)l

fi are [;-smooth

< I7ella Y lillwi (k) — €712

Jensen’s inequality _

< e ll2vnllz(k) — €712

Iy fl2=(l7rl2vn _ .
< I 2flz(k) — €1 — x(k) + iz (k)|

< cl|[ Iy [|a[l(k) — Wa(k) |, + T2 o (k) — £ 12 (3.14)

The lemma is proved by substituting () into () O

The next three lemmas each provide a bound for a relevant norm in (@)
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Lemma 3.4 Suppose that Assumptions and @ hold. Then for all k > 0,

[e(k +1) = a(k + D|n, <culle(k) - hz(k)|m, + crzfhz(k) — £ 12+
c1slls(k) — Irs(k) [,

where the constants are (c in ), oy in ), and 1 in (@)}

c11 =0+ 02€Z||H7‘ - Hl”Hl HHT||2
c12 = cel||I,. — IO ||, |11, | 2

c13 = ce + c2s||HT — 1T ||, -

Proof. Since z(k+ 1) = (I — L)z (k) — es(k) in (@), we have

[e(k +1) = Wz(k + D, = (I = L)z(k) +es(k)) = IL(T = L)z(k) + es(k)) [,

L, (I-L)=IL,
< (I = L)z(k) = Whz(k)lln, + lls(k) — Ms(k)||,

< allz(k) - Wa(k)|n, +el[s(k) — Ws(k) — s(k) + ILs(k)|n,
< oyl|z(k) — W (k)|ln, + cells(k) — ps(k) ||, + cel[1L — I, ||s(k)]]2-
(3.15)

The lemma is proved by substituting ||s(k)||2 from Lemma @ into () (Note that Assump-
tion @ is needed to apply Lemma @ and Assumption @ to apply Lemma @) O

Lemma 3.5 Suppose that Assumption @ holds. Ife < l—-lr (L in @)) then for all k > 0,

™
IThx(k +1) = £°12 < carl|lz(k) — Wz (k)|Im, + coz|[ Tz (k) — £ 1|2 + casl|s(k) — IL.s(k)|m,

where the constants are (c in ), [ and m in (@)}

Co1 = cslmrl—rm«
coo = (1— Em7rlT7rT)

C23 = C6||Hl||2.
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Proof. Since z(k+ 1) = (I — L)x(k) — es(k) in (@), we have

ILz(k+1) — & 1|2 = ||IL((I — L)z(k) + es(k) + I, s(k)(—e +¢€)) — 1|2

0, (I-L)=I;=1m," -
< [1m) z(k) — &1 — eIl I s(k) |2 + ce[|IL[|2[|s(k) — I s(k) ]|, -

(3.16)

Noting that II, = 7,17, we bound |17, (k) — £€*1 — eI}11,s(k)||2 as follows:

11 2 (k) — €1 — eIL L, 5(k) 2
= |7 2(k)1 — €1 — em) 7, VF (] 2(k))1 + en) 7, VF (7] 2(k))1 — elm] 7,17 s(k)||2
< @ (k) — e m VE (] 2(k)) = €)1l|2 +em 7 |[(VE(m 2(k)) = 1T s(k))1ll2. (3.17)

Since Assumption @ holds and € < ﬁ, it follows from Lemma @ that the first term in ()

[(m (k) — em m-VF(m x(k)) = €)1z < (1 — emm m) || (m 2 (k) — €)1]|2
=1

(1 —emm 7)) | (k) — €12 (3.18)

It is left to bound the second term in ()

e [(VF(r] 2(k)) — 17 s(e)1 s * " ET2T ) o ATV (] 2 (k)1) — 1TV (k)
< en w17 [l f (T 2(k)L) — VF (@ (k)2 1]l2

fi are [;-smooth

< elnm)] m. |7 2(k)1 — (k) ||
< celnm) m ||z (k) — Wz (k)||m, - (3.19)
Finally substituting (M) and (M) into (M) establishes the lemma. O

Lemma 3.6 Suppose that Assumptions and @ hold. Then for all k > 0,

sk +1) = Trs(k + D, <csillz(k) — Mz(k)|lm, + cs2llThx(k) — £ 1|2+
cs3l[s(k) — Trs(k)||m,



86 Chapter 3. Optimization

where the constants are (c in , Op N ), and [ in @)}

cs1 = I — L ||2||L|l2 + el | T — 0, ||| L ||2
c3p = cel?||T — IL[|2||TL, |2

¢33 = o, + 2l I — I1, 5.

Proof. Since s(k+1) = (I — L°)s(k) + Vf(z(k+ 1)) = Vf(z(k)) in (@)7 we have

lls(k +1) = ILs(k + 1),

< (= L%)s(k) + V f(x(k +1)) = V[f(x(k)) = (I = L%)s(k) + V[ (z(k + 1)) = V[ (z(k)))l|n,
< (= L2)s(k) = rs(B)|[m, + ell(I = IL)(Vf(z(k +1)) = V(2 (k)2

Lemma<@

orlls(k) — Trs(k)|

fi are l;-smooth _
< orlls(k) — IL.s(k)||m, + cl||[I — IL||2]|z(k + 1) — 2(k)|2. (3.20)

m, + el = L2V f(2(k + 1)) = Vf(2(F))]2

Since xz(k + 1) = (I — L)x(k) — es(k) in (@), we next bound ||z(k+ 1) — z(k)||2 as follows:

d|[I =1L |j2||x(k + 1) — z(k)| 2
U=EIO=T DT XL o) — La(k) — es(k) — (I — L)ILa(k) + Iz (k)| 2
< I =y |lo|| = L(z(k) — (k)2 + cel||I — L [|2]|s(k) |2

< AU =T |2/ LIz x (k) — T (k) n, + cell|T = T [|2]|s(k) - (3.21)

The lemma is proved by substituting ||s(k)||2 from Lemma 3.3 into () and then into () (Note
that Assumption El] is needed to apply Lemma @ and Assumption @ to apply Lemma El]) O

The last lemma below is for step 3.

Lemma 3.7 Let C > 0 be a nonnegative matriz, v > 0 a positive vector, and A > 0 a

positive real number. If Cv < v, then p(C) < \.

Proof. Write v := [vy ---v,] T and let D := diag(vy, ..., v,). Since v > 0, D! exists and define
the similarity transformation C = D~'CD. Then

Cl=D'CD1=D"'Cv< D '"\v=AD"1v=\L.

This means that every row sum of C' is smaller than ), i.e. ||Clloc < A. Since the spectral radius of

every nonnegative matrix is upper bounded by its infinite norm, p(C) < ||C||oe < A. Therefore we
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conclude that p(C) = p(C) < A. O
Now we are ready to prove Theorem @

Proof of Theorem @: Suppose that Assumptions @ and @ hold. First, we construct by

Lemma @ two special norms || - ||m, and || - ||, with constants oy, 0, € (0, 1), respectively.

Second, according to Lemmas @«@, ife < —4— (Iin (@)) then for all k£ > 0,

Im,]m

|2(k +1) = Tk + 1) ||, 2(k) — (k)|
[Tz (k+1) — £*1]|2 <O | |z (k) — £ 1|2
|s(k 4+ 1) = Is(k + 1)||m, |s(k) — 1L s(k)]lm,

where the nonnegative matrix C' is as follows (¢ in (), oy in ()7 o, in (), m and [ in

(B.9)):

o1+ el |, — 0, [|TL |12 cel |1, — Iy, [T [z ez + ¢e|[TL, — 0,
C= celnm 7, (1 —emn/ m) ce||IL;||2
AU =T 2| L2 + el T = T[Tz cslP [T =L |2 ]2 o + c?el|l] =TI

Tt is left to find a bound on € such that p(C') < 1. According to Lemma @, it suffices to find a

positive vector v = [v1 v 3] such that Cv < v. This inequality yields

1
£ < = (= o (3.22)
AU = i, [T l2v1 + el [T = I0 ||, ([T [J2v2 + e(1 4 o)L — IL |l vs
Inm, 7, 11
vy > cnm, vl_—rf—cH 1ll2vs (3.23)
mm, m,
1— o, )vg — G| — 0,15 L
c< (1—0,)us —c | 2] Zl201 _ _ (3.24)
AP = Ty ||| [|2v1 4 P 1 = I [|2 1L [l2v2 + 2L — 1Ly [|ovs
Since € > 0, the numerator on the right of () must be positive, which yields
(1 — O'T)U3
S @I
This inequality may be satisfied by setting
v3 = AT — 1L, ||2||L|2 > 0 (3.25)
1- T
v=—2"x0. (3.26)

2
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Substituting vy, v into () yields

o clnm (1 — o) + 23| W |o || T — IL [[2[| L2
QmT(lTﬂ'T

V2

which may be satisfied by setting

clnm m.(1 — o) + 23| ||2|| T — IL:||2|| L |2 >0

m7rl—r T

(3.27)

Vo =

Thus we have found v = [v; vz v3]T > 0 such that if e satisfies () and (), where vy, v2,v3

are in (M), (B_Q?l), (M), then Cv < v, i.e. p(C) < 1.

Therefore, if € > 0 is sufficiently small, specifically

_ . 1
E<E = mln{mﬁh%} (3.28)
s

where 1, 72 are the right-hand sides of ()7 () respectively, then

(k) = (k) |,
|ITLx(k) — 1|2 | — 0 as k — oo.
l[s(k) = Iys(k) ||,

This implies that limg_, o z(k) = £*1, i.e. SOA solves the optimization problem. |

Remark 3.4 (Convergence Speed) In the above proof of Theorem @, if the parameter € € (0,¢)
with € in ), then SOA converges to the optimal solution £ of the global cost function. The
speed of convergence is governed by the spectrum radius of the 3 x 3 matriz C, i.e. p(C). We refer
to p(C) as the convergence factor of SOA; that is, SOA converges linearly at the rate of O(p(C)F).
Note that p(C) < 1 is equivalent to achieving optimization; and the value of p(C) depends on a
number of factors related to certain norms, parameter e, graph topology, and condition number of

cost functions. We will demonstrate this latter point in Section @ using simulation examples.

3.4 Distributed Resource Allocation

In this section we introduce a widely studied distributed constrained optimization problem, and
show that it is dual with the optimization problem we have formulated and solved. Hence the
distributed algorithm SOA may be adapted as a solution here as well.

Consider a network of n (> 1) agents that cooperatively allocate their local resources to meet
a global demand. Each agent i (€ [1,n]) has a state variable z; € R, representing the amount of

resource agent ¢ needs to allocate, and has a local cost function g; : R — R. Since it is typical in
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practice that resource is bounded, each x; satisfies z; € [z;,%;]. Let D; be the resource demand
received by agent i; then D := Z?zl D, is the total demand of resource that the network must
allocate. The goal of distributed resource allocation is that the agents cooperatively solves the

following problem:
min_ Y " gi(x;) (3.29)
subject to (Vi € [1,n])z; € [z;,7:] & Z:m =D

Let G(&) := Y"1, gi(&) be the global cost function, where & := [¢; -+ &,]T € R™. We shall restrict
our attention to the case where G has a unique optimal solution ¢* = [¢f ---£]T. To ensure this,
we again need Assumption @ (on g;); and in addition, due to boundedness of states x;, we also

need the following assumption.
Assumption 3.3 The total amount D of resource satisfies D € [y i | &, > i) Ti-

Denote the optimal value of the global cost function G by G* = G(£*).

Resource Allocation Problem:
Consider a network of n agents interconnected through a digraph G. Suppose that Assump-

tions @ (on g;), @, and @ hold and ¢* = [¢7---&]T is the (unique) optimal solution to the

n

constrained optimization problem in () Design a distributed algorithm such that
(Vi € [1,n])(Vz;(0) € R) klim x; (k) =&
—00

In the following, we consider the dual problem of () and transform it to the form of the
optimization problem (@) Then the distributed algorithm SOA that solves the optimization
problem can be adapted to solve the resource allocation problem.

Define the Lagrange function of () as

A=Y giw) +AQ_zi— D) (3.30)
i=1 1=1

*4

where z := [z1---x,)' € [zy,Z1] X -+ X [z,,,Ts] =: X and A € R is the Lagrange multiplier. Then
the dual problem of ﬂ

I??n%‘é?ﬁc]“(m A). (3.31)
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Note that

gclngy L(z,\) = xlgf{ Zl(gz(xl) + Ax;) — AD

NE

inf  (g;(x;) + Az;) — AD

i€z, ,T;]

«
I
—

— sup  —(gi(w;) + Azy) — AD

1 zie[ﬁiaii]

-

7

—9; (=A) = AD

|

Il
_

2

where g7(\) = sup,,cp. z,](Azi — gi(xi)) is the conjugate function of g;(z;). Since g; is strongly
convex and has a Lipschitz-continuous gradient (Assumption El]), g5 () exists (i.e. the supremum

is attainable) and also enjoys strong convexity and Lipschitz-continuous gradient. Now let
f,()\) = g:(—)\) + AD;. (332)

This f; satisfies Assumption @ Then the dual problem () is transformed into:

n n

max i:1(_fi()‘)) = —min i:1(fi(>‘))'

The latter without the minus sign is in the same form as (@)

n

min Z fi\) (3.33)

Remark 3.5 Owing to Assumptions @ (on g;) and @, strong duality holds between ) and

). This means that the optimal solutions [\*---X*]T of ) and [+ &7 of ) are

related by
(Vi € [1,n])gi(&) + gi (A7) = =&A"

and the optimal values F* of ) and G* of ) are related by F* = —G*. Hence an optimal

solution to ) provides an optimal solution to )
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To solve () by SOA, we need to compute the gradient of f;. From () we derive
Vfi(A) = =Vg (=A) + D;.

Since the gradient of the conjugate function g; is given by Vg (\) = argmax, ¢, z.{Azi —gi(z:)},

we derive
Vfi(A) = —argmin, i, 5 {Azi + gi(zi)} + D;
V7lgi(A\) + D, ifz; <Vlg(\) <
=Sz, + D, if V7'gi(\) < z
Ifz+Dz, if Vflgl()\) > T;

Substituting V f;(X) into (@), we obtain from SOA the following (specialized) algorithm to solve

(8.33):

Ai(k 4+ 1) = X(k) + > ai(A\i(k) = Xi(k)) — esi(k) (3.34)
JEN;
zi(k+1)= argminmie[&@]{)\i(k + Da; + gi(zi)} (3.35)
silk+1) = (1= " az)sih) + Y aiys;(k) + (wi(k) = wilk + 1)) (3.36)
JEN? JEN;

The parameter ¢ is a positive real number. We call this algorithm Surplus-based Resource Allocation
Algorithm (SRAA).

Following the initialization of SOA, X;(0) can be arbitrary real numbers, whereas

z;(0) = argming, ¢, z,1{Ai(0)zi + gi(zi)}

In fact, the initialization of SRAA can be simpler: namely z;(0) = 0 and s;(0) = D;. The updates
with or without computing argmin, ¢, z1{i(0)zi+g;(x;)} become the same after the first iteration
due to the special form of V f;(A). In any case, note from () that 17 (x(k) + s(k)) is a constant.
Hence if s(k) — 0 then 17x(k) — 17 (x(0) + s(0)) = D. That is, z;(k) jointly satisfy the total
demanded resource in an asymptotic fashion.

The main result of this section is the following.

Theorem 3.2 Suppose that Assumptions @ (on g;), @, and @ hold. If the parameter

e > 0 is sufficiently small, then SRAA solves the resource allocation problem.
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Proof. Let Assumptions @ (on g;), @, @ hold, and assume that ¢ > 0 is sufficiently small.
Then it follows from strong duality and Theorem @ that ||[ILA(k) — A*1|l2 — 0. This implies
7 A(k) — A*, and hence F(m A(k)) — F*. Note again by strong duality that F* = —G* =
—L(&*, \) for every A € R, where L(-,-) is the Lagrangian function given in () Consequently

F(m Mk)) = F* = L(",m A(k)) — igﬁcL(wsz)\(k))

= L(&",m Mk)) — L(z(k), m A(k))
> VL(w(k),m Ak) (" — (k) + %HS* — (k)3

> Flla(k) = €71

The first inequality above is due to m-strong convexity of G following Assumption El] (on g¢;);
and the second inequality uses the first-order necessary condition for constrained minimization
problems. By the above inequality and the fact that F(m," A(k)) — F*, we derive (k) — £*. This

proves that the resource allocation problem is solved. O

3.5 Simulation Examples

In this section we illustrate by simulation the convergence properties of SOA for the optimization

problem, as well as SRAA for the resource allocation problem.

Example 3.4 We demonstrate the influences of graph topologies and condition number of
cost functions on the convergence speed of SOA. First, we investigate the influence of graph
topologies, especially for different densities of edges. Consider a digraph of n = 100 nodes; we
choose uniformly at random 10%, 30%, and 50% of directed edges from all possible n(n — 1)
edges. We take only those digraphs that are strongly connected, and set uniform weights ﬁ.

For cost functions we consider
fi(§) = ai§2 + b;&+¢; +d;log(l + e_f)

where a;, b;, c;,d; are chosen uniformly at random from the open interval (0,1). Such f; is
(2a; + 9)-strongly convex (6 > 0 is a small number) and (2a; + 0.25d;)-smooth. Then the
global cost function F(£) =Y fi(&) is also strongly conver and smooth, and let £* be the
(unique) optimal solution.

Fig. @ displays the curves of the error L||z(k) — £*1|| with respect to the above chosen
three different densities of edges; each plotted point is the mean value of the error over 100

random digraphs of the respective densities, and each component of the initial state vector
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x(0) is chosen uniformly at random from the closed interval [—10,10]. It is observed that
the denser the digraph, the faster SOA converges to the optimal solution £*.
Next, we investigate the influence of the condition number of cost functions on the conver-

gence speed of SOA. For this, we consider cost functions
£i(€) = a€® + b€ + ¢; + dlog(1 +e7¢)

where b;, ¢; are again chosen uniformly at random from the open interval (0,1), but a,d are
the same for all f;. Thus f;, as well as the global cost function F', all have the condition
number ) = % (6 > 0 is a small number). Fiz § = a = 0.01 and choose three values
0.72,7.92,79.92 for d; then the condition numbers Q are 10,100, 1000.

To reduce the influence of digraph topology, we apply SOA for different cost functions on
the same digraphs of 100 nodes and 10% of directed edges chosen uniformly at random.
Fig. @ displays the curves of the error L||z(k) — &*1||2 with respect to three different
condition numbers of the cost functions; each plotted point is the mean value of the error
over 100 random digraphs. It is observed that the smaller the condition number (i.e. better

conditioned), the faster SOA converges to the optimal solution £*.

0.6

0.5 i

80 100 120 140 160 180 ) 200
Time k

Figure 3.5: Convergence speed with respect to 10% (blue o), 30% (red x), and 50% (black *) of
directed edges
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350

| | J
400 450 500

Figure 3.6: Convergence speed with respect to condition numbers of cost functions: 10 (black), 100
(red), and 1000 (blue). Vertical axis is in logarithmic scale for clear comparison.

Table 3.1: Generator parameters of IEEE 14-bus test system

Generator | a; (8/MW?2h) | B; ($/MWHh) | v ($/h) | [z, 7] (MW)
1 (bus 1) 0.04 2.0 12 [0, 80]
2 (bus 2) 0.03 3.0 20 [0, 90]
3 (bus 3) 0.035 4.0 15 [0, 70]
4 (bus 6) 0.03 4.0 23 [0, 70]
5 (bus 8) 0.04 2.5 16 [0, 80]

Example 3.5 In this example, we apply SRAA to solve a distributed resource allocation

problem in power networks. Specifically, consider the IEEE 14-bus test system as displayed
in Fig. @; the power demands at individual buses are (unit: MW)

0, 21.7, 66.2, 47.8, 7.6, 11.2, 0, 0, 29.5, 9, 3.5, 6.1, 13.5, 14.9.

Thus the total demand is D = 231. To satisfy the demand, there are 5 generators at buses

1,2,3,6,8; the associated cost functions are quadratic: g;(x;) = q;x? + Bix; + i, where x; is

the power (MW) generated by generator i. These quadratic functions satisfy Assumption @
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Figure 3.7: IEEE 14-bus test system with 5 generators (denoted by circles) and 14 demands (im-
posed at Buses)

The parameters a;, B;,v; and the ranges [x;,T;] of x; are given in Table @

Since the total demand D € [25:1 L-,Zf:l Z;) = [0,390], Assumption @ holds. The
communication digraph among the 5 generators is displayed in Fig. @; this digraph is
strongly connected, and hence Assumption holds. Thus the resource allocation problem
(aka. economic dispatching problem in this context) is to solve ming, . ,.ecr 2?21 gi(x;)
such that each x; is in the respective range and the total generated power Z?:l x; meets the
total demand 231 MW.

We apply SRAA to solve this problem. Let the weights a;; = ﬁ, the parameter ¢ = 0.01,
the initial \;(0) drawn uniformly at random from [—10,10], and the inital x;(0) = 0. Finally

to initialize s;(0), suppose that each generator is in charge of a certain area (areas are
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—_
o
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N(k),i=1,2,3,4,5
o

-10 | | | | | | I I I
0
Time k

50

Time k

Figure 3.8: IEEE 14-bus test system: convergence of \; and s;

displayed as dotted boxes in Fig. @), thereby naturally:

55(0) = D5 =478 +0+0+29.5+ 9+ 14.9 = 101.2.
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Figure 3.9: IEEE 14-bus test system: convergence of x; (i = 1,...,5) without range violation and

the total generated power meeting the total demand

The simulation results are displayed in Figs. @ and @ Observe that surplus variables

s;(k) diminish from the initialized values (demands) to zero, while states x;(k) converge from

zero initial values to the optimal solution of the resource allocation problem. Moreover, all

x;(k) stay in their respective ranges, and the sum of x;(k), namely the total generated power

converges (rapidly and smoothly) to the required total demand 231 MW.
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3.6 Notes and References

The surplus-based optimization algorithm (SOA) is originated in

¢ R. Xin and U. Khan, A linear algorithm for optimization over directed graphs with geometric
convergence, IEEE Control Systems Letters, vol.2, pp.315-320, 2018

o S. Pu, W. Shi, J. Xu, and A. Nedic, Push-pull gradient methods for distributed optimization
in networks, IEEE Transactions on Automatic Control, vol.66, pp.1-16, 2021

Extension to time-varying digraphs is reported in

« F. Saadatniaki, R. Xin, and U. Khan, Decentralized optimization over time-varying directed
graphs with row and column stochastic matrices, IEEE Transactions on Automatic Control,
vol.65, pp.4769-4780, 2020

The Surplus-based Resource Allocation Algorithm (SRAA) is from

o J. Zhang, K. You, and K. Cai, Distributed conjugate gradient tracking for resource allocation

in unbalanced networks, IEEE Transactions on Signal Processing, vol.68, pp.2186-2198, 2020
A variant that addresses time-varying networks is in

e Y. Xu, T. Han, K. Cai, Z. Lin, G. Yan, and M. Fu, A distributed algorithm for resource
allocation over dynamic digraphs, IEEE Transactions on Signal Processing, vol.65, pp.2600—
2612, 2017

The proof techniques for Lemmas @ and @ are from
¢ R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, 2013

The properties of smooth and strongly convex functions used in Section @, dual functions
and strong duality in Section @, and the material on convex optimization in Appendix below are

standard, and can be found in textbooks e.g.
¢ Y. Nesterov, Lecture on Convex Optimization, 2nd ed., Springer, 2018

« S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004

3.7 Appendix: Convex Optimization

In this appendix we present a brief introduction of basic convexity definitions, as well as a useful

result that was used in proving the convergence of SOA in Section @
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Throughout this appendix we consider a continuously differentiable function F' : R — R. We

say that F'is convex if
(V&1, 62 € R)F(&2) > F(&) + VE(&)(& — &); (3.37)
F is strictly convex if

(V61,6 € R)Ey # & = F(&§2) > F(§1) + VE(§)(§2 — &1); (3.38)

and (recall that) F' is m-strongly convezx for some m > 0 if

(V61,6 € RIF(&) = F(&) + VF(E)(& — &) + 116 — &l

In this appendix, || - || denotes an arbitrary vector norm. By definition the relation among these

three convexity concepts is: strong convexity = strict convexity = convexity.
Lemma 3.8 Consider an optimization problem

min F(£). (3.39)

(i) If F is conver and VF(£*) = 0, then &£ is a global optimal solution.
(ii) If F is strictly convex and VF(&*) = 0, then £* is the unique global optimal solution.

(iii) If F is strongly convex, then the global optimal solution £* exists and is unique.

Proof. For (i), it follows from the definition of convexity () that for an arbitrary £ € R we

have
F(§) > F(E )+ VF(E)(E-€) =F(E).

This proves that £* is a global optimal solution of ()

For (ii), since strict convexity implies convexity, we know from (i) that £* is a global optimal
solution. Suppose that 5(7é &*) is another global optimal solution, i.e. F(é) = F(£*). By the
definition of strict convexity (), however

F(€) > F(&) + VF(£")(E~€) = F(&).

Hence §~ cannot be a global solution, and the uniqueness of £* ensues.
For (iii), let £ € R and consider the set S := {¢ € R | f(¢) < f(€)}. Note that the optimization
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problem () is equivalent to the following:

min F() (3.40)

Since F' is strongly convex with a parameter m > 0, for an arbitrary £ € S we have
F(€) 2 F(§) 2 F(§) + VF()(§ — &) + %Ilﬁ —£J?
=>2lg €12 < VFE)E - ¢)
_ 92 _
=€~ &l < —IVEEI-

Thus the set S is a closed and bounded interval, i.e. a compact set. Moreover since F’ is continuously

differentiable (thus continuous), it follows from the Weierstrass extreme value theorem that an

optimal solution £* of () (and of ()) exists.
Being an optimal solution of ()7 &* satisfies VF(£*) = 0. Since strong convexity implies
strict convexity, we derive from (ii) that £* is the unique global optimal solution. O

Recall that a convex function F' : R — R is {-smooth for some [ > 0 if

(V€1,& € R)|[VE(&1) — VF(&)| < 1|1 — &l

Lemma 3.9 The following are equivalent:

F is l-smooth

(V61,6 € RO < F(&) ~ F(&) - VEE)(E ~6) < L~ 6l (341
(V61,6 € RY(VE(E) - V@) - &) 2 [IVFE) - VRE@I?  (3.42)

Proof. Let &1,& € R. We will prove: l-smoothness = () = () = [-smoothness.
First assume that F' is [-smooth. To prove (), note that the left inequality is directly from
the definition of convexity () To see the inequality on the right, note that

F(&) — F(&) - VF(E) (6 — &) = / (VF(€ +7(62 — &) — V() (62 — 2)dr.

By Cauchy-Schwarz inequality and the definition of l-smoothness,

1
F(&) = F(§1) = VE(&) (& — &) < /0 I7||€2 — & ||Pdr = %||€2 - &>
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Next assume that () holds. To prove ()7 let & € R and define ¢(§) := F(§) — VF(&0)¢.

Thus ¢(+) is also I-smooth and its optimal solution is £* = &. Hence

o = ! ,
o€ = minolen = min (9(6) + VolG)(E - @) + gl - Gl?).

Again by Cauchy-Schwarz inequality we obtain
l 1
o) < min (o(&x) ~ Vo + 57 ) = olex) - g IVo(En) I

Substituting ¢(&2) = F (&) — VF(£2)& and Vo (&) = VF (&) — VF (&) into the above inequality
yields

F(&) + VE@)(E - &) + 5| VF(&) - VE@)I? < F(&)

Adding two copies of the above inequality and exchanging &1, & lead to ()

Finally assume that () holds. Applying Cauchy-Schwarz inequality yields ||[VF(&1)—VF(&)] <
I||€&1 — &2||, namely F is l-smooth. O

When F' is both m-strongly convex and l-smooth (thus necessarily m < ), the following result

was used in the proof of Lemma @ (in part to show the convergence of SOA in Section @)

Lemma 3.10 If F' is m-strongly convex and l-smooth, then

(V€1,62 € R)(VF(&1) — VF(&2)) (& — &) < mLingl — &2+ mLHHVF(fl) — VF(&)|?
(3.43)

Proof. Suppose that F' is m-strongly convex and I-smooth. Let ¢(z) := F(z) — 2m/|z||>. Then
Vé(x) = VF(x) — mz and it is verified that ¢(z) is convex. Moreover, for arbitrary &;,& € R,

since

B(62) = F(&2) — gmlall?
(5a) ! , 1 )
< F(&)+VEE) (& — &)+ 5“51 =&l - §m||§2H
| —
= 6(&1) + Vo(&) (& — &) + — &1 - &l

it follows again from () that ¢(z) is (I — m)-smooth. Note that m <[ holds always. If m =1
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then () holds. If m < I, then by () we derive
(Vo(&r) ~ V() (6 ~ &) > 7—— V(&) ~ V(&) P

Substituting V¢(-) into the above inequality yields () a



Part 111
Spanning Tree Digraphs:

Consensus and Synchronization

This part introduces distributed consensus and synchronization over digraphs. The necessary graph-
ical condition for solving these two problems is that digraphs contain a spanning tree. The type of
Laplacian matrices involved in these two problems is again the standard Laplacian matrices. For

agent dynamics, continuous-time linear time-invariant systems are considered.
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CHAPTER 4

Consensus

In this chapter we introduce the problem of distributed consensus. This problem can be viewed as
a generalized version of averaging in Chapter E, in that as long as the networked agents reach an
agreement, the agreed value can be arbitrary and need not be the initial average.

Consensus has been studied in a variety of disciplines, including social behaviors, political sci-
ence, biology, computer animation, and robotics. For example, reaching consensus among a group
of people is one of the central investigation in social/political opinion dynamics. In natural/ani-
mated group behaviors such as bird flocking and fish schooling, consensus on heading angles and
velocities among group members is key. As a final example, rendezvous of a team of mobile robots
means that these robots reach consensus on their meeting locations.

Modeling the interacting agents by digraphs, we show that a necessary graphical condition to
achieve consensus is that the digraph contains a spanning tree, namely there exists (at least) one
agent that can reach all the other agents. This is intuitively evident, as for all agents to reach
consensus, at least some agent’s information need to be spread across the whole network. Under

this graphical condition, we present a distributed algorithm that achieves consensus.

4.1 Problem Statement

Consider a network of n (> 1) agents. Each agent i (€ [1,n]) has a state variable z;(t) € R, where
t > 0 is a nonnegative real number and denotes the continuous time. Each agent ¢ is modeled as a

single integrator:

_ di(t)

jii (t) : dt

— wi(t) (4.1)

where u;(t) € R is a real-valued control input. For simplicity we often write (@) as & = w
(omitting the time).

For agents modeled by (@), we say that an algorithm is distributed if every agent i’s control
input u;(¢) is based only on the information received from N;.

Consensus Problem:
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Consider a network of n agents (Ell) interconnected through a digraph G. Design a distributed
algorithm such that

(Vi € [1,n])(Vz;(0) € R)(3c € R) tlgglo x;(t) = c.

We say that ¢ is the consensus value. As we shall see, this ¢ depends on the initial states z;(0) as

well as the graph topology.

Figure 4.1: Hlustrating example of consensus problem with five agents

Example 4.1 We provide an example to illustrate the consensus problem. As displayed in
Fig. @, five agents are interconnected through a digraph. The neighbor sets of the agents
are N1 = {2}, No = {1}, N3 = {1,2,5}, Ny ={1,3,5}, and N5 = {2,4}.

Suppose that the initial states of the agents are x1(0) = 1, 22(0) = 2, 23(0) = 3, 24(0) = 4,
x5(0) = 5. The consensus problem is to design a distributed algorithm such that each agent’s
state asymptotically converges to the same value. This consensus value by no means needs to
be the initial average (which is 3); hence consensus problem includes averaging as a special

case.

A necessary graphical condition for solving the consensus problem is given below.

Proposition 4.1 Suppose that there exists a distributed algorithm that solves the consensus

problem. Then the digraph contains a spanning tree.

Proof. The proof is by contradiction. Suppose that the digraph G does not contain a spanning
tree. Then it follows from Theorem EI that G has at least two (distinct) closed strong components
(say) Gi1,Ga. In this case, consider an initial condition such that the agents in G; have initial state

c1 € R, those in Gy have ¢ € R, and ¢; # co. Since G; and Go are closed, information cannot be
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communicated from one to the other. Consequently, there exists no distributed algorithm that can
solve the consensus problem. O

Owing to Proposition @, we shall henceforth assume that the digraph contains a spanning tree.

Assumption 4.1 The digraph G modeling the interconnection structure of the networked agents

contains a spanning tree.

4.2 Distributed Algorithm

Example 4.2 Consider again FExample m To achieve consensus, a natural idea s that

each agent ‘pursuits’ the state values received from neighbors. Namely, for i € [1,5]

i?z' = Z (ZL‘]‘ — .Tz)

JEN;

Concretely, based on the neighbor sets of the agents (see Fig. @)

&1 = (22 — 11)

Ty = (z1 — T2)

&3 = (z1 — z3) + (22 — z3) + (z5 — x3)
&4 = (21 — 24) + (23 — T4) + (T5 — 24)
&5 = (z2 — T5) + (T4 — T5)

Write the above in vector form:

T -1 1 0 0 0 T1
To 1 -1 0 0 0 To
3| = | 1 1 -3 0 1 T3
Ty 1 0 1 -3 1 Ty
T5 0O 1 0 1 =2 |zs

Observe that the matriz above has zero row sums, and is indeed the minus of the standard
Laplacian matriz (i.e. —L) with weights a;; =1 for all existing edges (vj,v;).

With the initial condition in Exzample @ (i.e. z;(0)=1i fori=1,...,5), Fig. displays
that all states converge to the same value, namely consensus. Note that the consensus value

1.5 is different from the initial average 3.
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Figure 4.2: Success of achieving consensus

Given the effectiveness of ‘pursuing neighbors’ states’, we describe the following distributed

algorithm that updates the state x;(¢) such that the agents achieve consensus.

Consensus Algorithm (CA):
Every agent ¢ has a state variable z;(¢) whose initial value is an arbitrary real number. At time

t > 0, every agent i updates its state x;(t) as follows:

i’:i = Z aij(xj — $l) (42)

JEN;

Here the updating weights a;; > 0 are the weights of the existing edges (i.e. the entries of the
adjacency matrix). For this update, agent ¢ needs to receive the state x;(t) or relative state
x;(t) — z;(t) from each neighbor j € N;.

In words, (@) updates each state x;(t) towards the direction of pursuing a weighted average

of the relative state differences with the neighbors. Regarding the updating weights a;;, there are
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different choices. A simple valid choice is a;; = 1 whenever j € N; (as in Example @) Let
x := [x1---2,]" be the aggregated state of the networked agents. Then the n equations (@)

become

&= —Luz. (4.3)

4.3 Convergence Result

The following is the main result of this section.

Theorem 4.1 Suppose that Assumption @ holds. Then CA solves the consensus problem.

To prove Theorem @, we will analyze the locations of eigenvalues of the matrix —L in (@)

For this, the following tool is convenient.

Theorem 4.2 (Gershgorin Discs Theorem) Consider an arbitrary real square matriz

M = (m;j) € R"*", and for every i € [1,n] let

Di = {zeC‘|z—mi¢|§Z|mU|} (4.4)
J#i
be the disc centered at the diagonal entry m;; with radius equal to the sum of absolute values
of ith row’s off-diagonal entries. Then the spectrum o(M), i.e. the set of n eigenvalues of
M, satisfies

o(M) < | JDs.

i

Theorem @ provides an easy estimation of the locations of eigenvalues; namely every eigenvalue
lies in the union of the Gershgorin discs in (Q) This estimation is particularly useful for the
spectrum of standard Laplacian matrices owing to the way they are defined (i.e. degree matrix
minus adjacency matrix).

In addition to the Gershgorin Discs Theorem, we also need the following facts on solution and
stability of linear ordinary differential equations. Let A € R™*™. Then the matriz exponential e?

is as follows:

1 1 1
A 2 3 _§ k
—0
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Lemma 4.1 Consider an ordinary differential equation & = Ax with an initial condition
z(0) and A € R™*™.
« The solution to & = Az is x(t) = e**x(0)

o If all the eigenvalues of A have negative real parts, then lim;_, ., et = 0.

Proof. First, it is a basic fact from the theory of differential equations that & = Az with an initial

condition x(0) has a unique solution. Thus we only need to verify that x(t) = e**x(0) satisfies

i = Az with 2(0). Substituting z(t) = e4*x(0) into & = Az yields:
. d o
&= e x(0)
= i([ + At + l(At)2 + l(Azf)3 +---)z(0)
T 2! 3! !
= A+ A%+ %A%Q + - )x(0)
1
= A(I + At + E(At)Q +-)z(0)
= Ae'2(0)
= Ax.

This verifies that x(t) = e*z(0) is the unique solution of & = Ax with the initial condition z(0).

Second, let J be the Jordan canonical form of the matrix A, i.e.

A=vJjv—!

where y;, z; (i € [1,n]) are respectively the (generalized) right and left eigenvectors of A, and J;
(i € [1,1]) are the Jordan blocks of the [ distinct eigenvalues Aq, ..., A\; of A. These Jordan blocks

J; have the following special form:
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where x € {0,1}. Owing to the above special form, J; may be written as

where N; is a nilpotent matrix whose eigenvalues are all zeros. As a result, there exists a positive

integer k; such that N = 0. Now let us consider (t):

z(t) = ez(0)

_ eV.IV_lt:C(O)

1 1
=(I+VJV '+ 5(VJV*%)2 + g(VJV*lzf)3 + - )x(0)

1 1. .
=WVt vVl + 5VJ2V*17:2 + EVJJV’lt‘D’ + -+ )z(0)

1 1 .
=V({I+Jt+ §J2t2 + §J3t3 + )V z(0)

= VetV 12(0).

Hence the asymptotical behavior of x(t) depends on that of e’t. According to the special forms of

the Jordan canonical form J and the component Jordan blocks J;, we derive

Jt _

e’1t 0
0 elit
_e(>\1]+N1)t O
O PN e(/\lI+Nl)t
eklteNlt 0
0 .. e/\lteNlt

[MU(T + Nyt + SN2 +---)

0

NI+ Nyt + SN2+ -+

'eklt([+N1t+%N12t2+..._|_kL1!N{€1tk1) 0

Mt (I + Nyt + %ngtQ N k%!NlI:ltkl)
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Since all the eigenvalues A1, ..., \; have negative real parts, we have
(Vi € [1,1))eNt =0

exponentially fast as t — co. Hence

1

1
(Vi € [1,1))eN (T + Nit + 5]\712,? o

NFitky 0
as t — oo. This means that

lim e’t = 0.
t—o0

Therefore

lim z(t) = lim e*z(0) = lim Ve’'V~12(0) = 0.

t—o0 t—o0 t—o00

([l
Now we are ready to prove Theorem El]
Proof of Theorem @: Suppose that Assumption @ holds. Since L in (@) is a standard

Laplacian matrix, by definition L has an eigenvalue 0 with an associated eigenvector 1 (the vector
of all ones). Moreover, it follows from Theorem @ and Assumption @ that the eigenvalue 0 is
simple. For later use let w be a left eigenvector of L associated with the eigenvalue 0 (i.e. w' L = 0),

which is normalized such that w1 = 1.

Now we invoke the Gershgorin Discs Theorem (Theorem @) to estimate the locations of the
rest n— 1 nonzero eigenvalues of L. Since L = D— A, A > 0, and D = diag(A1), by Theorem @ all
the eigenvalues of L lie on the right-hand side of the complex plane including the origin. We have
shown that the eigenvalue 0 of L is simple; hence the rest n — 1 nonzero eigenvalues have positive
real parts. It follows that —L has a simple eigenvalue 0 and all the other eigenvalues have negative

real parts.

Write —L in Jordan canonical form as

’LUT
N
0 0] |z

— -1 _
L=VIVTI=1 oy lo J,] :
ZT

where y;,2; € C" (i € [2,n]) are respectively the (generalized) right and left eigenvectors of —L;

and J' € C=Dx(=1 is 5 block diagonal matrix consisting of the Jordan blocks corresponding
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to those nonzero eigenvalues with negative real parts. It follows from Lemma @ that the matrix

exponential e is

1
eth — eVJV t_ VeJtV71

1 0
=V |f) eJ’t

T

)

V*l

— 1w as t — oo.

Therefore based on the CA in (@)

z(t) = e 2(0)

— 1w'z(0), ast— oo,
That is,
(Vi € [1,n]) lim z;(t) = w' z(0)
t—o0
i.e. CA solves the consensus problem. O

Remark 4.1 (Convergence Speed) Theorem B asserts that as long as the digraph contains a span-
ning tree, CA described as & = —Lx in @) converges to the one-dimensional kernel spanned by
the vector 1 (aka. consensus vector). The speed of convergence is governed by the non-zero eigen-
value with the largest real part (or the smallest absolute real part since all nonzero eigenvalues have
negative real parts) of the standard Laplacian matriz L. Denote the largest real part by Re(Aa(L)),
and refer to Re(A2(L)) as the convergence factor of CA; that is, CA converges exponentially with
the exponent —Re(A2(L)). The value of Re(A2(L)) depends on the topology of digraph G, which we

will illustrate in Section m using simulation examples.

As stated in the proof of Theorem @, the consensus value is w ' x(0), where w is the normalized
left eigenvector of L associated with the eigenvalue 0 and x(0) is the initial condition. Thus the
consensus value is a weighted average of the agents’ initial states. The weight distribution across
the network is determined by the digraph topology, and reflects different roles of individual nodes.
The following proposition provides a precise relation between the weight vector w and the graph

topology.

Proposition 4.2 Suppose that Assumption @ holds, and let w be the normalized left eigen-
vector of L associated with the eigenvalue 0 satisfying w'1 = 1. Then the following state-

ments hold.
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(i) w >0, and w; > 0 if and only if node i is a root (i.e. only roots are weighted).
(ii) If digraph G is strongly connected, then w > 0.

(iii) If digraph G is strongly connected and weight-balanced, then w = %1 (namely averaging

is achieved).

Proof. We prove these statements in the order (iii), (ii), and (i). First for (iii), since G is strongly
connected and weight-balanced, every column of L also sums up to zero. Namely 1T L = 0, which
means that 1 is (also) a left eigenvector of L associated with eigenvalue 0. Hence the normalized

left eigenvector is w = %1.

Next for (ii), we follow the proof of Lemma @ Since G is strongly connected, by Theorem B
the nonnegative adjacency matrix A of G is irreducible and the degree matrix D is invertible. As a
result, the Laplacian matrix L = D — A can be written as L = D(I — D~ A). Let A:= D~'A and
L:=D 'L =171—A. Then A is row-stochastic and has zero entries at the same locations as A does;

the latter means that A is irreducible too. By the Perron-Frobenius Theorem (Theorem @), the

spectral radius 1 is a simple eigenvalue of A and has a positive left eigenvector w, i.e. w! A=w".

Normalize w if necessary to satisfy w1 = 1, which does not change its positivity. Since

w'L=w'D(I - A)
=Dw' —Dw'A
=0

we conclude that w > 0 is a left eigenvector of L associated with eigenvalue 0.

Finally for (i), we follow the proof of Theorem @ Since G contains a spanning tree, by
Theorem Ell the set of roots V. induces a subdigraph G,. which is the unique closed strong component
of G. Consider without loss of generality the case that the nodes are ordered according to the

partition V,. U (V \ V,.). Then the nonnegative adjacency matrix A and degree matrix D have the

D
., D=|"" 0
0 D

Define an invertible D such that D := D if V, contains more than one node, and

- 1
D = 0
lO Dg]

following forms:

A0
Ay Az

A:




4.3. Convergence Result 115

if V, contains exactly one node. Thus D is invertible. Use D! to define

A, 0
Ay A

A:=D1'A= L:=D'L=1-A.

b

Then A is row-stochastic. Consider an artificial discrete-time system #(k+1) = Az (k), and partition

the vector #(k) according to the sizes of A; and As, respectively. Thus we derive

i‘l(k‘ + 1) = Al.fl(k) (45)
(4.6)

IS
)
ol
+
—_
S~—
Il
e
o
S
i,
—
=
+
N
@
=
)
—
\._/

For (@), since A; corresponds to G, which is strongly connected, similar to (i) above A; has a
simple eigenvalue 1 with a positive normalized left eigenvector w; > 0 and limy_, o fl’f = 1wy . For
(@), since p(Az) < 1 (in the proof of Theorem @), taking the limit as k — oo yields
lim Zo(k) = (I — A3) 714, Jim (k)
— 00

k— o0

= (I — A3)"* Ay1w] #,(0).

Note that (I — /~13)_1/~121 =1 because Ay1+ A31 =1 implied by the row-stochasticity of A. Hence

lim Z(k) = lim
k—o0 k—oo

Ta(k) 1w 71(0)

jl(k)} _ [uul @1(0)] .

On the other hand

Ak 0

lim (k) = lim A*%(0) = lim N
(k) (0) X A

k—o0 k—o0 k—o0

From the above we have X = 1w and

Note that w > 0 is a nonnegative normalized left eigenvector of A associated with eigenvalue 1, and
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w; > 0 if and only if node 7 is a root. Since

w'L=w'DI - A)

=Dw' —Dw'A
=0

we conclude that w > 0 is a left eigenvector of L associated with eigenvalue 0.

4.4 Simulation Examples

0’ €Y

@ @ @ @
()J <b> <>>J

Figure 4.3: Six digraph topologies of 6 agents

Example 4.3 We consider 6 agents interconnected through digraphs of 6 different topologies
(Fig. B) Every digraph contains a spanning tree; hence by Theorem @, CA achieves
consensus on all the 6 digraphs. For simplicity consider uniform, unit weight for all edges.

Then the standard Laplacian matrices, (normalized) left eigenvectors of eigenvalue 0, and
convergence factors are as follows.
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Digraph in Fig. B(a): one root (agent 1)

0 0 0 0 0 O 1
-1 1 0 0 0 O 0
0o -1 1 0 0 O 0
L, = , Wy = , Re(Ma2(Ly)) =1.
o 1 1 0 0 "o ety
0 0O -1 1 O 0
i 0 0 0 -1 1_ _0_
Digraph in Fig. B(b) two roots (agents 1,2)
(1 -1 0 0 0 O 1]
-11 0 0 0 0 3
0 -1 0 0 O 0
Lo = , We = ., Re(Aa2(L2)) = 2.
*“lo 0o -1 1 0 o0 o (alL2))
0 0 0 -1 1 0 0
i 0 0 0 0 -1 1_ _O_
Digraph in Fig. B(c) three roots (agents 1,2,3)
(1 0 -1 0 o0 o0 1]
-1 1 0 0 0 0 3
0 -1 0 0 0 3
Ly = , wz= |3], Re(\(L3))=1.5.
“lo 0 -1 1 0 o0 "o OalLs))
0 0 0 -1 1 0 0
i 0 0 0 0 -1 1 0]
Digraph in Fig. B(d) four roots (agents 1,2,3,4)
(1 0 0 -1 0 0] [1]
-1 1 0 0 0 0 i
0 -1 1 0 0 0 i
Ly= , wa= %], Re(Ma(Ly)) =2
Tlo o -1t 1 0 of T4 bellia)
0 0 0 -1 1 0 0
i 0 0 0 0 -1 1_ _0_
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Digraph in Fig. B(@): five roots (agents 1,2,3,4,5)

1 0 0 0 -10 i

-1 1 0 0 0 0 z

0 -1 1 0 0 0 3
Ls = . ws= ||, Re(Xa(Ls))=18.
5 0 1 9 a0 7| (A2(Ls))

0 0 -1 1 0 i

|0 0 0 -1 1] 0]

1 =10 0 0 0 3
-1 1 0 0 0 0 3
0 -1 0 0 0 i
L¢ = , we= %], Re(Ma(Lg)) =2
““lo 0o -1 1 0 o0 N (Aa(Lo))
0 0 0 -1 1 0 :
0 0 0 0 -1 1 :

From the above it is observed:

o All the normalized eigenvectors w; (i € [1,6]) are nonnegative; only roots are positively
and uniformly weighted; in the particular case of Fig. B(f}, whose topology is strongly
connected and weight-balanced, average consensus is achieved. Therefore the statements

of Proposition @ are demonstrated.

o Convergence factor is topology dependent; however, it is not the case that the more
roots the larger the convergence factor; and even numbers of leaders tend to yield larger

convergence factor than odd number of leaders.

Finally as an illustration, CA is run on the 6 digraphs with the same initial condition
2(0) = [123456]"; the result is displayed in Fig. . Observe that the consensus value
changes as the number of roots increases: when only agent 1 is the root, the consensus value
is agent 1’s initial state 1; whereas when all the agents are Toots, the consensus value is the
average of all agents’ initial states, namely 3.5. Also observe that the more roots, the more
oscillatory trajectories exist; this is intuitively due to more ‘negotiation’ takes place when

more roots participate in determining the final consensus value.
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State x;(t), i =1,..
- N &~ o

—_
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Time t
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Time t
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(b)
0 500 1000 1500 2000
Time t
(f)

—_

1000 1500 2000
Time ¢

(d)

Figure 4.4: Convergence patterns (consensus values and convergence factors) of six agents. Colors
of agents 1,...,6 are sequentially blue, red, black, green, pink, and yellow
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O

Figure 4.5: Six networked agents whose interconnection digraph does not contain a spanning tree

Example 4.4 We consider again 6 agents interconnected through the digraph in Fig. @
This digraph is Fig. B(c) with one edge flipped direction: (4,5) becomes (5,4). As a result,
this digraph no longer contains a spanning tree. Hence by Theorem @, CA fails to achieve
consensus. Indeed, consider uniform, unit weight for all edges and run CA with the initial
condition x(0) = [12 3 45 6]"; the result is displayed in Fig. B Evidently consensus is not
achieved. More specifically, while agents 1,2,3 and agents 5,6 reach consensus respectively
on different values, these two groups have no path for mutual communication. Consequently
no global consensus can be reached in general. Observe also that agent 4 is equally influenced
by the above-mentioned two groups, and therefore agent 4 converges to the average of the

two distinct consensus values of the two groups.

Example 4.5 We demonstrate the influence of graph topologies on the convergence speed of
CA. Specially, we investigate the influence in terms of different densities of edges. Consider
a digraph of n. = 100 nodes; we choose uniformly at random 10%, 50%, and 90% of directed
edges from all possible n(n — 1) edges. We take only those digraphs that contain spanning
trees, and set uniform weights 1.

Fig. B displays the curves of the error > - ||xi(k) — x*1||2, where z* is the consensus
value, with respect to the above chosen three different densities of edges. Here x* is computed
from the initial condition x(0), each component of x(0) being chosen uniformly at random
from the closed interval [—10,10]. In Fig. B, each plotted point is the mean value of the
error over 100 random digraphs of the respective densities. It is observed that the denser the

digraph, the faster CA converges to the consensus value x*.
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1 \ \ \ |
0 500 1000 1500 2000
Time ¢

Figure 4.6: CA fails to achieve consensus for digraph in Fig. @ that does not contain a spanning
tree

0 0100 150 200
Time ¢

Figure 4.7: Convergence speed with respect to 10% (blue o), 50% (red x), and 90% (black *) of
directed edges
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CHAPTER 5

Synchronization

The problem of consensus in the preceding chapter requires all the agents to converge to the same
value, which is static in steady state. A generalized notion is the requirement that all the agents
converge to the same but dynamic values. This is the problem of synchronization.

A familiar example is a network of harmonic oscillators to synchronize their phases and angular
velocities. Another example is a group of autonomous vehicles to flock with the same velocities. A
physiology example is a network of neurons to fire with the same frequencies. Indeed the synchro-
nization problem typically involves higher-order dynamic models of the agents.

In this chapter we study the synchronization problem of (homogeneous) linear time-invariant
dynamic agents. We show that a necessary graphical condition to achieve synchronization is that
the digraph contains a spanning tree (the same as that to achieve consensus). Under this condition,

we present a distributed algorithm that achieves synchronization.

5.1 Problem Statement

Consider a network of n (> 1) agents. Each agent ¢ (€ [1,n]) is modeled by a general linear

time-invariant (LTT) dynamic system:

T; = Ax; + Bu; (51)
yi = Cx; + Du;

where z; € R? is the state vector, u; € R? the (control) input vector, and y; € R” the (observation)
output vector. A compact graphical notation of LTT is displayed in Fig. @
The matrices A, B,C, D in (@) are of the following sizes:

AERP*P, BeRP*Y (CecR™P, DecR™.

These matrices are the same for all agents; thus the multi-agent system is called homogeneous.

Several assumptions are made concerning these matrices.

123
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L
Us A B Yi U; Yi
— — or ——» ZT; —»
C|D

Figure 5.1: LTT system

Assumption 5.1 The matrices A, B, C satisfy the following conditions.

o (A, B) is stabilizable, i.e. there exists a matriz F' such that all the eigenvalues of A+ BF

have negative real parts.

o (C,A) is detectable, i.e. there exists a matrix G such that all the eigenvalues of A+ GC have

negative real parts.

o All the eigenvalues of matriz A have nonpositive real parts.

The first two assumptions are standard for the feasibility of feedback control design (see Ap-
pendix). The third condition means that the uncontrolled agent dynamics does not contain ex-
ponentially unstable modes. The reason why this last condition is needed is because we need to
ensure that the rate of convergence to synchronization (determined by graph Laplacian) is able to

dominate the possibly divergence of uncontrolled system dynamics.

Synchronization Problem:
Consider a network of agents modeled by (@) interconnected through a digraph G. Suppose
that Assumption @ holds. Design a distributed algorithm such that

(¥21(0), ., n(0) € R)(¥i, ] € [L,n]) Jim (zi(t) — (1)) = 0.

Example 5.1 We provide an example to illustrate the synchronization problem. Consider

a network of five harmonic oscillators:

Ti1 = Tgo
Tig = —%i1 + U4

yi:xila iE [1,5]
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Figure 5.2: Hlustrating example of synchronization problem with five agents

This corresponds to (@ ) with

A:[O 1]’ B:[o
-1 0 1

Here x;1,x2 are respectively the phase angle and angular velocity of oscillator i. Since

, Cz[l 0}, D=0.

rank([B AB]) =2

rank( ) =2

CA

the pair (A, B) is controllable and thus stabilizable, and the pair (C,A) is observable and
thus detectable.® Moreover, the eigenvalues of A are +j whose real parts are zero. Hence
Assumption @ holds.

The interconnection of the five oscillators is modeled by the digraph in Fig. . The neighbor
sets of the agents are Nh = {2}, No = {1}, N3 = {1,2,5}, Ny ={1,3,5}, and N5 = {2,4}.
Given arbitrary initial conditions x1(0),...,25(0) € R?, the synchronization problem is to
design a distributed algorithm such that each oscillator’s phase angle (resp. angular velocity)

asymptotically converges to the same dynamic phases (resp. dynamic velocities).

%A review of these basic concepts of linear systems is provided in Appendix.

A necessary graphical condition for solving the synchronization problem is given below.
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Proposition 5.1 Suppose that there exists a distributed algorithm that solves the synchro-

nization problem. Then the digraph contains a spanning tree.

Proof. The proof is by contradiction. Suppose that the digraph G does not contain a spanning
tree. Then it follows from Theorem @ that G has at least two (distinct) closed strong components
(say) G1,Gs. In this case, consider an initial condition such that the agents in G; have initial state
c1 € RP, those in Gy have ¢y € RP, and ¢; # ¢o. Since G; and Gy are closed, information cannot be
communicated from one to the other. Consequently, there exists no distributed algorithm that can
solve the synchronization problem. a

Owing to Proposition @, we shall henceforth assume that the digraph contains a spanning tree.

Assumption 5.2 The digraph G modeling the interconnection structure of the networked agents

contains a spanning tree.

5.2 Distributed Algorithm

Example 5.2 Consider again Example @ To achieve synchronization, a natural idea is

to use the consensus algorithm in Chapter on the output y; (1 € [1,5]):

wi =Y aii(y;(k) — vi(k)).

JEN;

For simplicity consider unit weight for all edges (i.e. a;; =1). Then substitute u; into )

and write in vector form:

1 A-BC BC 0 0 0 1
T2 BC A—-BC 0 0 0 T2
3| = BC BC A-3BC 0 BC T3
T4 BC 0 BC A—-3BC BC T4
Ts 0 BC 0 BC A—-2BC| |z5

More compactly

i=(I®A-L®BC)x

where x = [x] -+ x3 |7 is the aggregated state, L is the graph Laplacian matriz, and ®

denotes Kronecker product. With a random initial condition x(0) € R, a simulation result



5.2. Distributed Algorithm 127

of the above system is displayed in Fig. @
Evidently, synchronization did not occur. Thus the simple idea of achieving consensus fails

to work for synchronization.

D

N

N

State Z‘il(t), 1= 1, 2,3,4, 5)
o

0 10

o

-

~ 5

-

[l

< 0

5 -5

(D]

=

& -10 ‘ : :
0 500 1000 1500 2000

Time ¢t

Figure 5.3: Failure to achieve synchronization using consensus algorithm

In the following, we describe a distributed algorithm that employs an observer that estimates

the state x; based on the output y;, as well as a generator that applies the consensus algorithm

based on stable dynamics.
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Synchronization Algorithm (SA):
Every agent ¢ has a dynamic model in (El]) with an arbitrary initial state x;(0) € RP. Let F,G
be matrices such that all the eigenvalues of A+ BF and A 4+ GC have negative real parts. At each

time t > 0, every agent i performs the following updates:

§=(A+BF)E+ Y aii(§—&)— > ai(d; — &) (5.3)
JEN; JEN;

Here the updating weights a;; > 0 are the weights of the existing edges (i.e. the entries of the

adjacency matrix); the initial conditions #;(0) € R” and &;(0) € R? are arbitrary.

Y
8

Zi, &

Figure 5.4: Distributed distributed controller

Remark 5.1 In words, ) is a local observer that estimates the state x; based on output y;
and input u;. The observer has stable dynamics (since A+ GC' is stable), so that the estimate
Z; (exponentially) converges to the true state x;. Next, ) is a local generator also with stable
dynamics (since A + BF s stable). This generator executes two consensus algorithms on the
generators’ states and on the observers’ states, for which agent i needs to receive information
&;(t),&;(t) or relative information &;(t) — & (t), &;(t) — &;(t) from each (in-)neighbor j € N;. The
purpose of this generator is to achieve consensus on the generator states on one hand, and on the

other hand drive the difference in generator states &;(t) — &;(t) to the difference in estimated states
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Figure 5.5: Synchronization of true states

T(t) — @i(t).

Since the estimated states converge to the true states, the difference in any pair of

true states will diminish, and desired synchronization occurs. Finally, @) computes the control
input u;. Overall, this is a dynamic distributed controller for agent i, whose inputs are y; (from

itself) and &;,&; (from its neighbors) while the output is u;. A graphical illustration of this dynamic

distributed controller is provided in Fig. .

Remark 5.2 If C = I, i.e. y; = x;, then the observer in ) is not needed. Namely in this

special case, SA becomes
&= (A+BF)E+ Y ay(&—&) — Y ayla; — )
JEN; JEN:
u; = F§&;



130 Chapter 5. Synchronization

Let x := [z] ---2)]", 2= [&#] ---2]]T, and € := [¢] ---&]T be the aggregated true state,

estimated state, and generator state of the networked agents. Then the equations (@), (@), and

() become

i= (I, ® Az + (I, ® BF)¢
&= (I, ® (A+GO))i + (I, ® BF)¢ — (I, ® GO)x (5.5)
£=,®(A+BF) - L L)+ (L® )i

Note that the Laplacian L appears only in the last equation of the generator dynamics.

1,2,3,4,5

Estimated state @;(t),

| | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time ¢

Estimated state &;5(t), i =1,2,3,4,5

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time ¢

Figure 5.6: Synchronization of estimated states

Example 5.3 Let us revisit Example . First, we assign desired eigenvalues for A+ BF
and A+ GC. Say for both matrices, let the desired eigenvalues be —1,—2. Then by pole
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Figure 5.7: Convergence of generator states

assignment (see appendiz), we obtain

F:[—l —3], G=

“

Substituting A, B,C, F,G, L into ) and performing simulation with a set of randomized
initial conditions z(0),2(0),£(0), we obtain the synchronized states of the oscillators as
displayed in Fig. . Observe that both phase angles and angular velocities of the five
oscillators converge to the same dynamic values. The estimated states also synchronize
(Fig. ), as they converge to the true states that are synchronized. Finally, the generator
states converge to 0 (Fig. , for these generators are so designed that the difference in

pairwise generator states converge to the difference in pairwise estimated states (the latter
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converges to 0).

5.3 Convergence Result

The following is the main result of this section.

Theorem 5.1 Suppose that Assumptions @ and hold. The SA solves the synchroniza-

tion problem.

To proceed, let us first consider the third equation in (@)

E=(I,®(A+BF)-L® L)+ (L®I,)i
=, ®(A+BF){+ (L IL,)(#—¢).

Since the eigenvalues of A + BF have negative real parts, the convergence of £(t) depends on that

of (&(t) — &(t)). Let
€=z —¢.

Then ¢ = & — &. Substituting §7,§ by the second and third equations in (@) and arranging the

terms yield
=, A-L®I)e— (I, 2 GC)(z —2).
Ignoring for now the second term (i.e. the state estimation error which exponentially diminishes):
=T, 0A-LI)s (5.6)
thus corresponding to each ¢; (¢ € [1,n]) is a consensus-like algorithm:

€& = Ae; + Z aij(ej — 61') (57)
JEN;

The following lemma states that for every i € [1,n], €;(¢) converges to €y(t) which is a solution of

éo = Aeg. This means that €;(t),...,€,(t) synchronize as t — oo.
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Lemma 5.1 Consider ) and suppose that Assumptions and hold. Then

(Vi € [1,n])(Ve;(0) € RP)(3c € RP) lim [le;(t) — e[| = 0. (5.8)

To prove Lemma @, we need the following property of matrix exponential :
(VA € R ™) Ae = e A. (5.9)

That is, a matrix and its exponential commute. To see this, employ the definition of matrix
exponential to derive
A Lo, 1,
1 1
= (I+A+5A2+§A3+~--)A

=4 A.

Proof of Lemma @ Let i € [1,n] and §; := e~ “4*¢;. Then

0; = —Ae_Atei + G_Atéi

= —Ae e, +e M (Ae; + Z aij(€j — €))
JEN;

() -t > aii(6;— )
JEN;

= Z aij(éj - (Sz)

JEN;

Let § :=[6{ --- &,}]". Hence in compact form we have

§=—(L®L,)6.

This is the standard consensus algorithm (CA) in p dimensions. Since Assumption @ holds, it
follows from Theorem @ that

(Vi € [1,n])(V5;(0) € RP)(Jc € RP) tlgglo 0;(t) = c.

In fact the above convergence is of exponential rate. Namely there exist constants c1,cy € R such
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that
18:(t) — ell < cre™***|8:(0) — .
The constant ¢ = Re(A2(L)), the convergence factor of consensus algorithm. It then follows that

lei () — ce || = [le*6;(t) — ce™|
< [le[[16: () — ell
< [l flere™2*16;(0) — ]

= cre” ! |e™!|l]|€;(0) — c]|. (5.10)

Since Assumption @ holds (in particular the eigenvalues of A have nonpositive real parts), there

exist a constant cg3 € R such that
llea(t) — ce™ || < cre™ " le;(0) — ¢

This implies that lim; . ||€;(t) — ce?*|| =0, i.e. (@) O

Remark 5.3 In the proof above, Assumption on nonpositive real parts of A’s eigenvalues is
used to ensure exrponential convergence of ) It is worth pointing out that even when A
has eigenvalues with positive real parts (so ||et|| ezponentially diverges), if ca = Re(A2(L)) (the
convergence factor) can dominate the divergence rate of ||e||,
of (@) can still be achieved. An illustration of this point is provided in Section below using

stmulation.

then the exponential convergence

Remark 5.4 An essential implication of Lemma is that the spectrum (i.e. set of eigenvalues)
of [, A—L®I,) in ) consists of those of A and the stable ones with negative real parts. To

see this, consider the Jordan canonical form of the graph Laplacian L:

0 0
0 J|

Here V' be a nonsingular matriz whose columns are (generalized) eigenvectors of L, and J €

VLV =

Cr=0x(=1) consists of Jordan blocks corresponding to the n — 1 nonzero eigenvalues of L with
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positive real parts (under Assumption ) Then

VI, A- Lo L)V =V"'L)eAV)- (VL) (I,V)2I,
=LoA-V'LV)®I,

A 0
0o J

Hence the spectrum of (I,® A— L®I,) in ) 1s the union of the spectrum of A and the spectrum
of J'. Since Lemma implies that €(t) — e**1, the eigenvalues of J' must all be stable.

With Lemma @ we are ready to prove Theorem @
Proof of Theorem @: Suppose that Assumptions @ and @ hold. Define the state estimation

error e := x — &. Then from the first and second equations in (@) we obtain

e=1—2

= (I, ® (A+ GO))e. (5.11)

Since G is such that the eigenvalues of A + GC have negative real parts, e(t) — 0 as t — oo.
Next define € := & — £ and derive from the second and third equations in (@) as well as ()
the following:

E=2—¢&

—(I,®A—L®IL)e— (I, ® GC)e. (5.12)

Since Assumptions @ and @ hold, by Lemma @ we know that if e was constantly zero, then for
every ¢ € [1,n], €;(t) converges to eg(t) which is a solution of ¢y = Aeg. Now from () and ()
-1, ® GC I,0A-L®I,

we have
é _ e
el €
e
A

The spectrum of the above matrix M is the union of the spectrum of A+ GC and the spectrum of
I, ® A— L® I, For A+ GC, all of its eigenvalues are stable. For I,, ® A — L ® I, it follows from
Lemma @ and Remark @ that its spectrum includes the eigenvalues of A and stable ones. Hence

I, ® (A+ GC) 0

M

overall, the spectrum of M consists of the eigenvalues of A and stable ones. Since lim;_, o e(t) =0

and A’s eigenvalues all having nonpositive real parts (Assumption El]), there exists ¢ € RP such
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that €;(t) — cet as t — oo for all i € [1,n]. That is, €1(t),. .., €,(t) synchronize as t — oo.

With the above convergence result of €(t), we analyze the generator state £(¢) based on the third

equation in (@)

{=I,®(A+BF)-LRL)+ (Lel,)i
=(,® (A+BF){+ (L®I,)e.

Since €1(t), ..., €,(t) synchronize as t — oo, we have
(L®I,)e(t) = 0 as t — oo.
In addition, since F' is such that the eigenvalues of A+ BF' have negative real parts, we derive that
&(t) > 0ast — oo.

Finally, since

r==%+e
=et+l+te
and €;(t) — ce £(t) — 0,e(t) — 0 as t — oo, we conclude that x(t),...,2,(t) synchronize as

t — oo. Namely for every i € [1,n] and every z;(0) € RP, x;(t) converges to xo(t) which is a solution
of i}o = ALL'(). O

5.4 Simulation Examples
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Simulation Examples

Example 5.4 Consider again the network in Fig. (re-displayed here for convenience)

and five double integrators:

i1 = Ti2
Tig = Uy

Yi = Ti1 + Tio, 1 E [1,5].

This corresponds to @ ) with

8(1)], B:m, C:[l 1}, D=o0.

Here x;1, 10 are respectively the position and velocity of agent i. Since

A:

rank([B AB]) =2
rank([CT ATCT]) =2

the pair (A, B) is controllable and thus stabilizable, and the pair (C,A) is observable and
thus detectable. Moreover, the two eigenvalues of A are both 0. Hence Assumption holds.
First, we assign desired eigenvalues for A+ BF and A+ GC'. Say for both matrices, let the

desired eigenvalues be —1,—2. Then by pole assignment, we obtain

Substituting A, B,C, F,G, L into ) and performing simulation with a set of randomized
initial conditions x(0), %(0),£(0), we obtain the synchronized states of the agents as displayed
in Fig. @ Observe that all the agents converge to the same dynamic positions, as well as

move with by the same velocity. The estimated states also synchronize (Fig. , and the
generator states converge to 0 (F'ig. )

Example 5.5 While Assumption allows A to have eigenvalues on the imaginary axis
(possibly repeated such eigenvalues which can cause polynomially unstable dynamics), it
rules out exponentially unstable dynamics for individual agents (when A has eigenvalues
with positive real parts). However, synchronization may still be possible for exponentially

unstable dynamics if the network interconnectivity is ‘strong’ enough to counterbalance the
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Figure 5.8: Synchronization of true states

unstable modes (refer to Remark )
For an illustration, consider a network of six inverted pendula:

yi = Cx; + Du; z; € R* u; € R,y; € R,4 € [1, 6]
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Figure 5.9: Synchronization of estimated states

where
0 1 0 0 0
0 0 —-0.098 0 1
A= . B= : 02[1 0 1 o}, D=0
0 0 0 1 0
0 0 019 0 -1

Note that the four eigenvalues of A are 0,0,0.4427,—0.4427. The existence of the positive
eigenvalue 0.4427 is not permitted by Assumption , which causes exponential divergence.
On the other hand, it is verified that the pair (A, B) is controllable thus stabilizable, and the
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Figure 5.10: Convergence of generator states
pair (C, A) is observable thus detectable. Hence we design the following two matrices F,G

to assign the desired eigenvalues

_17_27_1 +]7_1 _j
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for both A+ BF and A+ GC':

107.0408
51.0123
—112.0408
—61.2083

F:[40.8163 102.0408 51.0123 107.0408}, G =

Consider the following interconnections of these sixz inverted pendula (starting from cyclic

digraph, and adding one edge at a time), and perform the corresponding simulation of SA

n ) Observe from Figs. that with the increasing number of edges, state
trajectories are from divergence to convergence (indeed, synchronization of each of the state
components among the siz pendula). This illustrates a phase transition at which exponentially

unstable dynamics are counterbalanced by tight interconnection.

N N

© © ©—C)
(@) 0 ©

@ 9-6\9 © 9'9\9 0,9'9 €Y

y

O, ©—C (G
(@) (© (/)

Figure 5.11: Six digraph topologies of 6 inverted pendula

5.5 Notes and References

The synchronization algorithm (SA) is first reported in



142 Chapter 5. Synchronization

© 500 © 200

0 0

< <t

o3 0 o3 0

-~ -~

—l(" -500 T" -200

-1000| . -400

§ 1500} £ 600

[} Q

= =

cn -2000 ; ; ; n -800 - : :
0 500 1000 1500 2000 0 500 1000 1500 2000

Time ¢t Time ¢

© © 1500

0 e}

< <

o5 > 1000

[a\] [\

1—(“ v—r

| I 500}

e

[} [}

= =

& -1000 : : : & -500 : : :
0 500 1000 1500 2000 0 500 1000 1500 2000

Time ¢ Time ¢

Figure 5.12: Trajectories of state components for Fig. (a)

o L. Scardovi, R. Sepulchre, Synchronization in networks of identical linear systems, Automat-

ica, vol.45, pp.2557-2562, 2009

Extensions of SA to address time-varying networks, heterogeneous and nonlinear agent dynamics

are investigated in

o P. Wieland, R. Sepulchre, F. Allgower, An internal model principle is necessary and sufficient

for linear output synchronization, Automatica, vol.47, pp.1068-1074, 2011

o« W. Liu, J. Huang, Adaptive leader-following consensus for a class of higher-order nonlinear

multi-agent systems with directed switching networks. Automatica, vol.79, pp.84-92, 2017

o S. Kawamura, K. Cai, M. Kishida, Distributed output regulation of heterogeneous uncertain

linear agents, Automatica, vol.119, 2020

Pole Assignment Theorem (Lemma @) is from
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actions on Automatic Control, vol.12, pp.660-665, 1967
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5.6 Appendix: Linear Systems and Feedback Control

In this appendix we present fundamental concepts of linear systems and basic designs of feedback

control.

Consider a linear time-invariant (LTT) dynamic system:

& = Ax + Bu (5.13)
y=Cx+ Du

where z € R? is the state vector, u € R? the control input vector, and y € R" the observation

output vector. The matrices A, B, C, D are of appropriate sizes.

We say that the pair (A, B) is
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Figure 5.15: Trajectories of state components for Fig. (d)

o controllable if

rank([B AB --- AP7'B]) = p;

o stabilizable if there exists a control input v = Fx such that

all the eigenvalues of A + BF' have negative real parts.

The control uw = Fx is called a state feedback control, because u is a linear function of the state
vector . State feedback control assumes that all the state components are available (i.e. can be

measured /observed) for control, which is equivalent to assuming C' = I, D = 0, and y = z (see

Fig. 5.18).
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Figure 5.16: Trajectories of state components for Fig. (e)

Substituting u = F'z into the first equation in () yields
&= (A4 BF)x. (5.14)

This is called the closed-loop system (under state feedback control). We say that the closed-loop
system is stable if its state 2(t) — 0 as t — co. According to (), the closed-loop system is stable
if and only if all the eigenvalues of A + BF' have negative real parts, i.e. (A, B) is stabilizable.
Hence stabilizability of the pair (A4, B) is a necessary and sufficient condition for the stability of the

closed-loop system under state feedback control.

It is also important to point out that if (A, B) is controllable, then (A, B) is stabilizable (the
reverse need not hold). Thus the stabilizability of (A, B) may be verified by the rank condition
of controllability. One explanation of this relation between controllability and stabilizability is the

following.
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Figure 5.17: Trajectories of state components for Fig. (f)

v

Figure 5.18: State feedback control

Lemma 5.2 (Pole Assignment Theorem) Consider an LTI system in ) The pair
(A, B) is controllable if and only if for an arbitrary set of complex numbers {A1,...,\p}
which are symmetric with respect to the real axis, there exists F' such that the eigenvalues of
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A+ BF are Ai,...,\p.
If the entire state vector z is not available, then feedback control design has to be based on the
observation output y. We say that the pair (C, A) is

« observable if

C

CA
rank ) = p;

CAP—1
o detectable if there exists G such that

all the eigenvalues of A + GC have negative real parts.

It is observed that observability and detectability are dual respectively with controllability and
stabilizability:

« (O, A) is observable if and only if (AT,CT) is controllable;
« (C, A) is detectable if and only if (AT, CT) is stabilizable.

As a result, if (C, A) is observable then (C, A) is detectable, while the reverse is false in general.
If the pair (C, A) is detectable, an observer can be constructed to estimate the true z:

& = Ai + Bu+ G(Ci + Du —y) (5.15)

where  is the estimated state vector. To see this, consider the error between the estimated state

Z and the true state x, i.e. e := & — x. Take the time derivative of e to obtain

= (Ai + Bu+ G(Ci + Du—y)) — (Az + Bu)
=(A+GO)(& —x)
= (A+GCQC)e.

Since (C, A) is detectable, there exists G such that all the eigenvalues of A+ GC' have negative real

parts. This means that the error e(t) — 0 as t — oo, namely the estimated state & converges to

the true state x.
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Now that an observer can be designed to estimate the true state, we may consider feeding back
the estimate as was done in state feedback control (namely pretending that the estimated state was

the true state). This leads to the following output feedback control:

i = A% + Bu+ G(Ci 4 Du — y) (5.16)
u=Fz.
T
u A|B Y
C|D
A|B
- T 4
F ol p G
T

Figure 5.19: Output feedback control

Under the above output feedback control, the closed-loop system is displayed in Fig. . The
overall state of the closed-loop system is
x
NE

Combining () and () yields the dynamics of the closed-loop system as follows:

-

We say that the closed-loop system under output feedback control is stable if its state [z(t) T #(¢)T]T —
0 as t — o0o. According to (), the closed-loop system is stable if and only if all the eigenvalues

of the matrix

A BF
-GC A+ BF+GC

X

Z

A BF
-GC A+ BF4+GC

have negative real parts. For this to holds, a necessary and sufficient condition is that (C,A) is
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detectable and (A, B) is stabilizable. To see this, consider the following similarity transformation

of M:
A BF I 0
I I

-GC A+ BF+GC

I 0
-1 I

T 'MT =

A+ BF BF
0 A+ GC

Hence the spectrum (set of eigenvalues) of M is the union of the spectra of A+ BF and A + GC.
Therefore all the eigenvalues of M have negative real parts if and only if (A, B) is stabilizable and
(C, A) is detectable.

We close this appendix by recapitulating the following facts:

o Under state feedback control (), the closed-loop system is stable if and only if (A, B) is
stabilizable.

o Under output feedback control (), the closed-loop system is stable if and only if (A, B) is
stabilizable and (C, A) is detectable.



Part IV
Spanning Two-Tree Digraphs:
Similar Formation and

Localization

This part introduces distributed similar formation control and localization in two-dimensional space.
The necessary graphical condition for solving these two problems is that digraphs contain a span-
ning 2-tree. The type of Laplacian matrices involved in these two problems is the complex Lapla-
cian matrices. For agent dynamics, linear time-invariant first-order systems are considered, with

continuous-time for similar formation control while discrete-time for localization.
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CHAPTER 6

Similar Formation in
Two-Dimensional Space

In this chapter, we introduce a formation control problem of multi-agent systems in two-dimensional
(2D) space. The consensus problem studied in Chapter H can be viewed as to achieve a special point
formation (all the agents reach consensus on their positions in both dimensions respectively). In
this sense, the formation control problem in this chapter includes consensus and generalize it to a
rich set of geometric shapes in 2D.

Formation control is an interesting fundamental topic in teams of autonomous robots, mobile
sensors, unmanned aerial vehicles, and autonomous underwater vehicles. Important applications of
formation control include source seeking and exploration, map construction, formation flying, and
ocean data retrieval. This chapter focuses on formation control in 2D, while 3D formation control
is covered in Chapter E

Specifically, the problem studied in this chapter is called similar formation control: a network of
agents is required to form a geometric shape, which can be obtained from a prescribed desired shape
via planar translation, rotation, and scaling. To solve this 2D similar formation control problem,
we introduce the second type of graph Laplacian: complexr Laplacian. Modeling the interacting
agents by digraphs, we show that a necessary graphical condition to achieve similar formation is
that the digraph contains a spanning 2-tree, namely there exists (at least) two agents that can reach
all the other agents through independent paths. These two root agents play the role of leaders,
which determine the translation, rotation, and scaling offsets from the prescribed shape. Under this

graphical condition, we present a distributed algorithm for the agents to achieve similar formations.

6.1 Problem Statement

Consider a network of n (> 1) agents in a plane (2D space). Each agent i (€ [1,n]) has a state
variable z;(t) € C, which is complex and denotes the position of agent i in the plane at time ¢. Thus
Re(z;(+)) and Im(z;(-)) are the positions of agents ¢ on the real and imaginary axes, respectively.

The time ¢ > 0 is a (nonnegative) real number and denotes the continuous time. The motion of

153
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each agent is governed by the following;:

where u;(t) € C is the (complex) control input at time ¢. Thus Re(x;(-)) (resp. Im(x;(-))) is the
control input along the real axis (resp. imaginary axis).

Let digraph G = (V,€) model the interconnection structure of the n agents. Each node in
V = {1,...,n} stands for an agent, and each directed edge (j,7) in &€ C V x V denotes that agent
i can measure the relative position of agent j (namely x; — x; in agent ¢’s coordinate frame). The
neighbor set of agent i is N; := {j € V: (j,i) € £}.

Moreover, consider that digraph G is weighted: each edge (j,i) € V is associated with a complex
weight a;; € C. Hence the adjacency matrix A = (a;;), degree matrix D = diag(A1), and Laplacian
matrix L = D — A are all complex.

Define a target configuration & = [¢1---&,]T € C™ to be the assignment of the n agents to points
in the plane, which specifies the formation shape that the agents are tasked to achieve. Given a

target configuration &, we say that another configuration & is similar to & if
(3&)17&)2 S C)gl =w1l+ (.L)Qf.

Write wy = pe, p > 0 and 0 € [0,27). Then & can be obtained from ¢ via (two-dimensional)

translation wq, rotation 6, and scaling p.
For example, Fig. @ displays a target configuration
E=[1 e3) Tl o™ o e%’rj]T

which is a regular hexagon. Also displayed is another configuration & similar to &, as it can

be obtained from & via translation wq, rotation 6, and scaling p.

For a given target configuration &, let
S(€) :={¢ e C"| (Fwi,ws € C) = w11 + wa¢} (6.2)

be the family of all configurations similar to £. Thus S(€) is the (complex) span of the two vectors
1 and & If € = ¢l for some ¢ € C, then S(£) is degenerated and we are back to consensus in the
plane. To consider more general planar formations, we henceforth assume in this chapter that £ is
linearly independent from 1. Towards the end of this section, we will see that another condition
(called ‘generic’) needs to be imposed on . We say that the n agents with the aggregated state

vector x = [z1---x,]" form a similar formation with respect to ¢ if z € S(€).
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ot

Figure 6.1: Illustration of target configuration and similar configuration

To achieve a similar formation, consider the distributed control
JEN;

where the control gain w;; € C satisfies

(i) Z wi;(§ — &) =0 (6.4)

JEN;

(11) Wi; = €055, € € (C7 €; 7& 0. (65)
This control (@) is in the same form as that for consensus, but the gains w;; are not simply the
edge weights a;;. Indeed, w;; is a complex multiple of a;; (@)7 and moreover satisfies a linear

constraint with respect to the target configuration & (.4).

Substituting (@) into (@) and removing the common multiple ¢; yield

> ai(&—&) =0 (6.6)

JEN;

This in matrix form is L = 0; namely the target configuration lies in the null space of the complex
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Laplacian of the (complex-)weighted digraph. Since we also have L1 = 0, it follows that
ker L D §(§). (6.7)

Thus if the control in (@) satisfying (@) and (@) can be found, the kernel of the complex
Laplacian at least contains the family of all configurations similar to the target &.

Similar Formation Control Problem:

Consider a network of agents modeled by (@) interconnected through a digraph, and let £ € C"
be a target configuration (linearly independently of 1). Design a distributed control u;(t) in (@)
such that

(i) ker L =S5(¢)
(i) (Vz(0) € C*)(3¢" € S(¢)) lim z(t) = ¢'.
t—o0
The first requirement (i) strengthens (@) to equality; namely the kernel of the complex Lapla-

cian is ezactly the family of all configurations similar to £&. The second requirement (ii) means that

every trajectory of the networked agents converges to a similar formation in S(§).

Figure 6.2: Illustrating example of six agents

Example 6.1 We provide an example to illustrate the similar formation control problem.
As displayed in Fig. , six agents are interconnected through a digraph. The neighbor sets
of the agents are N1 = No =0, N3 = {2,5}, Ny ={1,3}, N5 = {4,6}, and Ns = {1,2}.

T

Let the target configuration be & = [1 e e% ™ o' e%wj] , i.e. the desired formation



-~
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shape is a regular hexagon (see Fig. ) Thus the family S(€) contains all hexagons that
can be obtained from & by translation, rotation, and scaling.

The similar formation control problem is to design a distributed control u;(t) in ) such
that the kernel of the complex graph Laplacian coincides with S(€), and moreover the agents’

aggregated state vector asymptotically converges to a similar formation in S(§).

A necessary graphical condition for solving the similar formation control problem is given below.

Proposition 6.1 Suppose that there exists a distributed control w;(t) in ) that solves

the similar formation control problem. Then the digraph contains a spanning 2-tree.

Proof. Let £ be a target configuration. Suppose that there exists a distributed control in (@) that
solves the similar formation control problem with respect to &, but that the digraph G = (V, £) does
not contain a spanning 2-tree. We will derive a contradiction that ker L 2 S(&), thereby proving
that G must contain a spanning 2-tree.

First, by definition G containing no spanning 2-tree means the following. Let R = {v;,v;} be
a set of arbitrary two nodes. Then after removing a node vy € V \ R and all its incoming and
outgoing edges, a subset Vg g V\ {vg} is unreachable from R in the new subdigraph G’. We write
this as R 4 Vi in G'.

Now let Vi, := V\ (Vi U{vi}). This set Vy is nonempty because R C Vj (trivially). In addition,
even after removing vy, the nodes in V, can still be reached from R, i.e. R — Vj in G'; but Vi /4 Vy
in G

Let m := |Vi| (> 1), and relabel

e nodes Vj, from vy to vy,
o node vk as Upt1;
« nodes in V; from v,,42 to v,.

Then the complex graph Laplacian L of G’ after relabeling (denoted by L’) has the following

structure:

L/— Llll L/12 0
Ly Lhy Ly

The 0 matrix in the (1, 3)-block is due to V; 4 Vi in G'.

Also reorder the components of the target configuration £ according to the above relabeling,
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and denote the result by

&
§= &
&

By the assumption that there exists a distributed control in (@)7 we have L = 0 and L1 = 0.
Substituting the relabeled L’ and & into the two equations yields

Ly é:, I11 I12 1:'
[/1 L’w} Ej 0 [L L]L} 0

Since ¢ and 1 are linearly independent (linear independence of £ and 1 is assumed at the outset),

) = 1)

Hence the rows of [L}; L] are linearly dependent.

SO are

Now remove from L’ the two rows corresponding to R = {v;,v;} and two arbitrary columns.
We still use indices 4, j after the above relabeling, but since R C V, it holds that 4,5 € [m + 2, n].
Then the resulting matrix L}, € C(n=2)x(n=2) jg

/o L;Q,l 1 LIR,IQ 0
Lr = ’ / ’ :
Loy Lgos Lgas

It follows from 4,5 € [m + 2,n| that [L% ;; L% 5] have m rows. Since the m rows of [L; Li,] are
linearly dependent, so are the m rows of [L% ;; L% ;5. Thus L% has fewer than n — 2 linearly
independent rows, and det(L%) = 0.

Finally since the set R of two nodes is arbitrary, the original complex graph Laplacian L of
G’ does not have any minor with size n — 2 that has nonzero determinant. This means that
rank(L) < n—3, and therefore ker L 2 S(£). This is a contradiction to the solvability of the similar
formation control problem. The proof is now complete. O

Owing to Proposition @, we shall henceforth assume that the digraph contains a spanning

2-tree.

Assumption 6.1 The digraph G modeling the interconnection structure of the networked agents

contains a spanning 2-tree.

Even if Assumption @ holds, not every configuration £ (linearly independent with 1) whose
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similar configurations may be achieved by a distributed control w;(¢) in (@) The following is such

an example.

Example 6.2 Consider again the siz-agent digraph in Fig. . This digraph G contains a

spanning 2-tree, with the root set R = {1,2}. Now consider the following target configuration:

0
—3-3j
—-1—3j
—0.8 — 1.6§
143

While £ is (evidently) linearly independent from 1, for every complex Laplacian L of G with
LE =0, it is verified that rank(L) < 3. To see this, write LE explicitly as

0] |&
01 [&
0 Is2 sz 0 3z O |&
0] &
0 0 0 Isa Iss lssl| |5
lei le2 0 0 0 les| |

For the third row (other rows are similar), it follows from L1 =0 and L{ = 0 that

3o +133+135=0
l32€2 + I33€3 + l35&5 = 0.

To satisfy these two equations, the entries l3s,l33, 35 are such that

l32 &5 — &3 2+2j
I3z| =c3 |&a—&| =c3 | —4 — 4]
I35 &3 — &2 24 2j

for some nonzero complex number cz. Similarly the (three) entries of rows 4,5,6 may be

determined up to a nonzero complex multiples cy, c5,ce (respectively). For simplicity, letting
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c3 = c4 = c5 = cg = 1 we have one instance of L as follows:

0 0 0 0 0 0
0 0 0 0 0 0
L 0 242 —4— 4 0 2+ 2j 0
02-06] 0 08+16 —1—j 0 0

0 0 0 —1-7j —08+4.4j 1.8+ 2.6

| 3-3 6j 0 0 0 -3-3j |

This L has rank 3, meaning that the last four rows are linearly dependent. Then for arbitrary
values of 3, cq, 5, Cg, these four rows cannot become linearly independent. Hence rank(L) < 3
for every L with L& = 0. This means that ker L 2 S(&), and consequently there does not
exist a distributed control in ) that solves the similar formation control problem with the

chosen target configuration &.

The target configuration £ in the above example satisfies a linear algebraic equation with integer

coefficients:

0
-3 -3j
—1—j
—0.8 —1.65
1+
—6

111040]

Such a configuration ¢ is called non-generic. Geometrically, in the plane there are four components
of £ (1st, 2nd, 3rd, and 5th) on the same line.

Since Example @ shows a case where similar formations of a non-generic configuration may
not be achievable on a digraph containing a spanning 2-tree, we henceforth require that the target
configuration be generic. A configuration & = [¢;---&,]T € C™ is said to be generic if &’s do not
satisfy any nontrivial algebraic equation with integer coefficients. Intuitively speaking, a generic
configuration has no degeneracy: in 2D, no three points on the same line and no three lines go
through the same point. As a consequence, any generic configuration £ is linearly independent with
1.

It is noted, however, that not all non-generic configurations whose similar configurations cannot
be achieved. In fact, if the digraph considered in Example @ had one more edge (1,3), the non-
generic configuration &’s similar configurations could be achievable. Indeed, following the same

procedure described in Example @, with a new edge (1,3) we derive an instance of the new
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Laplacian below:

0 0 0 0 0
0 0 0 0 0
. 242 —4— 4 0 2+ 2 0
02-06] 0 08416 —1-—] 0 0

0 0 0 —1-7] —08+4.4j 1.8+ 2.6

| 33 6j 0 0 0 ~3-3j |

The only change is the (3, 1)-entry from 0 to 1, owing to the added edge (1,3). This L’ has rank 4;
therefore ker L’ = §(£). Thus one may consider imposing further digraph connectivity to deal with

non-generic configurations.

On the other hand, the set of all non-generic configurations has Lebesgue measure zero, because
random perturbations destroy integer-coefficient algebraic equations. This means that for a given
non-generic configuration £ (e.g. the one in Example @), randomly perturbing its components
generates a generic configuration. For this reason, we assume that the target configuration £ is

generic.

Assumption 6.2 The target configuration &€ = [&;---&,]T € C™ is generic.

Remark 6.1 (Global versus local coordinate frames) We end this section with a discussion
on the local coordinate frames of the agents with respect to the global coordinate frame. So far the
state x; and control u; of agent i that we have discussed are in the global coordinate frame 3. In
formation control, the agents are usually robots with onboard sensors, thus having their own local
coordinate frames that are not necessarily aligned with the global X2 and time-varying. For distributed
control, knowledge of ¥ is often not available and thus should not be assumed. Let the local frame
of agent i at time t be ¥;(t), whose orientation is 0;(t) counterclockwise from the orientation of .

Also let z10c(t) and w;10c(t) be (respectively) the state and control at time t of agent i in 3;(t).
Then

zi(t) = xi,loc(t)e_jei(t)

wi(t) = Ui joc(t)e %@,
Recall from ) that
wi(t) = Y wij(z;(t) — 2i(t)).

JEN;
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Substituting the above equation of x;(t) into the right-hand-side yields

wi(t) = Y wij (2100 (t)e 0 — z; 100 (£)e 7% D)
JEN;
= Z Wi (2 10c () — xi,IOC(t))e_jgi(t)-

JEN;
Now equating the right-hand-sides of the above two u;(t)-equations, we derive
ui,loc(t) = Z Wi j (xj,loc(t) - xi,loc(t))-
JEN;

This shows that the control u; 10c(t) in the local ¥;(t) is unaffected by the time-varying orientation
difference from the global 3. Hence the control u; in ), though with respect to the global frame X3,
may be implemented in agent i’s local frame 3;(t) (as uioc) based on the state difference ;10— loc
in X;(t) as well. With this justification and for simplicity, we will write u;, x; (instead of u; loc,

xi,loc)

6.2 Distributed Algorithm

Example 6.3 Consider again FEzample , where the target configuration is the regular
hexagon & = [1 e3) e% em o eSTWj]T, This € is generic.

To achieve a similar formation of £, we consider using the simplest form of the distributed
control ) by setting all ¢; = 1:

g =Y ai(z;(k) —zi(k)), i€ [L6] (6.8)

JEN;

where a;; € C are complex weights of edges to be designed to satisfy )

Z aij(ﬁj — g,) =0, 1€ [1,6}.

JEN;

In Fig. , we wllustrate how such complex weights may be designed. For agent 3, it has two
neighbors 2,5. Thus we need to find weights ass, ass such that

azz (&2 — &) + aszs(&s — &€3) = 0.

Writing ass, ase in polar coordinates, the above equation may be satisfied through making
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proper rotations and scalings (dashed arrows in Fig. ), i.e.

p326932j (52 — 53) + p35€035j (55 - 53) =0.

There are infinitely many choices; a simple one is p3y = /3,033 = 0 and pss = 1,035 = =%
Hence wsy = /3, wss = —j. Note that this weight design can be done locally by individual
agents if relative information & — & (j € N;) is available.

Stmilarly we design other complex weights to satisfy ), and write ) in vector form:

EN 0 0 0 0 0 | [ai]
o 0 0 0 0 0 0 25
iyl 0 V3 —V3+j 0 —j 0 z3
Ba| L 0 -14+35 5 0 0 T4
& 0 0 0 148 35 1 5
| [-E-d 1 0 0 0 1+ 35| |as)

Inspect that the matriz above has zero row sums, and is indeed the minus of the complex
Laplacian matriz L of the (complex) weighted digraph. It is also checked that LE = 0, namely
the target configuration lies in the kernel of L. Moreover, there are exactly two eigenvalues 0
of L, and hence ker L = S(§) (the first requirement of the similar formation control problem
is satisfied).

However, the nonzero eigenvalues of matrix —L are
—1.917 + 0.8963j, —1.1283 — 1.042j, —0.1867 — 0.5863j, 0.5 + 0.866]

and hence —L is not stable (the last eigenvalue has positive real part). Therefore to stabilize
x(t) to the kernel of L (to satisfy the second requirement of the similar formation control
problem), the unstable eigenvalues of —L must be moved to the open left-half plane. This
shows that simply setting all ¢; =1 in ) does not work in general. In fact, €; need to be

properly chosen in order to stabilize —L.

In the following we re-describe the distributed control (@) in vector form, and will analyze its

stability in relation to the values of ¢; in the next section.

Similar Formation Control Algorithm (SFCA):

Every agent i has a state variable z;(t) € C representing its position in 2D at time ¢ > 0;

the initial state x;(0) is an arbitrary complex number. Offline, each agent ¢ computes weights
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Figure 6.3: Illustration of design of complex weights

ajj = pijeaif by solving

3 pie’i (€ — &) =0 (6.9)

JEN;

such that (@) holds. Then online, at each time ¢ > 0, every agent i updates its state x;(t) using
the following distributed control:

U; = €; Z aij(xj — Jﬁl) (610)

JEN;

where ¢; € C\ {0} is a (nonzero) complex control gain.

Let 2 := [x1---2,] " be the aggregated state of the networked agents, and E = diag(ey, ..., €,)
the (diagonal) control gain matrix. Then the n equations () become

i = (—EL)x. (6.11)

Remark 6.2 The above AFCA requires that the following information is available for each indi-

vidual agent i:
o & —& forall j € N; (offline computation of weights)

o x; —x; for all j € N (online computation of control inputs).
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6.3 Convergence Result

The following is the main result of this section.

Theorem 6.1 Suppose that Assumptions and hold. There exists a (diagonal and
invertible) control gain matriz E = diag(ey, ..., €,) such that the SFCA solves the similar

formation control problem.

To prove Theorem @, we will analyze the eigenvalues of the matrix —FEL in () For this,

the following fact is useful.

Lemma 6.1 Consider an arbitrary square complex matric M € C"*™. If all the prin-
cipal minors of M are nonzero, then there exists an invertible diagonal matric E =

diag(eq,...,€,) € C" ™ such that all the eigenvalues of EM have positive real parts.

Proof: The proof is based on induction on n. For the base case n = 1, M = m is a nonzero scalar
(as the principal minor of M is nonzero). Write mq; = plejel, and let € := y1e/®t where v # 0
and ¢y is such that (¢1 4 61)(mod 27) € (—%,%). Then EM = e;my; = p1y16(?1 191 which has
positive real part.

(n=1)x(n=1)  Now consider

For the induction step, suppose that the conclusion holds for M € C
M € C™ ™ with all of its principal minors nonzero. Let M; be the submatrix of M with the last row

and last column removed. Then all the principal minors of M; are nonzero, and by the hypothesis

there exists an invertible diagonal matrix F; = diag(ey,...,€e,—1) such that all the eigenvalues
A, ...y Ap_1 of E1 M, have positive real parts. Now write
M, M.
M= 1 2
M3 Mpn

where m,,, is a nonzero scalar (since all the principal minors of M are nonzero). Also let

Ei 0
0 €,

E =

for some complex €,,. Thus

E\M, E\ M,

€n M3 EnMpn

EM =

Ey O |M; M,
0 e,

M3 Mpn
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If ¢, = 0, then
E\M, FE,M.
A= [P 1 M2
0 0
which means that EM has a (simple) eigenvalue A, = 0 and all the rest n — 1 eigenvalues
Al,...,An_1 have positive real parts. Since eigenvalues are continuous functions of matrix en-

tries, for €, = 7y,e/%» with sufficiently small v, > 0, EM still has n — 1 eigenvalues \j,...,\,
with positive real parts. This in turn implies that the difference between the angles of A\; and A} is

small for all ¢ € [1,n — 1]. Let

n—1 n—1
RNV R | YL (6.12)
i=1 i=1

Then 6 can be made arbitrarily small by choosing sufficiently small ~,, > 0.
Now we consider the last eigenvalue X\/,. Since det(E) # 0, det(M) # 0, and det(EM) =
Ap -+ A7, we have A7, # 0. It is thus left to show that the angle of A}, is in (=7, §). Noting that

det(EM) = epdet(Ey)det(M) = X, -~ X, _ N,

we derive
n—1
LN, = Ley + Ldet(Ey) + Zdet(M) — £ ] N
=1
n—1
= ¢ + Zdet(Ey) + Zdet(M) — (£ [ Xi +9).
i=1
Choosing
n—1 - n—1 i
/ !
$n € (£ 1;[1 Ai = Zdet(Ey) — Zdet(M) — 5 + 8,2 1;[1 Ai = Zdet(Ey) — Zdet(M) + 5 — &)

for some positive ¢’, we have
bn € (—g+5’$6,g76’:1:5).

Since § can be made arbitrarily small (by choosing sufficiently small v,, > 0), in particular d can
be made such that § < §’, thereby we derive Z\;, € (=%, %). Hence )], also has positive real part.
This proves the induction step, and thereby completes the proof. O

The above proof suggests an algorithm (Algorithm El] below) to compute an invertible diagonal
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matrix F = diag(ey,...,€,) such that all the eigenvalues EM have positive real parts. In the
algorithm when computing €; (¢ € [1,n]) in lines 2 and 6, a specific choice of angles is adopted
to render the resulting eigenvalues of EM to positive real numbers. By the proof of Lemma Ell7
one can always choose appropriate (small) d1,...,d, in line 1 so that Algorithm Ell outputs an
invertible diagonal matrix E that renders all the eigenvalues EM with positive real parts. In the
algorithm, the notation M (1 : 4,1 :¢) used in lines 7 and 9 denotes the submatrix of M with the
first ¢ rows and columns (i.e. the ith leading principal submatrix of M).

Algorithm 6.1 Diagonal Stabilization Algorithm (case of complex matrix, right-half plane)

Input: square complex matrix M € C™*™ with nonzero principal minors
Output: invertible diagonal matrix £ € C**"
: set d1,...,0, to be small positive real numbers
-6 = e i4det(M(1,1)
: E1 = diag(el)
{A\1} = spectrum of E;M(1,1)
fori=2,...,ndo
A=)\

. det(E;_1)det(M(1:d,1:3))
—jz -

€ = 5ie
Ei = diag(el, ey Gi)

{A1,..., A} = spectrum of E;M(1:4,1:14)
: end for

. B =diag(er,...,€n)

© PN DT wh

=
= o

Lemma Ell provides a sufficient condition under which the eigenvalues of a complex matrix may
be moved to the open right-half plane using an invertible diagonal complex matrix. The following
proposition asserts that this condition holds for the submatrix of complex Laplacian of a digraph
containing a spanning 2-tree, with the two rows and two columns corresponding to the two roots
removed. More formally, consider a digraph G = (V, ) and let L be a complex Laplacian matrix of
G (corresponding to a specific choice of edge weights). Let R C V, and denote by Lz the submatrix

of L by removing the rows and columns corresponding to R.

Proposition 6.2 Consider a digraph G = (V,€) and a configuration £. Suppose that As-
sumptions and hold. Let R be a set of two roots. Then for almost all complex
Laplacian L of G satisfying LE = 0, all principal minors of Lr are nonzero.

To prove Proposition @, we first establish two lemmas.

Lemma 6.2 Consider a digraph G = (V,€).

(i) Suppose thatG contains a spanning tree. Letvy € V be a root (renumbering if necessary)
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and R := {v1}. Then for almost all complex Laplacian L of G, all principal minors of

Ly are nonzero.

(ii) Suppose that G contains a spanning 2-tree (Assumption ) Let vy, vy €V be two roots
(renumbering if necessary) and R := {v1,v2}. Then for almost all complex Laplacian

L of G, all principal minors of Lxr are nonzero.

Proof. (i) Suppose that G = (V,£) contains a spanning tree 7 = (V,E7). Here &7 C £. Without
loss of generality let v; € V be the root of 7 and R := {v1}. Then a standard Laplacian matrix T
of T has the following form:

0 O
*TR

T :=

Since 7T is a spanning tree, by Theorem B we have rank(T") = n — 1, and hence det(Tg) # 0.

Next let V' C V\R be an arbitrary nonempty subset of m (€ [1,n—2]) nodes, and renumber these
nodes from va, ..., V1. Alsolet R’ := RUV' = {v1,...,Um+1}, and remove all the incoming edges
from nodes vp,42,...,v, to R'. Denote the corresponding subgraph by 7. Then a nonnegative

adjacency matrix A’ and degree matrix D’ of T’ have the following forms:

D, 0
, D =|"1 )
lo 14]

Accordingly a standard Laplacian matrix 77 of 77 is

A0
Ay Aj

A=

D, 0
0 D

A0
Ay Aj

T 0
TQ/ T'T/z !

T'=D —A = - =: .

It will be shown that det(T%,) # 0 by proving that T, does not have an eigenvalue 0. To that end,

let D' = diag(d’, . ..,d}) be such that

~ &, if dj #0;
1, ifd;,=0.

Thus D’ is invertible and use (D’)~! to define

A0

Xom ()t = |1 6
Ay A

9

Ty Th,
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Note that A’ is nonnegative and every row sums up to 1. Hence for every integer k > 1, it holds
that (A’)* is nonnegative and every row sums up to 1. Let us focus on (A’)" (i.e. k = n), which

has the form

X (A

Since every node in V \ R’ can be reached from some node in R/, it follows from Lemma Ell that

every row of the (2,1)-block X contain positive entries. Hence

1(A5)" lloo < 1= p((A3)") < [I(A5)" 0 < 1
= p(A;) <1

= Tp, = I — Al has no eigenvalue 0.

It follows that Tj, has full rank, and so does Th, = D4Tk,. The latter means that Tj, has no
eigenvalue 0. Hence det(T%,) # 0. Compared with 7", T' has more nonzero entries. According to
the fact that a polynomial is either constantly zero or nonzero almost everywhere, it follows from
det(T%,) # 0 that det(T’r/) # 0 for almost all T. Therefore for almost all standard Laplacian T', all
principal minors of T’z are nonzero.

Finally consider a complex Laplacian L of the digraph G. Compared with T', L has more nonzero
complex entries. Again according to the fact that a polynomial is either constantly zero or nonzero
almost everywhere, we conclude that for almost all complex Laplacian L, all principal minors of
Ly are nonzero.

(ii) Suppose that G contains a spanning 2-tree with a root set R := {v1,v2} (without loss of
generality). Remove either node, say vy, and all its incoming and outgoing edges, and denote the
resulting subgraph G’. Then G’ contains a spanning tree (ve being a root). It then follows from (i)
above that for almost all complex Laplacian L’ of G’, all the principal minors of Lf{vz} are nonzero.
Since the principal minors of L’{vz} are identical with those of L, where L is a complex Laplacian
of G, the conclusion is established. O

For the second lemma, we introduce the following notation. Consider a digraph G = (V, £) and
let L be a complex Laplacian matrix of G. Let R C V, and denote by L™ a submatrix of L by

removing the rows corresponding to R and arbitrary |R| columns.

Lemma 6.3 Consider a digraph G = (V,€).

(i) Suppose thatG contains a spanning tree. Letvy € V be a root (renumbering if necessary)
and R := {v1}. Then for almost all complex Laplacian L of G, det(L™) # 0.

(ii) Suppose that G contains a spanning 2-tree (Assumption ) Let vy, vy €V be two roots



170 Chapter 6. Similar Formation in Two-Dimensional Space

(renumbering if necessary) and R := {v1,v2}. Then for almost all complex Laplacian
L of G, det(L) # 0.

Proof. (i) Suppose that G = (V,£) contains a spanning tree 7 = (V,E7). Here &7 C £. Without
loss of generality let v; € V be the root of 7 and R := {v1}. Also let T be a complex Laplacian
of T, and T be a submatrix of T with the row p; (= 0) corresponding to root v; and an arbitrary
column ¢; removed. If ¢ = 1, it follows from Lemma @(1) that det(T™) = det(Tg) # 0 for almost

all T. If i # 1, let p; be the ith row of T and consider the following elementary row transformation:

D1 p1+ i Di

Denote by 7 the digraph corresponding to 7. Compared with 77, some incoming edges are added
to node vy in 7. Hence vy is still a root of 7. Moreover, since T(l7 i) = T(i,4) # 0, there is an edge
from v; to vy in 7, and thus v; is also a root. Let R := {v;}. Then it follows from Lemma @(1)
that det(T5) # 0 for almost all 7. Since T is Tj; by reordering the 1st row to the ith position

(i.e. via elementary row transformations), we derive det(7™) = det(T) # 0 for almost all 7.

Finally consider a complex Laplacian L of the digraph G and a submatrix L. Compared with
T and TR, L and LT (respectively) have more nonzero complex entries. According to the fact that
a polynomial is either constantly zero or nonzero almost everywhere, we conclude that for almost
all complex Laplacian L of G, det(L®) # 0.

(ii) Suppose that G contains a spanning 2-tree with a root set R := {v1,v2} (without loss
of generality). Consider a complex Laplacian L of G, and a submatrix L™ obtained from L by
removing the two rows p;, pa corresponding to the two roots vy, vy and arbitrary two columns g;, g;.
If ¢ = 1 (similarly for ¢ = 2), remove v; and all its incoming and outgoing edges, and denote the
resulting subgraph G’. Then G’ contains a spanning tree (vy being a root), and it follows from (i)
above that for almost all complex Laplacian L’ of G', det((L'){¥2}) # 0. This implies det(L®) # 0

for almost all complex Laplacian L of G.

It remains to consider the case where 7,7 # 1,2. For this, let v; € V\ R and p; (i € [3,n]) be
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the ith row of L. Consider the following elementary row transformations:

(1] [B1py + - + knpn]
P2 P2

L= — [ .=
p; pi

where ki,...,k, are proper coefficients such that the three entries l~/(1, 1)7I~/(1,2),f1(1,z’) on the
first row of L are nonzero. Such coefficients always exist because each of the two roots has at least
one outgoing edge. Denote by 7 the digraph corresponding to 7. We claim that 7 contains a
spanning 2-tree with a root set R = {va,v;}. To see this, first note that v; is 2-reachable from R
because L(1,2),L(1,i) are nonzero and there are two edges (v2,v1), (v5,v1). Now consider a node

v; (j # 1,2,1); there are three cases:

» Two disjoint paths from R to v; do not go through v;. Then v; is 2-reachable from R: vy — V;

and v; = v1 — v;.

o The path from v; to v; does not go through v;, but vo — v; — v;. Then v; is 2-reachable

from R: vy = v1 — v; and v; = v;.

o The path from v to v; does not go through v;, but v1 — v; — v;. Then v; is 2-reachable

from R: vy — v; and v; — v;.

Note that it is not possible that both paths from R to v; go through v; in virtual of the definition
of spanning 2-tree. Hence our claim is established.

Now remove node v; and all its incoming and outgoing edges, and denote the resulting subgraph
G'. Then G’ contains a spanning tree (vy being a root), and it follows from (i) above that for almost
all complex Laplacian L' of G', det((L'){*2}) # 0. Since L® may be obtained from (L'){*2} via
elementary row transformations (reordering the first row to the ith position and recovering p;), we
conclude that det(L®) = det((L')"2}) # 0 for almost all complex Laplacian L of G. The proof is

now complete. (|

With the above two lemmas, we provide the proof of Proposition @
Proof of Proposition @: By Assumption @, G = (V, &) contains a spanning 2-tree T = (V, E7),
where & C & and the set of two roots R = {v1, v2} (renumbering if necessary). Consider a complex
Laplacian T of T such that all principal minors of Tz are nonzero (Tr is the submatrix of T by
deleting the two rows and columns corresponding to vy, vs). Such T always exists by Lemma @(n)
For the rank of T', on one hand rank(7") > n—2 since det(Tr) # 0; on the other hand rank(T") < n—2

since the first two rows of T are zero row vectors. Hence rank(7) = n — 2, and the kernel of T is
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two dimensional. One basis of this kernel is 1 since T is a complex Laplacian. Denote the other

basis by 1 which is linearly independent of 1.

We claim that all the entries of 1 are distinct. To see this, suppose on the contrary that there
are two entries 1;,7; (4,7 € [1,n]) are equal. Scale n such that 7; = n; = 1, and denote by 7 the
n — 2 dimensional subvector of 7 with the entries other than ;,7;. Let T™ be the submatrix of T
by deleting the two rows corresponding to vy, v, and the two columns corresponding to v;, v;; while
T be the submatrix of T’ by deleting the two rows corresponding to v, vs and the n — 2 columns
corresponding to the nodes in V' \ {v;,v;}. Then it follows from 71 = 0 and Tn = 0 that

TR1, 24+ T1,=0
TRi+T1, = 0.

Equating the left-hand sides of the above two equations yields
TR —1,_2) =0.

Since T is of full rank by Lemma @(ii), we derive 7] = 1,,_5. Therefore n = 1, which contradicts

that n and 1 are linearly independent. Hence, all the entries of 1 are distinct after all.

Moreover, since each node v; € ¥V \ R has exactly two neighbors, each corresponding row of T'

has at most three nonzero entries. Thus equations 71 = 0 and Tn = 0 yield

1 1 1
N MNip Miy

where v;,, v;, are the two neighbors of v;. More explicitly

Ty
Tiiy | =0
Eig

Tii +Tiiy + Ty, =0
0 Tsi + iy Tiay + 13y iy = 0.

Hence
T Mo — My
Tiiy | = Ci | M — iy
Tis, Niy — N

for some nonzero complex number ¢;. Since all the entries of 1 are distinct, each row of T corre-

sponding to a non-root node has exactly three nonzero entries.

Now consider a generic configuration £ and another complex Laplacian T” of 7 such that 77¢ = 0.
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Since € is generic, all the entries of ¢ are distinct. Hence 7" has the same zero/nonzero pattern as
T'. Since all principal minors of Tk are nonzero, it follows from the fact that a polynomial is either

constantly zero or nonzero almost everywhere that all principal minors of T are also nonzero.

Finally, returning to the digraph G and let L be a complex Laplacian of G satisfying L& = 0.
Compared with 7”7, L has more nonzero complex entries. Again according to the fact that a
polynomial is either constantly zero or nonzero almost everywhere, we conclude that all principal

minors of L are nonzero. The proof is now complete. O

Finally we are ready to prove Theorem @

Proof of Theorem @: Let Assumptions @ and @ hold. On one hand, it follows from Propo-
sition @ that for almost all complex Laplacian L of G satisfying L& = 0 (where £ is generic),
rank(L) > n—2, i.e. dim(ker L) < 2. On the other hand, by using the distributed control in SFCA,
we derive ker L D S§(&) as in (@), and thus dim(ker L) > 2. Therefore for almost all complex
Laplacian L satisfying L = 0, we have ker L = §(&), which establishes the first condition in the
similar formation control problem.

For the second condition, let R = {v1,v2} (renumbering if necessary) be the set of two roots
and Ly the submatrix of L with the first two rows and columns corresponding to R removed. Then
by Proposition @, for almost all complex Laplacian L satisfying L& = 0, all principal minors of

Ly are nonzero. It then follows from Lemma @ that there exists an invertible diagonal matrix

Er = diag(es, ..., €,) such that all the eigenvalues of —Ex Lz have negative real parts. Let
B 0 0 _ Ly Lo .
0 Egr|’ Ly Lz
Then
0 0
~B'L=— .
ErL; FErLg

Hence the spectrum (i.e. set of eigenvalues) of —FE’L is the union of the spectrum of —Fgr Ly

and {0,0} (set of two zeros). Let €7, €5 have sufficiently small magnitudes (i.e. |e1], |e2| sufficiently

small) and
€1 0 0
E=|0 e 0
0 0 Er

Then all the diagonal entries of E are nonzero, and E is invertible. Thus rank(EL) = rank(L) = 2

(i.e. ker EL = ker L), and there are two eigenvalues 0 of —EL. Moreover, since eigenvalues are
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continuous functions of matrix entries and |e1|, |e2| are sufficiently small, the rest n — 2 eigenvalues

of —FEL still have negative real parts.

Write —EL in Jordan canonical form as

o O
I
D

“EL=VJV'=1 ¢ 45 -~

o o o
o o o
S

where y;, z; € C™ are respectively the (generalized) right and left eigenvectors of —FEL, and J' €

C=2x(n=2) g a block diagonal matrix consisting of the Jordan blocks corresponding to those

eigenvalues with negative real parts. Hence the matrix exponential e % is

-1
o BLt _ JVIVT' _ e dty -1

10 0
=Vio 1 o|Vv!
0 0 et

— 1z +€2, ast— oo
Therefore based on the SFCA in ()

z(t) = e FE(0)

— 12, 2(0) + €29 2(0), ast — oco.
Let ¢ := 12{ 2(0) + €29 2(0). Then & € S(€), and therefore

lim z(t) € S(¢)

t—o0

i.e. the second condition in the similar formation control problem is established. This completes

the proof.

O
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6.4 Simulation Examples

Example 6.4 Let us consider again Example , where the (generic) target configuration is
the reqular hexagon & = [1 e3} e em e'F e%ﬂj]—r. We have designed a complex Laplacian L

of the digraph modeling the interconnection of the siz agents (copied below for convenience):

[0 0 0 0 0 0 |
0 0 0 0 0 0
0 V3  —V/34j 0 = 0
AU S i 0
0 0 0 Dol 2 o 1

—3-3 1 0 0 0 14+ 3]

While it is satisfied that ker L = S(§), one of the nonzero eigenvalues of —L is unstable (i.e.
with positive real part). Thus we need to design an invertible diagonal matriz E such that
all the nonzero eigenvalues of —EL are stable.

Since the target configuration £ is generic and the digraph G contains a spanning 2-tree with
the root set R = {1,2}, all the principal minors of the submatriz Lg (with the two rows and
columns corresponding to R removed) are nonzero. Therefore by Lemma , there exists
an invertible diagonal matrix Ex such that all the eigenvalues of —Exr Ly are stable. For

computing such Ex, we apply Algorithm and obtain
Er = diag(0.433 + 0.25j, —0.1j,0.0866 — 0.05j, —0.05 + 0.0866).
It is verified that all the eigenvalues of —ERr Lyr are stable:
—0.0456, —0.1, —0.221, —0.9933.

Then an invertible diagonal matriz E such that all the nonzero eigenvalues of —EL are

stable is:
E = diag(1,1,0.433 + 0.25j, —0.1j,0.0866 — 0.05j, —0.05 + 0.0866;).
Indeed, the eigenvalues of —EL are:

0,0, —0.0456, —0.1, —0.221, —0.9933.
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With a random initial condition x(0) € CS (whose entries represent siz random positions of
the agents in a 2D space), a simulation of the SFCA (i.e. & = (—EL)x) yields the trajectories
displayed in Fig. . It is observed that a similar formation of reqular hexagon is formed. In
the figure, X denotes the initial positions of the agents, while o the final positions. Observe
that the two root agents (left middle and left top) have stayed put as their initial and final

positions coincide; this is because they have no neighbors and thus have never updated their

positions.
X
< 08+
N
<06}
=02
§
g
= 0 L
0.2

Figure 6.4: Six agents converging to a similar formation of regular hexagon (x: initial position; o:
final position)

Example 6.5 Consider a network of 15 agents as displayed in Fig. . This digraph
contains a spanning 2-tree, and any two of the set {6,7,9,10} of agents are two roots.
Different from the digraph in Fig. where the two Toots have no neighbors, every mode
including the roots has two or three neighbors.

First, we consider a regular polygon to be the target configuration:

2m: 4m;  6m: 8w 10w 12w ldw; 16m: 18m:  20m; 22w 24w 26w  28m: T
f:[lel5Je15Jel5Jel5Je
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Figure 6.5: Fifteen networked agents

Thus £ is generic. We then design a complex Laplacian L of the digraph in Fig. m such
that rank(L) = 13, and apply Algorithm to compute an invertible diagonal matriz E such
that all the eigenvalues of —EL are stable. With a random initial condition x(0) € C',
a simulation of the SFCA (i.e. & = (—EL)x) yields the trajectories displayed in Fig. .
Observe that a regular polygon similar to £ is formed. Also observe that no agent stays put,
as everyone has neighbors and thus updates its state correspondingly.

Second, we consider a triangle shape to be the target configuration:
E=[4) —1+3j1+3j —2+2j2j2+2 —3+) —1+j1+j3+j —4 —2024]".

Note that this € is not generic, because there are multiple cases of three points on the same
line: e.g. the last three entries 0,2,4 of €.

For this example, nevertheless, a complex Laplacian L of the digraph in Fig. may still
be designed such that rank(L) = 13, and an invertible diagonal matriz E is obtained by
Algorithm such that all the nonzero eigenvalues of —EL are stable. With a random
initial condition x(0) € C'®, a simulation of the SFCA (i.e. @ = (—EL)z) yields the
trajectories displayed in Fig. . Observe that a triangle similar to € is formed, and all
agents have moved in the transient (before they converge to a similar formation of £ in the

steady state).
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o4t
03+
02t

0.1+

Figure 6.6: Fifteen agents converging to a similar formation of regular polygon (x: initial position;
o: final position)

6.5 Notes and References

The concept of complex Laplacian and similar formation control algorithm (SFCA) are originated
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e Z. Lin, W. Ding, G. Yan, C. Yu, A. Giua, Leader-follower formation via complex Laplacian,
Automatica, vol.49, pp.1900-1906, 2013

e Z. Lin, L. Wang, Z. Han, M. Fu, Distributed formation control of multi-agent systems using

complex laplacian, IEEE Transactions on Automatic Control, vol.59, pp.1765-1777, 2014

e Z. Lin, L. Wang, Z. Han, M. Fu, A graph laplacian approach to coordinate-free formation
stabilization for directed networks, IEEE Transactions on Automatic Control, vol.61, pp.1269—
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0.8 -

0.7 -

105+

0.2

1
0 0.2 0.4 0.6 0.8 1
Re(zi(t),i=1,...,15,t >0

Figure 6.7: Fifteen agents converging to a similar formation of triangle (x: initial position; o: final
position)
Stabilization by diagonal matrices (Lemma @) are studied in

« C.S. Ballantine, Stabilization by a diagonal matrix, Proceedings of the American Mathemat-
ical Society, vol.25, pp.728-734, 1970

o S. Friedland, On inverse multiplicative eigenvalue problems for matrices, Linear Algebra and
Its Applications, vol.12, pp.127-137, 1975
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CHAPTER 7

Localization in Two-Dimensional
Space

In this chapter, we introduce a distributed localization problem of multi-agent systems in two-
dimensional (2D) space. This problem has found numerous important applications in (wireless)
sensor networks, including environment information collection, wildlife monitoring, target tracking,
and intrusion detection. In these applications, it is essential that the individual sensor nodes know
their positions in a common (global) reference frame. For example, it would be ideal to have
a GPS onboard each sensor. In practical sensor networks, however, there are typically a large
number of sensor nodes each with limited hardware/software capacities. Thus it is costly and
implementationally difficult to install a device like GPS on every sensor, not to mention that there
are situations where GPS is at best very inaccurate and at worst denied.

Therefore it is desirable to have a distributed scheme to determine the global positions of
individual sensor nodes based on low-cost, easily implementable onboard devices. A typical such
scheme is to compose a sensor network with a minority of anchor nodes that do know their positions
in the global reference frame (e.g. using a GPS), and the rest majority of free nodes that need to
determine their global positions based on their local frames and locally sensed information (e.g.
distances and bearing angles with respect to neighboring nodes). Those anchor nodes play the role
of leaders or landmarks, while the free nodes are followers. We adopt this distributed scheme, and
focus in this chapter on solving a localization problem in 2D, while 3D localization is covered in
Chapter B

To solve the 2D distributed localization problem, we present an approach based on complex
Laplacian matrices. Modeling the interacting sensor nodes by digraphs, we show that a necessary
graphical condition to achieve 2D localization is that the digraph contains a spanning 2-tree whose
two roots are anchor nodes. This condition is similar to that for achieving 2D similar formations
in the preceding chapter. However, the two anchor nodes (i.e. two roots) who already know their
global positions should not, and will not, change their positions; hence they do not have, nor do
they need, any neighbors (i.e. incoming edges). In this way, the exact global positions of the free
nodes may be determined; that is without the flexibility of translation, rotation, and scaling as

in the similar formation problem). Under the above graphical condition, we present a distributed

181
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algorithm for the free nodes to achieve localization in 2D.

7.1 Problem Statement

Consider a network of n (> 1) agents that are stationary in a plane (i.e. their two-dimensional
positions are fixed), and a global reference frame ¥ which is unknown to the agents. The agents
labeled 1,2 (renumbering if necessary) are the anchor agents, whose positions £1,£, € C in ¥ are
known. Here Re(&;) and Im(&;) are the positions of agents ¢ € [1,2] on the real and imaginary axes,
respectively. The rest agents labeled 3, ..., n are the free agents, whose positions £3,...,&, € C in

Y are unknown and need to be determined by these individual free agents. Let

€3
€ (CQ, Eri=1"1] € Ccn—2

€a = [gl
&n

€2

be the aggregated positions of the anchor and free agents, respectively. Write

¢ = ra eC”

&r

and call ¢ the configuration of the agents.

To determine its own position, each free agent i (€ [3,n]) is equipped with a state variable
x;(k) € C, which denotes the estimate of agent i’s position &; under the global frame ¥. The time

k > 0 is a nonnegative integer and denotes the discrete time. Let

z3(k)
xy(k) = eC"?

be the aggregated state of the free agents at time k. It is desired that
xzp(k) = & as k — oo.

For convenience, also let z,(k) := [z1(k) z2(k)]" € C2? be the aggregated state vector of the two
anchor agents, such that z,(k) = &, for all £ > 0 (i.e. the anchor agents know their positions

in the global frame ¥ from the initial time & = 0 and never update their estimates). Write
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z(k) := [z4(k) " 2¢(k)T]T € C". Hence the purpose of localization is to achieve

lim x(k) =¢.

k—oco

We model the interconnection structure of the networked agents by a digraph G = (V, £): Each
node in V = {1,...,n} stands for an agent, and each directed edge (j,7) in € C V x V denotes
that agent ¢ can obtain the relative state information from agent j. The neighbor set of agent i is
N;:={j €V:(j,i) € E}. For the two anchor nodes (numbered 1 and 2), since they do not update
their states, even if they had neighbors, the corresponding incoming edges would be associated with
weight 0. This is equivalent to considering that the anchor nodes do not have neighbors. For this

reason, henceforth in this chapter we consider that N; =0 (i = 1,2).

Moreover, consider that digraph G is weighted: each edge (j,4) € V is associated with a complex
weight a;; € C. Hence the adjacency matrix A = (a;;), degree matrix D = diag(A1), and Laplacian
matrix L = D — A are all complex. Since N; = () for the anchor nodes i = 1, 2, the Laplacian matrix

L has the following structure:

Laa Laf
Lga  Lyy

. (7.1)

10 0
Lya  Lyy
Here Ly, € C=2)%2 4pd Ly e Cn=2)x(n=2)
To achieve localization, consider the distributed control
wi(k) = Y wij(a;(k) — z:(k)), i€ [1n]. (7.2)
JEN;
Here the control gain w;; satisfies
(i) > wi(&—8&)=0 (7.3)
JEN;
(ii) Wij = €;Q45, € € (C, €; 75 0. (74)
This control (@) is in the same form as that for similar formation control: the gains w;; are not

simply the edge weights a;;, but are complex multiples of a;; (@) and satisfy linear constraints

with respect to the target configuration & (@)

Substituting (@) into (@) and removing the common multiple ¢; yield

Z aij(fj — 52) = 0 (75)

JEN;
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This in matrix form is LE = 0. In view of (@) we have

0 0 sa] o
Lya Lysr] &
Hence the following equation ensues:
Lis&y = —Lyoka (7.6)

which relates the configuration of the free agents to that of the anchor agents through appropriate

multiplications of submatrices of the complex Laplacian.

Two-Dimensional Localization Problem:

Consider a network of agents (stationary on a plane) interconnected through a digraph and a
configuration ¢ := [¢] f}'—]—r € C", which represents the fixed positions of the agents under the
global reference frame Y. Here &, € C? is known but &; € C"~2 is unknown. Design a distributed
algorithm using the control in (@) such that

(i) rank(L) =n — 2
(ii) (Vx;(0) € C"2) Jim (k) = &5
— 00
The first requirement (i) implies rank(L;s) = n — 2; namely Ly is invertible. Then it follows
from (@) that {y = —LJT;L fa€q. Hence the second requirement (ii) becomes:

(Vap(0) € C*2) lim ay(k) = =L Lala-

k—o0

Example 7.1 We provide an example to illustrate the localization problem in 2D. As dis-
played in Fig. , sixz agents are interconnected through a digraph; agents 1 and 2 are anchor
agents while the rest four are free agents. The neighbor sets of the agents are N1 = Ny = (),
N3 ={2,5}, Ny ={1,3}, N5 = {4,6}, and N5 = {1,2}.

Let the configuration of the agents be & = [1 e5! e el oF eST”j]T, i.e. a regular hexagon.
The position vector of the anchor agents &, = [1 e33]T is known, and that of the free nodes
£ = [eFT o7 e 5T s unknown and needs to be determined.

The localization problem is to design a distributed algorithm using the control in ) such
that the rank of the complex Laplacian L is n — 2, and moreover the free agents’ state vector

asymptotically converges to &;.

A necessary graphical condition for solving the two-dimensional localization problem is given
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Figure 7.1: Nllustrating example of six agents

below.

Proposition 7.1 Suppose that there exists a distributed control in ) that solves the two-
dimensional localization problem. Then the digraph contains a spanning 2-tree whose two

roots are the two anchor agents.

Proof. Suppose that there exists a distributed control in (@) that solves the two-dimensional
localization problem, but that the digraph G = (V, ) does not contain a spanning 2-tree whose
two roots are the two anchor agents. We will derive a contradiction that rank(L) < n — 2, thereby
proving that after all G must contain a spanning 2-tree whose two roots are the two anchor agents.

There are two cases that need to be considered separately. First, the digraph contains a spanning
2-tree but at least one of the two roots is a free agent. In this case, the subdigraph of free agents
contains either a spanning tree or a spanning 2-tree. Hence rank(Lss) < n — 2. Since the anchor
agents do not have neighbors, rank(L) < n — 2.

The second case is that the digraph does not contain a spanning 2-tree. Then it follows similarly
to the proof of Proposition @ that rank(L) < n — 2.

Therefore in both cases above, a contradiction is derived to the solvability of the two-dimensional
localization problem. The proof is now complete. (|

Owing to Proposition @, we shall henceforth assume the following graphical condition.

Assumption 7.1 The digraph G modeling the interconnection structure of the networked agents

contains a spanning 2-tree whose two roots are the two anchor agents.

Even if Assumption @ holds, not every configuration ¢ may be determined by a distributed
control in (@) Similar to Example @, if £ is not generic, it is possible that rank(L) < n — 2
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for all complex Laplacian matrices L satisfying L& = 0. This means that the two-dimensional
localization problem is not solvable. For this reason, and also the fact that the set of all non-generic

configurations has Lebesgue measure zero after all, we assume that the configuration ¢ is generic.

Assumption 7.2 The configuration & = [¢] 5;]—'— € C™ is generic.

7.2 Distributed Algorithm

Im Re

> Re

b))

Figure 7.2: Hlustration of design of complex weights

Example 7.2 Consider again Example , where the configuration is the regular hexagon
£ =1 3 e¥i eml o e 39T, This & is generic.

The anchor agents’ configuration &, = [1 53] is known, and the free agents’ configuration
Er = [e%rj e™ el e%”j]T is to be determined. To this end, we consider using the simplest
form of distributed control ) by setting all ¢; = 1:

zi(k+1) =2i(k) + Y ai(z;(k) — zi(k)), i€ [L,6] (7.7)
JEN;

where a;; € C are complex weights to be designed to satisfy )

Z aij(fj = g,) = 0, 1 E [1,6}.

JEN;
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Distributed Algorithm

In the following we illustrate how the complex weights may be designed locally to satisfy the
above linear constraints. Each free agent i € [3,6] has a local reference frame ¥;, whose
origin is the (stationary) position of agent i. The orientation of ¥; is fized, but the offset
angle 0; with respect to the global reference frame ¥ is unknown. For each neighbor (free
or anchor) j € N, we assume that agent i can sense the relative position by measuring the
relative distance and relative bearing angle in ¥;. That is, if agent j is a neighbor of agent i,
then the distance p;; between j and i, as well as the bearing angle 0;; of j in ¥, are measured

by i. Thus the relative position in 3; is
Yij = pij& . (7.8)

Note that yijejei =& — &; since 0; is unknown, even though the relative position y;; in ¥;
is known, £ —&; in X is unknown. Substituting £; —&; = yijejei into ) and removing the

common factor €% | we derive

Z QijYi5 = 0. (79)

JEN;

Hence the weights a;; may be designed based on the relative position y;; in ) under the
local reference frame ;.

For example, Fig. provides an tllustrative example. For agent 3, it has two neighbors
2,5. Thus we must find weights aza, ase such that azayss + assyss = 0. In the local reference

frame X3, ysa = p32el?2 and ys35 = p35e935. Thus we want to find asq,ass such that

32032012 + azs a5 = 0.

—i032 —if3s5
£ and azs = —*< . Con-
P35

cretely, psy =1, pss = V/3, and let O35 = IF, O35 = 57 ; then agy = §+§j, ags = %*%j'
Similarly we design other complex weights to satisfy ), and write ) in vector form:
x(k+1) = (I — L)x(k) where

There are infinitely many choices; a simple one is azs =

0 0 0 0 0
0 0 0 0 0
L= \/50 1 7§ N @j Sﬁgﬂ/j??Jr Sfﬁ_ﬁj \/50 3: 7§ N %j ’
—1 1) 0 5 3l -1t 0 0
0 0 0 —14 8 V3 1+
R X 0 0 0 2
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It is verified that the complex Laplacian matrixz L has zero row sums and satisfies LE = 0.

Moreover, partition the matriz L according to anchor agents and free agents:

Laa Laf
Lga Lyy

L =

Thus Lqq = Loy = 0; Ly, € C**2 and Ly € C**4. Tt is checked that rank(Lyy) = 4,
and thus Ly is invertible. Therefore the first condition of the two-dimensional localization
problem is satisfied.

It is left to verify the second condition that the state vector of the free agents x (k) converges
to fL]?flLfafa (when z4(k) = &, for all k >0). Fiz &, € C%. First note that

— i'a ga
T = _ = _1
Zf *Lff Lfafa
is the unique fized point of ) To see this, substituting T into ) yields &, which means
that T is a fized point of ) Moreover, let

be another fized point of ), namely

& ([t o] o ol\[a] [ 1 0
Lflf B 0 I Lfa Lff Lf} B —Lfa I—Lff

From the above we derive
T = —L;;Lfaga = .

&a
z ’

This shows that T is the unique fized point of ), which in turn implies that starting from
an arbitrary initial condition x(0) = [¢] ac}'—(O)]—r € C", x5(k) converges to —L;}Lfaé“a if
and only if all the eigenvalues of I — Ly lie inside the unit circle.

Unfortunately, the eigenvalues of matriz I — Ly are
—0.5774,0.3041 — 0.6475j, —0.9368 — 0.3062j, —0.0497 + 1.637j.

The last eigenvalue lies outside of the unit circle. Hence ) is unstable and x ¢(k) diverges.
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To stabilize x¢(k) to the desired fized point fL;;Lfafa (to satisfy the second requirement

of the two-dimensional localization problem), the unstable eigenvalues of I — Lyy must be
moved inside the unit circle. This shows that simply setting all e; =1 in ) does not work

in general. In fact, €; need to be properly chosen in order to stabilize I — Lyy.

In the following we describe a distributed algorithm using (@) in vector form, and will analyze

its stability in relation to the values of €; in the next section.

Two-Dimensional Localization Algorithm (TDLA):

Each anchor agent i € [1,2] has a state variable z;(k) € C whose initial value is set to be

x;(0) = & (which is known). Each free agent ¢ € [3,...,n] also has a state variable x;(k) € C whose

initial value is an arbitrary complex number. Offline, each free agent i computes weights a;; € C

based on the measured relative positions y;; = pijegf‘j in (@) by solving

Z aijYyijy = 0.

JEN;
Then online, at each time k > 0, while each anchor agent stays put, i.e.
zi(k+1) =x(k), iell,2]
each free agent i updates its x;(k) using the following local update protocol:

l‘z(k‘ + 1) = J}l(ki) +€; Z aij(xj(k;) — xz(k)), 1€ [3,7?,]
JEN;

where ¢; € C\ {0} is a (nonzero) complex control gain.

Let o := [x1---2,]" be the aggregated state of the networked agents, and

E = diag(eq,...,€n)

the (invertible diagonal) control gain matrix. Then the n equations () become

z(k+1) =xz(k) — ELz(k) = (I — EL)z(k).

7.3 Convergence Result

The following is the main result of this section.

(7.10)

(7.11)
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Theorem 7.1 Suppose that Assumptions and (7.2 hold. There exists an invertible diago-
nal control gain matriz E = diag(e, . .., €,) such that the TDLA solves the two-dimensional

localization problem.

To prove Theorem iil], we will analyze the eigenvalues of the matrix I — E'L in () For this,
the following fact is useful (which is the discrete counterpart of Lemma @)

Lemma 7.1 Consider an arbitrary square complex matric M € C"*™. If all the prin-
ctpal minors of M are nonzero, then there exists an invertible diagonal matrix E =
diag(ey,...,€,) € C™™ such that all the eigenvalues of I — EM lie inside the unit cir-

cle.

Proof: The proof is based on induction on n. For the base case n = 1, M = my; is a nonzero
scalar (as the principal minor of M is nonzero). Write mi; = plejel7 and let € := v,e/®* where
m € (0,,-) and ¢1 = —01. Then EM = exmi1 = pimi € (0,1). Hence 1 — EM € (0,1) which lies
inside the unit circle.

(n=1)x(n=1)  Now consider

For the induction step, suppose that the conclusion holds for M € C
M e C™ ™ with all of its principal minors nonzero. Let M; be the submatrix of M with the last row
and last column removed. Then all the principal minors of M; are nonzero, and by the hypothesis
there exists an invertible diagonal matrix F; = diag(ey,...,€e,—1) such that all the eigenvalues

1—MX,...,1=XA,_1 of I — F4 M, lie inside the unit circle. Now write

My M
M =
M3 Mpn

where m.,,, is a nonzero scalar (since all the principal minors of M are nonzero). Also let

Ei 0
0 €,

FE =

for some complex €,. Thus

I E
P AT B P DV T
0 1 0 €n M3 Mpn

If €, = 0, then

I—EM, —E M, ]

—e, M5 1 — e, Mpn

I—-EM, —E;M,
0 1

I —-EM =
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which means that all the eigenvalues of I — EM lie inside the unit circle except for a simple
eigenvalue 1. Since eigenvalues are continuous functions of matrix entries, for €, := 7,6/ with
sufficiently small ,, > 0, I — EM still has n — 1 eigenvalues 1 — A},...,1 — X/ _; which are inside

the unit circle.

Now we consider the last eigenvalue 1— X/ . In Lemma @ it is proved that ¢, may be chosen such
that the magnitude of X/, is sufficiently small and its angle lie in [—6, §] for an arbitrary 0 € [0, )
Hence for a small enough 6, the last eigenvalue 1 — )/, lies within the unit circle. This proves the

induction step, and thereby completes the proof. O

The above proof suggests an algorithm (Algorithm @ below) to compute an invertible diagonal
matrix E = diag(ey, ..., €,) such that all the eigenvalues I — EM lie inside the unit circle. Compared
with Algorithm El]7 the only difference is adding scaling terms in lines 2 and 7 so as to render the
resulting eigenvalues into the unit circle. This effect can also be achieved by choosing small enough
d; (¢ € [1,n]) in line 1. By the proof of Lemma @, one can always choose appropriate (small)
01,...,0, in line 1 so that Algorithm @ outputs an invertible diagonal matrix E which ensures

that all the eigenvalues I — E M inside the unit circle.

Algorithm 7.1 Diagonal Stabilization Algorithm (case of complex matrix, inside unit circle)

Input: square complex matrix M € C™*™ with nonzero principal minors
Output: invertible diagonal matrix £ € C**"

1: set d1,...,d, to be small positive real numbers
o 1 —jZdet(M(1,1
2 €1 = i grarryre M)
3: B = diag(el)
4: {\1} = spectrum of F4 M (1,1)
5: fori=2,...,ndo
6: A=X - Xi_1
. det(E; _q1)det(M(1:i,1:i))

7 € =0; det(Ei_l)delt(M(lzi,,l:i,))|67 = A

A
8: E;, = diag(el, ey Gi)

9: {A1,..., A} = spectrum of E;M(1:4,1:74)
10: end for
11: E = diag(er,...,€,)

Lemma @ provides a sufficient condition under which the eigenvalues of a complex matrix may
be moved inside the unit circle using an invertible diagonal complex matrix. It then follows from
Proposition @ (recalled below for convenience) that under Assumptions @ and @ (Assump-
tion El] implies Assumption @ and Assumption @ is the same as Assumption El]), the sufficient
condition holds for the submatrix Ly; of the complex Laplacian L. Hence there exists an invertible
diagonal matrix Ey = diag(es, ..., €,) such that all the eigenvalues of I — Ey Ly lie inside the unit

circle.
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Proposition Suppose that Assumptions and hold. Let R be the set of two roots
and Ly the submatriz of complex Laplacian L by removing the two rows and two columns
corresponding to R. Then for almost all complex Laplacian L satisfying LE = 0, all principal

minors of Lr are nonzero.

With the above preparation, we are ready to prove Theorem @

Proof of Theorem @: Let Assumptions @ and @ hold. On one hand, it follows from Propo-
sition @ that for almost all complex Laplacian L of G satisfying L& = 0 (where £ is generic),
rank(L) > n — 2. On the other hand, since the first two rows of L corresponding to the anchor
agents are zero, we have rank(L) < n — 2. Therefore for almost all complex Laplacian L satisfying
L¢ = 0, we have rank(L) = n — 2, which establishes the first condition in the two-dimensional

localization problem.

For the second condition, first note again from Proposition @ that for almost all complex
Laplacian L satisfying L = 0, all principal minors of Ly¢ are nonzero. It then follows from
Lemma El] that there exists an invertible diagonal matrix E; = diag(es, ..., €,) such that all the

eigenvalues of I — EyLy lie inside the unit circle. Let

0 E 0 0 0
E, = |} , a . L= .
0 e 0 Ey Lfa Ly
Here €1,€2 # 0. Thus E is invertible and
I 0 0 0 I 0
I—-FEL= - = .

Hence the spectrum (i.e. set of eigenvalues) of I — E'L is the union of the spectrum of I — EfL;y

(all inside the unit circle) and {1,1} (set of two ones).

It is left to verify that for arbitrary initial states of the free agents z;(0) € C"~2, x;(k) converges
to fLJTflLfafa(: &r) when x4(k) =&, for all k> 0. Fix &, € C2. First note that

— ja é-(l
xTr = _ = _1
Zf *Lff Lfafa
is the unique fixed point of () To see this, substituting Z into () yields Z (thanks to the
fact that both E; and Ly are invertible), which means that Z is a fixed point of () Moreover,
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let

be another fixed point of (), namely

5]

I 0 &a
—E¢Ly, I—Ey¢Lyy :f;c ’

From the above we derive
Ty = —L7; Ljaba = Ty

This shows that Z is the unique fixed point of () Moreover, since all the eigenvalues of I—FEy Ly

lie inside the unit circle, we derive

(Vap(0) € C*2) lim xy(k) = —Lj; Lyaéa(= &)

k—o0

Namely, the second condition in the two-dimensional localization problem is established. This

completes the proof. O

7.4 Simulation Examples

Example 7.3 Let us consider again Example , where the (generic) configuration is the
regular hezagon & = [1 59 e% e e e%"j]—r. We have designed a complexr Laplacian L

(copied below for convenience)

[ 0 0 0 0 ]
0 0 0 0 0
L= V3 _ 1 —g_gj 3ﬂgﬂ/j§+3;/-§g\/gj V3 3 _§+%j ’
-1~ 0 5 3 —7 ti 0 0

0 0 0 —1+ By VB L+

—E 3 E -3 0 0 0 =

While it is satisfied that rank(L) = 4, one of the eigenvalues of I — L is unstable (i.e. outside
the unit circle). Thus we need to design an invertible diagonal matriz E such that, except

for the two eigenvalues 1, all the other four eigenvalues of I — EL are stable (i.e. inside the
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0.8 -

S 06}

Figure 7.3: Estimations of four free agents converge to their true positions (x: initial estimation;
o: final estimation)

unit circle).

Since the configuration & is gemeric and the digraph G contains a spanning 2-tree whose
two roots are the anchor agents 1 and 2, all the principal minors of the submatriz Ly; are
nonzero. Therefore by Lemma , there exists an invertible diagonal matriz Ey such that

all the eigenvalues of I — E¢L¢y lie inside the unit circle. For computing such Er, we apply
Algorithm and obtain

E; = diag(—0.4183 4 0.1121j, 0.25 + 0.433j, —0.5j, —0.5).

Then an invertible diagonal matriz E such that, except for two eigenvalues 1, all the other

etgenvalues of I — E'L lying inside the unit circle is:

E = diag(1, 1, —0.4183 + 0.1121j, 0.25 + 0.433j, —0.5], —0.5).



7.4. Simulation Examples 195

- nN
3 o 3

Estimation error ||z(k) — &||

—_

0.5

Time k

Figure 7.4: Estimation error of six networked agents asymptotically converges to zero

Indeed, the eigenvalues of I — EL are:
1,1,0.8341,0.7113,0.1834 + 0.2947j,0.1834 — 0.2947j.

With the initial condition x,(0) = [1 33T of the two anchor agents and a random initial
condition x;(0) € C* of the 4 free agents, a simulation of the TDLA (i.e. z(k+1) =
(I — EL)x(k)) yields the trajectories displayed in Fig. . In the figure, X denotes the
initial estimated positions, while o the final estimated positions. First observe that the two
anchor agents never change their estimations of their positions (1 and eI respectively),
because these global positions are already known and never need to be updated. For the four
free agents, they start from some random estimations of their positions, and it is observed
that these estimations converge to their true positions.

Let e(k) := ||z (k) — &]||2 be the total estimation error of the networked agents. Then Fig.

shows that e(k) converges to zero asymptotically.
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Figure 7.5: Fifteen networked agents

Example 7.4 Consider a network of 15 agents as displayed in Fig. . Agents 1 and 2 are
anchor agents, and the rest are free agents. This digraph contains a spanning 2-tree whose
two roots are the two anchor agents.

First, we consider a regular polygon to be the configuration (fized positions of the 15 agents

in a plane):

2r: 4mw; 6mw: 8m: 10w 12w: 14w 16w 18w : 20w 22w 24w : 26w 28w
E=[1eTs) e18) e18) 150 180 18 e 15) e 15 157 150 150 g 18J e 15 e154 |1

Thus & is generic. We then design a complex graph Laplacian L such that rank(L) = 13,
and compute by Algorithm an invertible diagonal matrix E such that all the eigenvalues
(except for two eigenvalues 1) of I — EL lie inside the unit circle. With the initial condition
24(0) = [1 BT of the two anchor agents and a random initial condition x;(0) € C'3
of the thirteen free agents, a simulation of the TDLA yields the trajectories displayed in
Fig. , Observe that the estimations of the free agents converge to their true positions.
The estimation error e(k) := ||x(k) — £||2 is displayed in Fig. , which converges to zero
asymptotically.

Second, we consider a triangle shape to be the configuration (fized positions of the agents in

a plane):
E=[4 —1+3j1+3)] —2+2/2j2+2] —3+j —1+jl+j3+j —4 —2024]".

Note that this € is not generic, because there are multiple cases of three points on the same
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-1 -0.5 0 0.5 1
Re(zi(k)),1=1,...,15, k>0

Figure 7.6: Generic configuration: estimations of thirteen free agents converge to their true positions
(x: initial estimation; o: final estimation)

line: e.g. the last three entries 0,2,4 of &. For this example, nevertheless, a complex graph
Laplacian L may still be designed such that rank(L) = 13, and an invertible diagonal matriz
E is obtained by Algorithm such that all the eigenvalues (except for two eigenvalues
1) of I — EL lie inside the unit circle. With the initial condition z,(0) = [4j — 1+ 3j]"
of the two anchor agents and a random initial condition x¢(0) € C'3 of the thirteen free
agents, a simulation of the TDLA yields the trajectories displayed in Fig. , Observe that
the estimations of the free agents again converge to their true positions, and the estimation

error asymptotically diminishes as displayed in Fig. .
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Estimation error ||z(k) — &||2

0 500 1000 1500 2000
Time k

Figure 7.7: Generic configuration: estimation error of fifteen networked agents asymptotically
converges to zero
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« Y. Diao, Z. Lin, M. Fu, A barycentric coordinate based distributed localization algorithm for
sensor networks, IEEE Transactions on Signal Processing, vol.62, pp.4760-4771, 2014

e Z. Lin, T. Han, R. Zheng, M. Fu, Distributed localization for 2-D sensor networks with
bearing-only measurements under switching topologies, IEEE Transactions on Signal Pro-
cessing, vol.64, pp.6345—-6359, 2016

e Z. Lin, T. Han, R. Zheng, C. Yu, Distributed localization with mixed measurements under

switching topologies, Automatica, vol.76, pp.251-257, 2017
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k>0

.15,

Im(z;(k)),i=1,..

-3 -2 -1 0 1 2 3 4
Re(zi(k)),i=1,...,15, k>0

Figure 7.8: Nongeneric configuration: estimations of thirteen free agents converge to their true
positions (x: initial estimation; o: final estimation)
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10,

Estimation error ||z(k) — &||2

0 2000 4000 6000 8000 10000

Time k

Figure 7.9: Nongeneric configuration: estimation error of fifteen networked agents asymptotically
converges to zero



Part V
Spanning Multi-Tree Digraphs:

Affine Formation and Localization

This part introduces distributed affine formation control and localization in arbitrary-dimensional
space. The necessary graphical condition for solving these two problems in d-dimensions (d > 2) is
that digraphs contain a spanning (d+ 1)-tree. The type of Laplacian matrices involved in these two
problems is the signed Laplacian matrices. For agent dynamics, linear time-invariant first-order
systems are considered, with continuous-time for affine formation control while discrete-time for

localization.



202




CHAPTER 8

Affine Formation in Arbitrary
Dimensional Space

In this chapter, we study a formation control problem of multi-agent systems in arbitrary dimen-
sional space. In Chapter E we introduced a similar formation control problem in 2D, which is
applicable to teams of autonomous robots and mobile sensors moving on a plane. However, appli-
cations such as formation flying of unmanned aerial vehicles and ocean data retrieval of autonomous
underwater vehicles, 3D formation control methods are needed.

This chapter introduces a new formation control problem called affine formation control, which
includes Chapter E’s 2D similar formation control as a special case. Specifically, in a d (> 2)
dimensional space, a network of agents is required to form a geometric shape, which can be ob-
tained from a prescribed desired shape via translation, rotation, and dimension-wise scaling. The
dimension-wise scaling means that scaling factors along each dimension are possibly different. Pre-
cisely when all dimensional have identical scaling factors, affine formation control coincides with
similar formation control.

The solution for similar formation control in Chapter E was based on complex Laplacian, which
is however restricted to 2D only. To solve affine formation control in arbitrary dimensions, we
introduce the third type of graph Laplacian: signed Laplacian. Modeling the interacting agents by
digraphs, we show that a necessary graphical condition to achieve affine formation in a d (> 2)
dimensional space is that the digraph contains a spanning (d + 1)-tree, namely there exists (at
least) d + 1 agents that can reach all the other agents through independent paths. These d + 1
root agents play the role of leaders, which determine the translation, rotation, and dimension-wise
scaling offsets from the prescribed shape. Under this graphical condition, we present a distributed

algorithm for the agents to achieve affine formations.

8.1 Problem Statement

Consider a network of n (> 1) agents in d (> 2) dimensional space. Each agent i (€ [1,n]) has a

state variable z;(t) € R, which is a d-dimensional real vector and denotes the position of agent i

203
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in the d-dimensional space at time ¢. The time ¢ > 0 is a (nonnegative) real number and denotes

the continuous time. The motion of each agent is governed by the following:
where u;(t) € R is the d-dimensional control input.

Let digraph G = (V,€) model the interconnection structure of the n agents. Each node in
V = {1,...,n} stands for an agent, and each directed edge (j,i) in &€ C V x V denotes that agent
i can measure the relative position of agent j (namely z; — x; in agent ¢’s coordinate frame). The
neighbor set of agent i is N; :={j € V: (j,i) € £}.

Moreover, consider that digraph G is weighted: each edge (j,7) € V is associated with a real-
valued weight a;; € R. Hence the adjacency matrix A = (a;;), degree matrix D = diag(A1l,), and
Laplacian matrix L = D — A are all real. Note that the adjacency matrix A is not a nonnegative

matrix in general; thus L is a signed Laplacian.

Define a target configuration

&1
¢=|:]| eR™, where¢& € R and i€ [1,n]

&n

to be the assignment of the n agents to (d-dimensional) points in a global reference frame ¥. This
configuration £ specifies the d-dimensional formation shape that the agents are tasked to achieve. To
consider not just the ‘consensus formation’, we henceforth assume in this chapter that ¢ is linearly

independent from 1,4.

Given a target configuration ¢ € R™ we say another configuration ¢ € R™ is affine to ¢ if

there exist a matrix A € R4*? and a vector a € R? such that
(Vi € [1,n])¢) = A& + a.

Since an arbitrary real matrix A may be factorized by singular value decomposition as A = UT'V,
where U,V are unitary matrices (ie. UU' = U'U = LVVT = VIV =I)and I'is a d x d
diagonal matrix (diagonal entries being singular values), configuration £’ can be obtained from ¢
via a rotation by V', a scaling along every dimension by I', another rotation by U, and finally a

translation by a. This is an affine motion from &.
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Figure 8.1: Illustration of target configuration and affine configuration

For example, Fig. @ displays a target configuration & = [¢] - - ‘fg— T where

cos% —cos% 0 0
= 0 |,&= 0 |,63=|-cosT|,&a=]cosZ |,
T in T & o B
| sin 7 sin J sin J sin J
0 cos § —cos % 1
5= |—cosZ|,{=|—sinZ|,&=| sinZ |.,& = |0
4 3 3
_sing 0 0 0

This target configuration consists of eight points on a unit sphere in 3D. Also displayed is
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another configuration &’ affine to £, as it may be obtained from & via rotations and scalings

via A and a translation via a.

For a given target configuration &, let

A) : = {¢ e R™ | (34 € R™*? Ja € RY)(Vi € [1,n])E, = A& +a}
={¢ cR"™|(FAcR™ Ja e RN = (I, @ A +1,, ®a} (8.2)

be the family of all configurations affine to £&. Here ® is Kronecker product. We say that the n

agents with the aggregated state vector x = [z] --- x| form an affine formation with respect to

¢if z e A(¢).

To achieve an affine formation, consider the distributed control

U; = Z wij(acj — .IZ') (83)

JEN;

where the control gain w;; € R satisfies

(i) Z wi;(§ — &) =0 (8.4)

JEN;
(11) Wij = €;Q55, € € R7 €; 75 0. (85)

This control (@) is in the same form as that for similar formation in Chapter B: the gains w;; are
not simply the edge weights a;;, but are real multiples of a;; (@) and satisfy linear constraints
with respect to the target configuration & (@) Different from the control for similar formations

where edge weights and control gains are complex, here edge weights and control gains are real.

Moreover, substituting (@) into (@) and removing the common multiple ¢; yield

Z aij (& — &) = 0. (8.6)

JEN;
This in matrix form is (L ® I4)€ = 0. Since L1,, = 0, it follows that
ker(L ® Iq) 2 A(§). (8.7)

To see this, let £’ € A(€). Then there exist a matrix A and a vector a such that ¢’ = (I,®A){+1,®a.
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Hence

(L®I1a)¢" = (L ®Ia)((In ® A)§ + 1, @ a)
=(L® 1), ® A+ (L ® I4)(1, ®a)
= (L®A¢+ (L1,)®a
= (In ® A)(L ® 1a)¢
= 0.

The above derivation means £’ € ker(L ® I). From the above we know that if the control in (@)
satisfying (@) and (@) can be found, the kernel of L ® I; at least contains the family of all

configurations affine to the target &.

Affine Formation Control Problem:

Consider a network of agents modeled by (@) interconnected through a digraph, and let £ € R™¢
be a target configuration (linearly independently of 1,4). Design a distributed control u;(t) in (@)
such that

(i) ker(L ® L) = A(€)
(i) (V2(0) € R™)(3E' € A(©)) lim 2(t) = €'

The first requirement (i) strengthens (@) to equality; namely the kernel of L ® I; is exactly
the family A(£) of all configurations affine to £&. The second requirement (ii) means that every

trajectory of the networked agents converges to an affine formation in A(§).

Example 8.1 We provide an example to illustrate the affine formation control problem.
As displayed in Fig. @, etght agents are interconnected through a digraph. The neighbor
sets of the agents are N1 = No = N3y = Ny = 0, N5 = {1,2,6,7}, Ng = {3,4,7,8},
N7z ={1,5,6,8}, and Nz = {4,5,6,7}.

Let the target configuration £ be eight (three-dimensional) points on a unit sphere (see
Fig. @) Thus the family A(€) contains all affine formations that can be obtained from &
via affine motions.

The affine formation control problem is to design a distributed control w;(t) in ) such
that the kernel of L ® I coincides with A(£), and moreover the agents’ aggregated state

vector asymptotically converges to an affine formation in A(E).

A necessary graphical condition for solving the affine formation control problem is given below.
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Figure 8.2: Illustrating example of eight agents

Proposition 8.1 Suppose that there exists a distributed control w;(t) in ) that solves
the affine formation control problem in a d-dimensional space. Then the digraph contains a

spanning (d + 1)-tree.

Proof. Let £ € R™ be a target configuration. Suppose that there exists a distributed control in
(@) that solves the d-dimensional affine formation control problem with respect to &, but that the
digraph G = (V, &) does not contain a spanning (d + 1)-tree. We will derive a contradiction that
ker(L ® 1) 2 A(&), thereby proving that G must contain a spanning (d + 1)-tree.

First, by definition G containing no spanning (d 4+ 1)-tree means the following. Let R be an
arbitrary set of d + 1 nodes. Then removing a set D of d nodes in V\ R and all their incoming and
outgoing edges, a subset Vp g V \ D is unreachable from R in the new digraph G’. We write this
as R /A Vpin G'.

Now let Vp :=V\ (Vp UD). This set Vp is nonempty because R C Vp (trivially). In addition,
even after removing D, the nodes in Vp can still be reached from R, i.e. R — Vp; but Vp 4 Vp.

Let m := |Vp| (> 1), and relabel

e nodes in Vp from v; to vyy,;
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e nodes in D from v, +1 t0 Uppd;
« nodes in Vp from v, 4411 to v,.

Then the signed graph Laplacian L of G’ after relabeling (denoted by L’) has the following structure:

! /
0
’ 11 12
L= [L’ L., L
21 22 23

The 0 matrix in the (1,3)-block is due to Vp /4 Vp in G'.

Also reorder the components §; of the target formation £ according to the above relabeling, and
denote the result by &’. By the assumption that there exists a distributed control in (@), we have
(L® I4)¢ =0 and L1, = 0. Substituting the relabeled L’ and &’ into the two equations yields

([t o ofen)e =0, [my 14, o]1.=0.

Since ¢ and 1,4 are linearly independent (linear independence of ¢ and 1,4 is assumed at the
outset), the rows of [L}; L), 0] are linearly dependent.

Now remove from L’ the d + 1 rows corresponding to R and d + 1 arbitrary columns. Since
R C Vp, it holds that the removed nodes have numbers in [m +d+1,7n]. Then the resulting matrix
Ly € RO=4-Dx(n=d=1) g

/ /

I L1 Lrao 0

R = / / ’
LR o1 Lras Lgos

Thus [L% 1, L 1o 0] still has m rows. Since the m rows of [Lj; L}, 0] are linearly dependent, so
are the m rows of [L% ; L 15 0]. Thus Li has less than n —d — 1 linearly independent rows, and
consequently det(L%) = 0.

Finally since the set R of d + 1 nodes is arbitrary, the original signed graph Laplacian L of
G’ does not have any minor with size n — d — 1 that has nonzero determinant. This means that
rank(L) < n —d — 2, and therefore ker(L ® I) 2 A(§). This is a contradiction to the solvability of
the affine formation control problem. The proof is now complete. O

Owing to Proposition @, we shall henceforth assume that the digraph contains a spanning
(d + 1)-tree.

Assumption 8.1 The digraph G modeling the interconnection structure of the networked agents

contains a spanning (d + 1)-tree.

Remark 8.1 (Affine formation versus similar formation in 2D) Consider the special case

d=2, i.e. a 2D plane (with two azes labeled x,y). In this special case, both affine formations and
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similar formations may be defined, but there is a notable difference. Let € € C™ or R?". A similar
formation & € C™ can be obtained from & via a translation, a rotation, and a scaling which is the
same for both x and y axes. On the other hand, an affine formation &' € R?™ can be obtained from
& via a translation, a rotation, a scaling for x axis and a possibly different scaling for y axis. Hence
an affine formation allows different scalings along different axes, and this is the reason why the
necessary graphical condition for achieving affine formations requires a spanning 3-tree, in contrast

with a spanning 2-tree required for similar formations.

Even if Assumption @ holds, not every configuration ¢ € R"? (linearly independent with 1,,4)
whose affine configurations may be achieved by a distributed control u;(t) in (@) An illustrative

example is provided below.

3

Figure 8.3: Eight-node digraph containing a spanning 3-tree
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Example 8.2 Consider a network of eight agents in a two-dimensional space (i.e. d =2).
Their interconnection is modeled by the digraph displayed in Fig. . This digraph G
contains a spanning 3-tree, with the root set R = {1,2,3}. Now consider the following target

configuration & = [&] - &J]T where

e I A R A A B

This target configuration & has its first seven two-dimensional points on the same line. Thus

0
-6l

& is not generic, though it is linearly independent from 116. For this non-generic &, for every
signed Laplacian L of G with (L ® I3)€ = 0, it is verified that rank(L) < 4. To see this, write
(L ® )¢ explicitly as

0 0 0 0 0 0 &
0 0 0 0 0 0 &2
0 0 0 0 0 0 0 0 &3
ls 0 0 lyga lys 0 lyy O ® [1 0] &4
0 Iss 0 Ilsq Ils5 Ilsg O 0 0 1 &5
0 0 s O g5 lesg lor O &6
0 0 0 lza O 76 77 lzs &7
Is1 ls2 ls3 O 0 0 0 lgs] 53

For the forth row of L (other rows are similar), it follows from Llg =0 and (L ® 1) =0
that

lag +laa +las + a7 =0
(lgn ® I)&1 + (laa @ 12)&s + (s ® 12)&5 + (a7 @ I2)&7 = 0.

To satisfy these equations, the entries l31, 32,133,135 are such that

l41 &7 — & 1

l — 1

4l 01— e &1 — &5 — e ® 1,
lss &4 — & -1

ly7 & — & !

for some monzero real number cy. Similarly the (four) entries of rows 5,6,7,8 may be

determined up to a nonzero real multiples cs, cg, c7,cs (respectively). For simplicity, letting
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c=4=c5=cg=cy=cg =1 we have one instance of L as follows:

[0 000 0 0 0 O
0O 000 0 0 0 0
0O 000 0 0 0 0
L1 001 10 10
0 102 -1 -2 0 0
0 030 -3 -3 3 0
0 000 0 -1 1 0
2110 0 0 0 0

This L has rank 4, meaning that the last five rows are linearly dependent. Then for arbi-
trary values of cq4,cs, cg, 7, Cs, these five rows cannot become linearly independent. Hence
rank(L) < 4 for every L with (L ® I5)§ = 0. This means that ker(L ® I3) 2 S(€), and con-
sequently there does not exist a distributed control in ) that solves the affine formation

control problem with the chosen target configuration &.

In virtue of Example @, we henceforth require that the target formation £ be generic. The
requirement is mild, nevertheless, inasmuch as the set of all non-generic configurations has Lebesgue
measure zero. This means that for a given non-generic configuration £, randomly perturbing its
entries generates a generic configuration. It is also noted that every generic configuration £ is

linearly independent with 1.

Assumption 8.2 The target configuration &€ = [£] ---&1]T € R™ 4s generic.

8.2 Distributed Algorithm

Example 8.3 Consider again Example , where the target configuration consists of eight
(three-dimensional) points on a unit sphere (see Fig. @) This & is generic (because no
four points are on the same plane).

To achieve an affine formation of &, we consider using the simplest form of the distributed
control (@) by setting all ¢; = 1:

B =Y ay(;(k) —wi(k), i€[L,8] (8.8)

JEN;
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where a;; € R are real edge weights to be designed to satisfy )
Y e -&) =0, i€[L,8]
JEN;

Now we illustrate how such real weights may be designed. Take agent 6 for example: it has
four neighbors 3,4,7,8. Thus we must find weights ags, aea, agr, ass such that ags(§s —&e) +
asa(€1 — &6) + aer(§7 — &6) + ass(8s — &6) = 0. Substituting vectors &3, 84,6, &7, &5 yields

T s T us
—cos % —cos % 72(3035 1fcos§
ag3 |sin % — COoS g + agyq |sin g + cos g + ag7 | 2sin % + ags sin % =0.
—sin 7 —sin 7 0 0

The above reduces to a system of linear equations, with four unknowns (the weights) and
three equations. Thus there are infinitely many solutions (indeed the solution space is one

dimensional). One solution is ag3 = —sin §,as4 = sin §,ae7 = cos J(cos § — 1), a6 =

3> 3
—2cos § cos 7. Note that this weight design can be done locally by individual agents if relative
information & — & (j € Ni) is available.

Stmilarly we design other weights to satisfy , and write ) in vector form:

& 0 0 0 0 0 0
To 0 0 0 0 0 0
T3 0 0 0 0 0 0
Ta| 0 0 0 0 0 0
Ts cosg —sing —cosg —sing 0 0 2sin § —cos g
T 0 0 —sing sing 0 cos 7 (cos § + 1)
T7 —sin & 0 0 0 sink —icosZ(l+sin% +cos %)
g 0 0 0 1 1 -1
0 0 [ ]
0 0 To
0 0 I3
1 00
0 0 T4
. 0 ®[0 1 0
cos & %
1 00 1|
cos 7 (cos 5 — 1) —2cos § cos § xg
scosT(1—sinZ —cosT) cosZ(sin% + cosF) x7
-1 0 T
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Inspect that the matriz above has zero row sums, and is indeed the minus of the signed
Laplacian matriz L of the (real) weighted digraph. It is also checked that (L ® I3)§ = 0,
namely the target configuration lies in the kernel of L ® I3. Moreover, there are eractly
four eigenvalues 0 of L, and hence ker(L ® I3) = A(§) (the first requirement of the affine
formation control problem is satisfied).

However, the nonzero eigenvalues of matrix —L are
—1.0578, —2.371,0.3828 + 0.8926j, 0.3828 — 0.8926j

and hence —L is not stable (the last two eigenvalue have positive real parts). Therefore to
stabilize x(t) to the kernel of L® I3 (to satisfy the second requirement of the affine formation
control problem), the unstable eigenvalues of —L must be moved to the open left-half plane.
This shows that simply setting all ¢; =1 in (@) does not work in general. In fact, €; need

to be properly chosen in order to stabilize —L.

In the following we re-describe the distributed control (@) in vector form, and will analyze its

stability in relation to the values of ¢; in the next section.

Affine Formation Control Algorithm (AFCA):
Every agent i has a state variable z;(t) € R? (d > 1) representing its position in a d-dimensional
space at time t; the initial state x;(0) is an arbitrary d-dimensional real vector. Offline, each agent

i computes weights a,; by solving (@)
> aiy - &) =0
JEN;

Then online, at each time ¢ > 0, every agent ¢ updates its state z;(¢) using the following distributed

control:

U =€ Z aij(r; — x;) (8.9)

JEN;

where ¢; € R\ {0} is a (nonzero) real control gain.

T

Let z := [z ---2]]T be the aggregated state of the networked agents, and E = diag(ey, ..., €,)

the (diagonal) control gain matrix. Then the n equations (@) become
t=((—FL)® Ig)x. (8.10)

Remark 8.2 The above AFCA requires that the following information is available for each indi-
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vidual agent i:
o & —& forall j € N; (offline computation of weights)

o x; —x; for all j € N (online computation of control inputs).

8.3 Convergence Result
The following is the main result of this section.

Theorem 8.1 Suppose that Assumptions @ and @ hold. There exists a (diagonal and
invertible) control gain matric E = diag(eq,...,€,) such that the AFCA solves the affine

formation control problem.

To prove Theorem El], we will analyze the eigenvalues of the matrix (—EL) ® I in () For
this, the following fact is useful (which is the real counterpart of Lemma @)

Lemma 8.1 Consider an arbitrary square real matriz M € R™*™. If all the principal minors
of M are nonzero, then there exists an invertible diagonal matrizx E = diag(ey,...,€,) €

R™ "™ such that all the eigenvalues of EM have positive real parts.

Proof: The proof is based on induction on n. For the base case n = 1, M = my; is a nonzero scalar
(as the principal minor of M is nonzero). Let € := an Then EM = eymy; = 1(= det(E)det(M)).

For the induction step, suppose that the conclusion holds for M € R(»=1Dx(=1)_Gince the n—1
eigenvalues are either positive real or conjugate pairs with positive real parts and det(E)det(M) =
A1+ Ap—1, we have det(FE)det(M) > 0. Now consider M € R™*"  with all of its principal minors
nonzero. Let M; be the submatrix of M with the last row and last column removed. Then all
the principal minors of M, are nonzero, and by the hypothesis there exists an invertible diagonal
matrix E; = diag(ey,...,€e,—1) such that all the eigenvalues A1,...,A\,—1 of E1M; have positive

real parts. Now write

M, M-
M= 1 2
M3 Mpn
where m,, is a nonzero scalar (since all the principal minors of M is nonzero). Also let

Ei 0
0 €,

E =
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for some real ¢,. Thus

E, 0| |M M E M, E{M.
EM— | 1 2 | _ |E1dh 1M3
0 €n MS Mpn enMS EnMnpn
If €, = 0, then
E\M, FE{M.
EM - | 1Mz
0 0
which means that EM has a (simple) eigenvalue A, = 0 and all the rest n — 1 eigenvalues
A1,--.,An—1 have positive real parts. Since eigenvalues are continuous functions of matrix en-
tries, for sufficiently small |e,| > 0, EM still has n — 1 eigenvalues \j,..., A, _; with positive real
parts.

Now we consider the last eigenvalue A,. Since det(E) # 0, det(M) # 0, and det(EM) =
Ao+ AL, we have X # 0. If X/ is complex, then it must be a conjugate to an existing eigenvalue
whose real part is positive. Hence )/, also has positive real part. If \/ is real, then \},..., A/ _;

are symmetric with respect to the real axis. As a result, the product of the first n — 1 eigenvalues

is positive, i.e. A} ---Al,_; > 0. Also note that
det(EM) = e det(Ey)det(M) = N -+ N, _ AL

Thus choosing (sufficiently small) €, such that e,det(E;)det(M) > 0, we derive X/, > 0. This proves
the induction step, and thereby completes the proof. O

The above proof suggests an algorithm (Algorithm @ below) to compute an invertible diagonal
matrix £ = diag(e,...,€,) such that all the eigenvalues EM have positive real parts. This
algorithm is simpler than Algorithm @ in Chapter E, since computing €; on line 5 does not involve
product of eigenvalues. By the proof of Lemma @, one can always choose appropriate (small)
d1,...,0, in line 1 so that Algorithm @ outputs an invertible diagonal matrix E that renders all

the eigenvalues EM with positive real parts.

Lemma @ provides a sufficient condition under which the eigenvalues of a real matrix may
be moved to the open right-half plane using an invertible diagonal real matrix. The following
proposition asserts that this condition holds for the submatrix of the signed Laplacian L of a
digraph containing a spanning (d + 1)-tree, with the d+ 1 rows and d+ 1 columns corresponding to
the roots removed. More formally, consider a digraph G = (V,€) and let L be a signed Laplacian
matrix of G (corresponding to a specific choice of edge weights). Let R C V, and denote by Lz the

submatrix of L by removing the rows and columns corresponding to K.



[\
—_
-~

8.3. Convergence Result

Algorithm 8.1 Diagonal Stabilization Algorithm (case of real matrix, right-half plane)

Input: square real matrix M € R™*™ with nonzero principal minors
Output: invertible diagonal matrix £ € R™**"

set d1,...,0, to be small positive real numbers

€= man)

: E1 = diag(el)

: fori=2,...,ndo

€

i = dct(Ei_l)dgtl(M(lzi,l:i))
Ei = diag(el, ey 61')

end for

. B = diag(er,...,€n)

A A T

Proposition 8.2 Consider a digraph G = (V,E) and a configuration . Suppose that As-
sumptions @ and hold. Let R be a set of d+ 1 roots. Then for almost all signed

Laplacian L satisfying (L ® I4)€ = 0, all principal minors of Lr are nonzero.

To prove Proposition @, we first establish two lemmas.

Lemma 8.2 Consider a digraph G = (V,E) and suppose that G contains a spanning (d+1)-
tree (Assumption @) Let v1,...,v441 € V be d+ 1 roots (renumbering if necessary) and
R :={v1,...,v4+1}. Then for almost all signed Laplacian L, all principal minors of Lg

are nNonzero.

Proof: The proof is based on induction on k, where k is such that the digraph G contains a spanning
k-tree. First consider the base case, namely £ = 1 and G contains a spanning tree. Without loss
of generality let v; € V be a root and R := {v;}. For this case, in Lemma @(1) we have shown
that the conclusion holds for almost all complex Laplacians, which include signed Laplacians as a
special case. Hence for almost all signed Laplacian L, all principal minors of L are nonzero.

Next consider the induction step, namely k¥ = d and G contains a spanning d-tree with a root
set R = {v1,...,vq}. Suppose that for almost all real Laplacian L of G, all principal minors of Lz
are nonzero. It will be shown that the same conclusion holds for k = d + 1 , in which G contains a
spanning (d + 1)-tree with a root set R = {v1,...,04,V4+1}-

Remove an arbitrary node in R (say v1) and all its incoming and outgoing edges, and denote
the resulting subgraph G’. Then G’ contains a spanning d-tree (R’ := {va,...,v441} being a root
set), and it follows from the induction hypothesis that for almost all signed Laplacian L’ of G’; all
the principal minors of L%, are nonzero. Since the principal minors of L%, are identical with those
of Ly, where L is a signed Laplacian of G, the conclusion is established. O

For the second lemma, we introduce the following notation. Consider a digraph G = (V,&)
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and let L be a signed Laplacian matrix of G. Let R C V, and denote by L™ a submatrix of L by

removing the rows corresponding to R and arbitrary |R| columns.

Lemma 8.3 Consider a digraph G = (V,E) and suppose that G contains a spanning (d—+1)-
tree (Assumption @) Let vy,...,v441 € V be d+ 1 roots (renumbering if necessary) and
R :={v1,...,vq11}. Then for almost all signed Laplacian L, det(L™) # 0.

Proof: The proof is based on induction on k, where k is such that the digraph G contains a
spanning k-tree. First consider the base case: namely £ = 1 and G contains a spanning tree. Let
vy be a root of G (without loss of generality), R := {v1}, and L a signed Laplacian of G. For this
case, in Lemma (1) we have shown that the conclusion holds for almost all complex Laplacian of
G, which include signed Laplacian of G as a special case. Hence for almost all signed Laplacian L
of G, det(L®) # 0.

Next consider the induction step: namely k& = d and G contains a spanning d-tree with a root
set R := {v1,...,v4} (without loss of generality). Suppose that for almost all signed Laplacian L
of G, det(L™) # 0. It will be shown that the same conclusion holds for k = d + 1, where G contains
a spanning (d 4 1)-tree with a root set R := {v1,...,vq4,va+1} (without loss of generality).

Consider k¥ = d + 1. Let L® be a submatrix of L with d + 1 rows corresponding to R =
{v1,...,04,v441} and arbitrary d + 1 columns removed. Also let Y be the set of d + 1 nodes that
correspond to the removed columns. If VNR =% (); then let v; € Y NR. Remove v; and all its
incoming and outgoing edges, and denote the resulting subgraph G’. Then G’ contains a spanning
d-tree (R \ {v;} being a set of d roots), and it follows from the induction hypothesis that for almost
all signed Laplacian L' of G', det((L/)®\Mvi}) £ 0. This implies det(L™) # 0 for almost all signed
Laplacian L of G.

It remains to consider the case YV NR = (); namely the nodes corresponding to the removed
columns are not in the root set R. For this, let v; € V\ R, and denote by p; (i € [1,n]) the ith row

of L. Consider the following elementary row transformations:

D1 -k1p1 4+ 4 knpn-
Pd+1 - Pd+1
L = . — L = .
Y23 Y23

where k1, ..., k, are proper coefficients such that the d + 2 entries E(l, 1), f/(l, d+1), E(l, i) on

the first row of L are nonzero. Such coefficients always exist because each of the d + 1 roots has at
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least one outgoing edge. Denote by G the digraph corresponding to L. We claim that G contains

a spanning (d 4 1)-tree with a root set R := {vy,...,vq41,v;}. To see this, first note that vy is
(d 4+ 1)-reachable from R because L(1,2),...,L(1,d + 1), L(1,i) are nonzero and there are d + 1
edges (v2,v1),..., (Vay1,v1), (vi,v1). Now consider a node v; (j # 1,...,d + 1,i); there are two
cases:

« All d+1 disjoint paths from R to v; do not go through v;. Then v; is (d + 1)-reachable from
R: Vg = Vj, ..., V441 — Uj, and v; = v — v;.

« Among d + 1 disjoint paths from R to v;, there exists a path from v,, € R (m € [1,d + 1])
such that v,, — v; — v;. Then v; is also (d + 1)-reachable from R: Uy — V1 — j,

VI = Vjy oy, Um—1 —> Vjy Umg1 — Vg, ..., U1 — V5, and v; — v;.

Note that it is not possible that more than one path from R to v; goes through v; in virtual of the
definition of spanning d-tree. Hence our claim is established.

Now remove node v; and all its incoming and outgoing edges, and denote the resulting subgraph
G'. Then G’ contains a spanning d-tree (R \ {v;} being a root), and it follows from the induction
hypothesis that for almost all signed Laplacian L' of G/, det((ﬂ’)ﬁ\{”i}) # 0. Since L™ may be
obtained from (L' )ﬁ\{”i} via elementary row transformations (reordering the first row to the ith
position and recovering p;), we conclude that det(L™) # 0 for almost all signed Laplacian L of G.
The proof is now complete. ([l

With the above two lemmas, we now provide the proof of Proposition @

Proof of Proposition : By Assumption @, G = (V,€) contains a spanning (d + 1)-tree
T = (V,&7), where E C € and the set of d+1 roots R = {v1,...,v441} (renumbering if necessary).
Consider a signed Laplacian T of T such that all principal minors of Tk are nonzero. Such T always
exists by Lemma @ For the rank of T', on one hand rank(T) > n — d — 1 since det(Tr) # 0; on
the other hand rank(T) < n — d — 1 since the first d + 1 rows of T are zero row vectors. Hence
rank(T) =n —d — 1, and the kernel of T is d + 1 dimensional. One basis of this kernel is 1,, since
T is a signed Laplacian. Denote the other d bases by 7n1,...,1nq. Then 1,,7n1,...,nq are linearly
independent.

Writing H :=[1, n1 -+ 4] € R™*(4+1) " we claim that by removing any n — d — 1 rows of H,
the remaining square matrix H' € R(¢+D*(d+1) hag full rank, i.e. rank(H’) = d + 1. To see this,
suppose on the contrary that by removing certain n — d — 1 rows of H, the remaining matrix H' is
such that rank(H’) < d+ 1. Renumbering the indices of the removed rows to be Z := {d+2,...,n}

and accordingly reordering the rows of the matrix H transform H to

H= lM] . where M € REFDX(@HD) [ ¢ Rin—d=1)x(d+1)
N
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The above (contrapositive) assumption means rank(M) < d + 1. Namely, there exists a nonzero
vector ¢ € R¥*! such that M¢ = 0. On the other hand, reordering the columns of the signed
Laplacian matrix T according to Z and then removing the d + 1 rows corresponding to the d + 1

roots transform 7T to
T=[T T5], where Ty € RI-DX(@H) 7 g Rin-d-Dx(n=d-1),

By Lemma @, det(T3) # 0. It follows from TH = 0 that TH = 0; specifically:

{Tl TQ} M] —0.

Since M ¢ = 0, we derive from above equation that 7o N¢ = 0. Further, since det(7T2) # 0, we
have N¢ = 0. This implies H{ = 0, which means that its columns 1,,71,...,74 are not linearly
independent. This is a contradiction, and hence by removing any n —d— 1 rows of H, the remaining

matrix H’ has full rank after all.

Moreover, since each node v; € V' \ R has exactly d + 1 neighbors (by the definition of spanning

(d+1)-tree), each corresponding row of T" has at most d+ 2 nonzero entries. Thus equation TH = 0

yields:
1 1 ... 1 Tii
M Miy  Miges Ty, .
Ndi  Ndiy "~ Ndigprd Tiig
where v;,,...,v;,,, are the d + 1 neighbors of v;. Write
11 1
H e i 7]1'1'1 T Mliga T = [Tz T, - Tiidﬂ} i
Ndi  Mdix  *° "Ndigqa

Since by removing any n — d — 1 rows of H, the remaining matrix H’ € R(@+D>(d+1) hag full rank,
we have rank(H;) = d + 1. Hence the kernel of H; is one-dimensional, which means that T; (the

solution of the above system of linear equations) lies in a one-dimensional subspace.

Now consider a generic configuration ¢ = [¢] ---&]T € R"® and another signed Laplacian T”
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of T such that (T ® I;)€ = 0. This equation leads to

11 1] [1
& &1 o &l | T

. ) . . .| =0
§1a &ea - &nal LT,

for every ith row of 7’. Similar to T above, each row of T" corresponding to a non-root node

v; € V\ R has at most d 4+ 2 nonzero entries. It follows from the above equation that

1 1 1 T/,
fil £i11 e gid+11 Tilil -0
Gia Cina o Giwpal LT3,
where v;,, ..., v;,,, are the d + 1 neighbors of v;. Write
1 1 .- 1
§i1 & o gt
=g = . . . . ’ Tll = Tili ,‘Ti/il e T‘i/id+1:|

Sida Cina 0 Cigad

Since ¢ is generic, rank(Z;) = d + 1. Hence the kernel of =; is one-dimensional, which means that
T! (the solution of the above system of linear equations) lies in a one-dimensional subspace.

We claim that T; and T; have the same zero/nonzero patterns. To see this, suppose that Ti’j #0
(j € {iy41,...,%441}). Since T} is in a one-dimensional subspace, an arbitrary (nonzero) scaling of
T generates a new T;" with (still) 7;; # 0. This holds as long as rank(Z;) = d + 1. In particular,
as rank(H;) = d + 1, we have T;; # 0 (indeed T}; is a nonzero real multiple of 7};). The other case
where Ti’j = 0 implies Tj; = 0 is similar. Since all principal minors of T’z are nonzero, it follows
from the fact that a polynomial is either constantly zero or nonzero almost everywhere that all
principal minors of T%, are also nonzero.

Finally, returning to the digraph G and let L be a signed Laplacian of G satisfying (L ® I4)¢ = 0.
Compared with 7", L has more nonzero real entries. Again according to the fact that a polynomial
is either constantly zero or nonzero almost everywhere, we conclude that all principal minors of Ly
are also nonzero. The proof is now complete. ]

Finally we are ready to prove Theorem El]

Proof of Theorem @: Let Assumptions @ and @ hold. On one hand, it follows from Propo-
sition @ that for almost all signed Laplacian L of G satisfying (L ® I4)¢ = 0 (where £ is generic),
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rank(L) > n—d—1, i.e. dim(ker L) < d+1. On the other hand, by using the distributed control in
AFCA, we derive ker(L® I;) O A(§) as in (@)7 and thus dim(ker L) > d+ 1. Therefore for almost
all signed Laplacian L of G satisfying (L ® I;)§ = 0, we have ker(L ® I4) = A(§), which establishes

the first condition in the affine formation control problem.

For the second condition, let R = {vy,...,v441} (renumbering if necessary) be the set of d + 1
roots and Ly the submatrix of L of G with the fist d + 1 rows and columns corresponding to R
removed. Then by Proposition @, for almost all signed Laplacian L satisfying (L ® I4)€ = 0, all
principal minors of Lg are nonzero. It then follows from Lemma El] that there exists an invertible
diagonal matrix Er = diag(€egia,...,€,) such that all the eigenvalues of —Ex Lz have negative

real parts. Let

, o0 L Lo
0 Erl|’ Ly Lyl
It follows that
pr=—| " 01
ErLs FErlLg

Hence the spectrum (i.e. set of eigenvalues) of —F’L is the union of the spectrum of —Ex Lz and

{0,...,0} (aset of d+ 1 zeros). Let €1,...,€44+1 be sufficiently small positive real numbers and
€1 0 0
E = :
0 €d+1 0
0 0 Egr

Then all the diagonal entries of E are nonzero, and E is invertible. Thus rank(EL) = rank(L) =
n—d—1 (ie. ker EL = ker L), and there are d + 1 zero eigenvalues of —FEL. Moreover, since
eigenvalues are continuous functions of matrix entries and €y, ..., €441 are sufficiently small, the
rest n — d — 1 eigenvalues of —E'L still have negative real parts.

Finally consider the equation () &= ((-EL)®I;)x. By the property of Kronecker product,
the matrix (—EL) ® I; has d(d + 1) zero eigenvalues and d(n — d — 1) eigenvalues with negative

real parts. Hence for an arbitrary initial condition z(0),
x(t) = ker (—EL) ® Iy =ker (—L) ® Iy = A(§)

as t — oo. Namely the second condition of the affine formation control problem is established. This

completes the proof. O
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8.4 Simulation Examples

Example 8.4 Let us consider again Example @, where the (generic) target configuration
consists of eight 3-dimensional points on the unit sphere (Example @ ). We have designed
a signed Laplacian L of the digraph modeling the interconnection of the eight agents in
Example @ While it is satisfied that ker L ® I3 = A(£), two of the nonzero eigenvalues of
—L are unstable (i.e. with positive real parts). Thus we need to design an invertible diagonal
matriz E such that all the nonzero eigenvalues of —EL are stable.

Since the target configuration £ is generic and the digraph G contains a spanning 4-tree with
the root set R = {1,2,3,4}, all the principal minors of the submatriz Lr (with the four
rows and columns corresponding to R removed) are nonzero. Therefore by Lemma @, there
exists an invertible diagonal matrix Eg such that all the eigenvalues of —ERr Lr are stable.

For computing such Er, we apply Algorithm @ and obtain
Er = diag(0.5774,2.1213, —1.2879, —4).

Then an invertible diagonal matriz E such that all the nonzero eigenvalues of —EL are

stable is:
E = diag(1,1,1,1,0.5774,2.1213, —1.2879, —4).
Indeed, the eigenvalues of —EL are:
0,0,0,0,—0.7916 + 3.1798j, —0.7916 — 3.1798j, —0.9167 + 0.7416j, —0.9167 — 0.7416;.

With a random initial condition x(0) € R?* (whose entries represent eight random positions
of the agents in a 3D space), a simulation of the AFCA (i.e. © = ((—EL) ® I3)x) yields
the trajectories displayed in Fig. . It is observed that an affine formation of sphere is
formed. In the figure, X denotes the initial positions of the agents, while o the final positions.
Observe that the four root agents have stayed put as their initial and final positions coincide;

this is because they have no neighbors and thus have never updated their positions.

Example 8.5 Consider a network of 12 agents as displayed in Fig. @ This digraph G
contains a spanning 4-tree, with the root set R = {1, 2, 3,4}.
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Figure 8.4: Eight agents converging to an affine formation of unit sphere (x:

final position)

09

08

initial position; o:

We consider a cuboid to be the target configuration & = [¢] --- €] T, where & are

0 0
&1=10]|,6=|1
10] 10
- _
§r=10],&%=|1
_1_ _1_

753

a£9

1
=10
0
0
=10
-1

1_
)54 =11
0_

,§10 =

-1

0 0
&= 10],& = [1],
1 1
[0 1 1
11,6u=10],&2=]1
—1 -1

This £ is not generic, because there are multiple cases of four points on the same plane.
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Figure 8.5: Twelve networked agents

Hence we add a random perturbation [py ps p3]' to each & (where pi,p2,p3 € (0,0.1).
Denote the perturbed configuration by &', which is verified to be generic.

We then design a signed Laplacian L of the digraph G in Fig. @ such that rank(L) = 8, and
apply Algorithm @ to compute an invertible diagonal matrix E such that all the nonzero
eigenvalues of —EL are stable. With a random initial condition x(0) € R3 (whose entries
represent twelve random positions of the agents in a 3D space), a simulation of the AFCA
(i.e. & = ((—EL) ® I3)x) yields the trajectories displayed in Fig. . Observe that an
(approximate) cuboid affine to the perturbed & is formed.
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=1

A5 8

zo(t), i=1,...,12,t >0 Tnlt)i=1...,12,>0

Figure 8.6: Twelve agents converging to an affine formation of cuboid (x: initial position; o: final
position)

Example 8.6 Consider a network of 27 agents as displayed in Fig. @ This digraph G
contains a spanning 3-tree, with the root set R = {1,2,3}. Note that every node has three
neighbors, except for node 2 which has four neighbors.

We consider a two-dimensional unit circle to be the target configuration & = [£] - '-5;—7}—'—,

where &; are

lcos( Z”jg’;l) )
27

Sm(w“))] i€ [1,27).
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Figure 8.7: Twenty-seven networked agents (neighbor sets A7 = {2,3,27}, Mo = {1,3,4,27},
N3 ={1,2,4}, N; = {1,2,i — 1},i € [4,27])

This £ is generic. We then design a signed Laplacian L of the digraph G in Fig. @ such
that rank(L) = 24, and apply Algorithm @ to compute an invertible diagonal matriz E
such that all the nonzero eigenvalues of —EL are stable. With a random initial condition
2(0) € R%* (whose entries represent twenty-seven random positions of the agents in a 2D
space), a simulation of the AFCA (i.e. & = ((—EL)® Iy)x) yields the trajectories displayed
in Fig. @ Observe that an ellipsoid affine to the target circle & is formed. This is in contrast
with the 2D similar formations in Chapter B, because here generally different scalings are
allowed along the two dimensions. Also observe that no agent stays put, as everyone has

neighbors and thus updates its state correspondingly.

8.5 Notes and References

The concept of signed Laplacian and affine formation control algorithm (AFCA) are first studied

in:

e Z. Lin, L. Wang, Z. Chen, M. Fu, Z. Han, Necessary and sufficient graphical conditions for
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Figure 8.8: Twenty-seven agents converging to an affine formation of unit circle (x: initial position;
o: final position)

affine formation control, IEEE Transactions on Automatic Control, vol.61, pp.2877-2891,
2016
Extension to affine formation maneuver control is reported in:

e S. Zhao, Affine formation maneuver control of multiagent systems, IEEE Transactions on
Automatic Control, vol.63, pp.4140-4155, 2018



CHAPTER 9

Localization in Arbitrary
Dimensional Space

In this chapter, we extend the distributed localization problem of multi-agent systems in Chapter E
from two-dimensional space to arbitrary dimensional space. This extension is practically useful
because many applications of localization using (wireless) sensor networks are not limited in a 2D
plane. For example, air quality monitoring and underwater information collection are instances in
3D space.

To solve localization in arbitrary dimensions, we develop an approach based on signed Lapla-
cian matrices (as in Chapter E for arbitrary dimensional affine formation control). Note that the
approach for solving localization in Chapter E based on complex Laplacian matrices was limited to
2D space, and cannot be used for higher dimensional localization.

We nevertheless adopt the same distributed localization scheme introduced in Chapter E Namely
we consider a sensor network composed of a minority of anchor nodes that know their positions
in the global reference frame (e.g. using a GPS), and the rest majority of free nodes that need to
determine their global positions based on their local frames and locally sensed information (e.g.
distances and bearing angles with respect to neighboring nodes).

Modeling the interacting sensor nodes by digraphs, we show that a necessary graphical condition
to achieve d-dimensional localization (d > 2) is that the digraph contains a spanning (d + 1)-tree
whose d+1 roots are anchor nodes. This condition is the same as the one for achieving d-dimensional
affine formation in Chapter E However, in the special case of d = 2, this condition differs from
the one (i.e. spanning 2-tree) for achieving 2D localization in Chapter H This difference is due to
distinct graphical requirements on designing appropriate signed and complex Laplacian matrices.
Under the above graphical condition, we present a distributed algorithm to achieve localization in

arbitrary dimensions.

9.1 Problem Formulation

Consider a network of n (> 1) agents that are stationary in d-dimensional space (d > 2), and a global

reference frame Y which is unknown to the agents. The agents labeled 1,...,d + 1 (renumbering

229
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if necessary) are the anchor agents, whose positions &, ...,&; € R in ¥ are known. The rest
agents labeled d +2,...,n are the free agents, whose positions &40, . ..,&, € R? in ¥ are unknown

and need to be determined by these individual free agents. Let

&1 §d+2
c ]R(dJrl)d7 €f — . c R(nfdfl)d

& :
Edr1 &n

be the aggregated positions of the anchor and free agents, respectively. Write £ in terms of £, and

&
¢ Lf

and call ¢ the configuration of the agents.

&y as follows:

c Rnd

To determine its own position, each free agent i (€ [d + 2,n]) is equipped with a state variable
z;(k) € R%, which is a d-dimensional real vector and denotes the estimate of agent i’s position &;
under the global frame Y. The time k > 0 is a nonnegative integer and denotes the discrete time.
Let

Tat2(k)
xzf(k) = c R(n—d=1)d

be the aggregated state of the free agents at time k. It is desired that
xy(k) = & as k — oo.

For convenience, also let
xl(k)
zo(k):=| | eREFV
Tat1(k)
be the aggregated state vector of the anchor agents, such that z,(k) = &, for all k > 0 (i.e. the

anchor agents know their positions in the global frame ¥ from the initial time & = 0 and never
upddatte their estimates). Write z(k) := [z,(k)" 2;(k)T]" € R"¥. Hence the aim of d-dimensional
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localization is to achieve

lim z(k) =¢.

k—oco

We model the interconnection structure of the networked agents by a digraph G = (V, £): Each
node in V = {1,...,n} stands for an agent, and each directed edge (j,i) in € C V x V denotes
that agent ¢ can obtain the relative state information from agent j. The neighbor set of agent i
is N, :=={j € V: (ji) € &} For the d + 1 anchor nodes (numbered 1,...,d + 1), since they
do not update their states, even if they had neighbors, the corresponding incoming edges would
be associated with weight 0. This is equivalent to considering that the anchor nodes do not have

neighbors. For this reason, henceforth in this chapter we consider that A; = () for all ¢ € [1,d + 1].

Moreover, consider that digraph G is weighted: each edge (j,7) € V is associated with a real-
valued weight a;; € R. Hence the adjacency matrix A = (a;;), degree matrix D = diag(A1), and
Laplacian matrix L = D — A are all real matrices. Note that the adjacency matrix A is not a
nonnegative matrix in general; thus L is a signed Laplacian. Since N; = @ for the anchor nodes

1 € [1,d + 1], the signed Laplacian matrix L has the following structure:

Laa Laf
Lga Lyy

L= . (9.1)

B l 0 0
Lya Lys
Here Ly, € RM=d=1x(d+1) and [;; € R(1-d=Dx(n—d=1),

To achieve localization in d dimensions, consider the distributed control

wi(k) = Y wij(a;(k) — z:(k)), i€ [Ln]. (9.2)

JEN;

Here the control gain w;; satisfies

(1) D wi(§—&)=0 (9.3)

JEN;
(ii) Wij = €;Q45, € € R,¢; 75 0. (94)

This control (@) is in the same form as that for the 2D localization in Chapter H: the gains w;; are
not simply the edge weights a;; € R, but are real multiples of a;; (@) and satisfy linear constraints
with respect to the target configuration & (@) In contrast with Chapter H, on the other hand,

here the gains w;; are real numbers rather than complex ones.
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Moreover, substituting (@) into (@) and removing the common multiple ¢; yield

Y ai(é &) =0. (9.5)

JEN;

This in matrix form is (L ® 15)€ = 0. In view of (@) we have

0 0 §a| 0
Lio®@1q Lyp®Ig| (&
Hence the following equation ensues:
(Lff ® Id)gf = _(Lfa ® Id)ga (96)

which relates the configuration of the free agents to that of the anchor agents through appropriate

multiplications of submatrices of the signed Laplacian.

Arbitrary Dimensional Localization Problem:

Consider a network of agents (stationary in d-dimensional space) interconnected through a
digraph and a configuration ¢ := [¢] §I]T € R™, which represents the fixed positions of the agents
under the global reference frame ¥. Here &, € R4+ is known but & € R(=d=1d j5 unknown.

Design a distributed algorithm using the control in (@) such that

(i) rank(L) =n—d -1
(i) (Vz;(0) € R(n=d=Dd) Jim (k) = &
— 00
The first requirement (i) implies rank(Ls¢) = n — d — 1; namely Ly is invertible. This implies
that (Lys ® I4) is also invertible. Thus it follows from (@) that & = —(Lyf @ Iq) (Lo @ 14)&a.
Hence the second requirement (ii) becomes:

(Vap(0) € R lim 2 (k) = —(Lyy ® Ig) " (Lya ® La)a.

k—o0

Example 9.1 We provide an example to illustrate the localization problem in d(= 3) dimen-
stons. As displayed in Fig. @, eight agents are interconnected through a digraph; agents
1,2,3,4 are anchor agents while the rest five are free nodes. The neighbor sets of the agents
are N1 = No = N3 = Ny =0, N5 = {1,2,6,7}, Ng = {3,4,7,8}, N7 = {1,5,6,8}, and
Ng ={4,5,6,7}.

Let the configuration &€ = [&] --- &4 | of the agents be the vector of eight (three-dimensional)
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Figure 9.2: Hlustrating example of a configuration of eight 3D points on the unit sphere
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points on the unit sphere (refer to Fig. @), where

cos 7 —cos 0 0
&= 0 |,6= 0 &3 = |—cos G| ,6a= | cosf |,
M s 3 us s s 3 s
_SIHZ Sll’lz —Slnz —Slnz

0 cos% fcosg 1

&= |[—cost|,66= |—sing|,&r=| sin% |,&= |0

_Sin% 0 0 0

The position vector of the anchor agents £, = [&] & &5 €]1T is known, and that of the free
agents &5 = [&] &] & €117 is unknown and needs to determined.

The localization problem in 3D is to design a distributed algorithm using the control in )
such that the rank of the signed Laplacian L be n — 4, and moreover the free agents’ state

vector asymptotically converges to &y.

A necessary graphical condition for solving the d-dimensional localization problem is given below.

Proposition 9.1 Suppose that there exists a distributed control in (@) that solves the d-
dimensional localization problem. Then the digraph contains a spanning (d + 1)-tree whose

d+ 1 roots are the d + 1 anchor agents.

Proof. Suppose that there exists a distributed control in (@) that solves the d-dimensional
localization problem, but that the digraph G = (V, ) does not contain a spanning (d+1)-tree whose
d + 1 roots are the d + 1 anchor agents. We will derive a contradiction that rank(L) < n —d — 1,
thereby proving that after all G must contain a spanning (d + 1)-tree whose d+ 1 roots are the d+ 1
anchor agents.

There are two cases that need to be considered separately. First, the digraph contains a spanning
(d+1)-tree but at least one of the d+1 roots is a free agent. In this case, the subdigraph of free agents
contains at least a spanning tree (and at most a spanning (d+1)-tree). Hence rank(Lss) < n—d—1.
Since the anchor agents do not have neighbors, rank(L) <n —d — 1.

The second case is that the digraph does not contain a spanning (d + 1)-tree. Then it follows
similarly to the proof of Proposition Ell that rank(L) <n—d—1.

Therefore in both cases above, a contradiction is derived to the solvability of the d-dimensional
localization problem. The proof is now complete. O

Owing to Proposition @, we shall henceforth assume the following graphical condition.

Assumption 9.1 The digraph G modeling the interconnection structure of the networked agents

contains a spanning (d + 1)-tree whose d + 1 roots are the d + 1 anchor agents.
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Even if Assumption @ holds, not every configuration ¢ € R™ may be determined by a dis-
tributed control in (@) Similar to Example @, if £ is not generic, it is possible that rank(L) <
n—d—1 for all signed Laplacian matrices satisfying (L®1I;)§ = 0. This means that the d-dimensional
localization problem is not solvable. For this reason, and also the fact that the set of all non-generic

configurations has Lebesgue measure zero after all, we assume that the configuration & is generic.

Assumption 9.2 The configuration & = [£,] SI]T € R is generic.

9.2 Distributed Algorithm

Figure 9.3: Illustration of design of real weights

Example 9.2 Consider again Example , where the configuration & = [¢] - &7 of
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the agents consists of eight (three-dimensional) points on the unit sphere:

cos 7 —cos 0 0
&= 0 |,6= 0 &3 = |—cos | ,6a= | cos G |,
M s 3 us s s 3 s
_SIHZ Sll’lz —Slnz —Slnz

0 cos% fcosg 1

§s=|[—cost|.,66=|—sing|,&r=| sin% |,&= |0

_Sin% 0 0 0

This configuration & is generic.

The anchor agents’ configuration &, = [¢] &5 5;'— €117 is known, and the free agents’
configuration £y = [6d &4 &1 €17 is to be determined. To this end, we consider using the
simplest form of distributed control ) by setting all €; = 1:

zi(k+1) = 2i(k) + Y ai(z;(k) — zi(k)), i€ L8] (9.7)
JEN;

where a;; € R are real weights to be designed to satisfy )

> (€ —&) =0, iellL8].

JEN;
In the following we illustrate how the real weights may be designed locally to satisfy the above
linear constraints. Each free agent i € [5,8] has a local reference frame 3;, whose origin
is the (stationary) position of agent i. The orientation of ¥, is fized, but the three offset
angles a;, B, vi (counterclockwise) with respect to the global reference frame ¥ are unknown.
These offset angles give rise to a (fixed) rotation matriz R; relating the local frame ¥; to the
global 3. For each neighbor (free or anchor) j € N;, we assume that agent i can measure

the relative position y;; in X; as
Yij = Ri(& — &) (9.8)

Since R; is unknown, even though the relative position y;; in ¥; is known, § — & in X is
unknown. Substituting & — & = Ri_lyz-j into ) and multiplying R; from the left, we

derive

Z QijYi5 = 0. (99)

JEN;
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Hence the weights a;; may be designed based on the relative position y;; under the local
reference frame %;.

For example, Fig. provides an illustrative example. For agent 6, it has four neighbors
3,4,7,8. Thus we must find weights ags, ae4, ag7, ags Such that

a63Y63 + AeaYea + a67Ye7 + assyYss = 0.

The relative positions, as displayed in Fig. @, are

s s
0 Cos 7 —cos g 1
Yo3 = |—cos§|.yea = |—sinT | ,ye7= | sin% | ,yes = |0
sin 7 0 0 0

The local frame ¢ has (fived) offset angles from the global X: ag = 7, Bs = §,

(all counterclockwise with respect to X3). Then the corresponding rotation matriz is

and v6 = %

cos(§) —sin(3) 0| | cos(g) 0 sin(F) 0] |1 0 0
Rg = |sin(§) cos(5) O 0 1 0 0 cos(%) —sin(%)
0 0 1] [—sin(g) 0 cos(§) 0 sin(%) cos(%)

It is verified that

Yej = Rﬁ(gj - fﬁ)a .7 = 374763 T

Substituting the relative positions yss, Ye4, Y67, Yes into the equation agzyss+ asayes + as7yYs7 +
aesyYss = 0 yields

—0.8437 —1.4598 —1.1875 —0.1607
agz | —0.2367| +ags | 0.6964 | +ag7 | 0.3927 | + ags | 0.9464 | = 0.
—0.0857 0.7803 1.5607 0.2803

The above reduces to a system of linear equations, with four unknowns (the weights) and
three equations. Thus there are infinitely many solutions (indeed the solution space is one
dimensional). One solution is ags = —1,a64 = 1, a7 = —0.4082, ags = —0.8165.

Similarly we design other real weights to satisfy @), and write ) in vector form:
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z(k+1)=(I—-L)® I3)x(k) where

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0

-1 -3.7321 O 0 47321 -1.9319 1.9319 0

0 0 -1 1 0 1.2247 —-0.4082 —0.8165

-1 0 0 0 1 —0.9659 —0.1494 1.1154

0 0 0 -1 -1 1 1 0

1t is verified that the signed Laplacian matriz L has zero row sums and satisfies (L®I3) = 0.

Moreover, partition the matrix L according to anchor agents and free agents:

Laa Laf
Lia  Lys

L =

Thus Laq = Loy = 0; Ly, € R and Lyy € R4, It is checked that rank(Lsys) = 4,
and thus Ly¢ and (Lyy ® I3) are invertible. Therefore the first condition in the arbitrary
dimensional localization problem is satisfied.

It is left to verify the second condition that the state vector of the free agents (k) converges
to —(Lys @ I3) " (Lq @ I3)&, (when xq(k) = &, for all k > 0). Fiz &, € R'2. First note
that

€a
—(Lyr ®Is) M (Lsa ® I3)§a‘|

is the unique fized point of ) To see this, substituting T into ) yields T, which means
that T is a fized point of ) Moreover, let

be another fized point of ), namely

Bl 2L

®IS ga _ 14 0 fa )
:f;c —Lfa I4—Lff flf
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From the above we derive
jjff = _(Lff ® 13)_1(Lfa X I3)€a = ‘ff

This shows that T is the unique fized point of @), which in turn implies that starting
from an arbitrary initial condition x(0) = [¢] x}r(O)}T € R*, z¢(k) converges to —(Ly ®
I3) Y (Lo ® I3)&, if and only if all the eigenvalues of Iy — Ly lie inside the unit circle.

Unfortunately, the eigenvalues of matriz Iy — L¢s are
—0.0967 + 0.2167j, —0.0967 — 0.2167j, 2.3807, —3.9946.

The last two eigenvalues lie outside of the unit circle. Hence ) is unstable and x¢(k)
diverges. To stabilize z¢(k) to the desired fized point —(Lys @ I3) Y (Lysq ® I3)€, (to sat-
isfy the second requirement in the arbitrary dimensional localization problem), the unstable
eigenvalues of Iy — Ly must be moved inside the unit circle. This shows that simply setting
alle; =1 1in ) does not work in general. In fact, €; need to be properly chosen in order
to stabilize Iy — Lyy.

Remark 9.1 As dllustrated in Example @ for 3D localization, it is important for each agent to
have at least four neighbors to guarantee existence of (infinitely many) appropriate weights a;; such
that the signed Laplacian L satisfies (L ® I3)€ = 0. If an agent only had three or fewer neighbors,
appropriate weight a.; need not exist in general. This is why for general d-dimensional localization,
the digraph needs to contain a spanning (d + 1)-tree. Specializing to the case of d = 2, we need a
digraph containing a spanning 3-tree for solving 2D localization based on signed Laplacian. This
is in contrast with the result of Chapter H based on complex Laplacian, 2D localization is solvable

over a digraph containing a spanning 2-tree.

In the following we describe a distributed algorithm using (@) in vector form, and will analyze

its stability in relation to the values of ¢; in the next section.

Arbitrary Dimensional Localization Algorithm (ADLA):

Each anchor agent i € [1,...,d + 1] has a state variable z;(k) € R? whose initial value is set
to be z;(0) = & (which is known). Every free agent i € [d + 2,...,n] also has a state variable
z;(k) € R? whose initial value is an arbitrary d dimensional real vector. Offline, each free agent i

computes weights a;; € R based on the measured relative positions y;; = R;(§; — &) in (@) by
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solving

Z aijiyi; = 0.

JEN;
Then online, at each time k > 0, while each anchor agent stays put, i.e.
xz(k—kl):xz(k), 1€ [1,d+ 1]
each free agent ¢ updates its z;(k) using the following local update protocol:

.’I?l(k' + 1) = a)‘l(k/’) +€; Z Clij(.’lﬁj(k) - .’Ez(k')), 1 E [d + 2,n] (910)
JEN;

where ¢; € R\ {0} is a (nonzero) real control gain.

Let 2 := [#] --- z,|]T be the aggregated state of the networked agents, and
E = diag(eq, ..., €n)
the (invertible diagonal) control gain matrix. Then the n equations (9.1() become

e(k+1) = (I — EL) & L)z (k). (9.11)

9.3 Convergence Result

The following is the main result of this section.

Theorem 9.1 Suppose that Assumptions @ and @ hold. There exists an invertible di-
agonal control gain matric E = diag(eq, ..., €,) such that the ADLA solves the arbitrary

dimensional localization problem.

To prove Theorem @, we will analyze the eigenvalues of the matrix (I — EL) ® I in ()
For this, the following fact is useful (which is the real counterpart of Lemma @ and the discrete

counterpart of Lemma @)

Lemma 9.1 Consider an arbitrary square real matriz M € R™>™. If all the principal minors
of M are nonzero, then there exists an invertible diagonal matriz E = diag(e,...,€,) €
R™ ™ such that all the eigenvalues of I — EM lie inside the unit circle.

Proof: The proof is based on induction on n. For the base case n = 1, M = m;y; is a nonzero
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real scalar (as the principal minor of M is nonzero). Let ¢; € R be such that €; € (0, #ﬂ) Then
EM = eymq; € (0,1). Hence 1 — EM € (0,1), which lies inside the unit circle.

x(n=1)  Now consider

For the induction step, suppose that the conclusion holds for M € R(®—1)
M € R™ " with all of its principal minors nonzero. Let M; be the submatrix of M with the last row
and last column removed. Then all the principal minors of M; are nonzero, and by the hypothesis
there exists an invertible diagonal matrix F; = diag(es,...,€,—1) such that all the eigenvalues

1—MX,...,1=X,_1 of I — F4M, lie inside the unit circle. Now write

M, M,
M =
M3 Mpn

where my,,, is a nonzero scalar (since all the principal minors of M are nonzero). Also let

Ei 0
E= "
0 e,
for some real ¢,,. Thus
I EM— I 0 B Ei O |My M,y _ I — E{M; —E1 M,
0 1 0 e, | M3 mpn —e, M3 1—e,Mnn

If €, = 0, then

I—-E\My, —E1M;
0 1

I—-EM =

which means that all the eigenvalues of I— FE M lie inside the unit circle except for a simple eigenvalue
1. Since eigenvalues are continuous functions of matrix entries, for sufficiently small |e,|, I — EM

still has n — 1 eigenvalues 1 — \},...,1 — \/,_; which are inside the unit circle.

Now we consider the last eigenvalue 1 — \/,. If 1 — X/, is complex, then it must be a conjugate to
an existing eigenvalue inside the unit circle. Hence 1 — X/, is also inside the unit circle. If 1 — X/, is
real, it follows from Lemma El] that €, may be chosen such that X/ is a sufficiently small positive
number. Hence the last eigenvalue 1 — X/, lies within the unit circle. This proves the induction step,

and thereby completes the proof. O

The above proof suggests an algorithm (Algorithm @ below) to compute an invertible diagonal
matrix £ = diag(ey,...,€,) such that all the eigenvalues I — EM lie inside the unit circle. This
algorithm is identical to Algorithm @ in Chapter B, because appropriate d1,...,d, in line 1 can
always be chosen to render the eigenvalues of EM with sufficiently small positive real parts, which

in turn ensures that the eigenvalues of I — EM lie inside the unit circle.
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Algorithm 9.1 Diagonal Stabilization Algorithm (case of real matrix, inside unit circle)

Input: square real matrix M € R™*™ with nonzero principal minors
Output: invertible diagonal matrix £ € R™*"

: set d1,...,d, to be small positive real numbers
L= N0

E, = diag(er)

fori=2,...,ndo

_ 0;

€i = Jot(B;_1)det(M(1:1,1:7))
Ei = diag(el, ey 61')

end for

E = diag(eq,...,€n)

Lemma @ provides a sufficient condition under which the eigenvalues of a real matrix may be
moved inside the unit circle using an invertible diagonal real matrix. It then follows from Propo-
sition @ (recalled below for convenience) that under Assumptions @ and @ (Assumption @
implies Assumption @ and Assumption @ is the same as Assumption @), the sufficient condition
holds for the submatrix Ly of the signed Laplacian L. Hence there exists an invertible diagonal

matrix E; = diag(egt2, ..., €,) such that all the eigenvalues of I — E; Ly lie inside the unit circle.

Proposition @ Suppose that Assumptions @ and |9.4 hold. Let R be the set of d+1 roots
and Li the submatriz of L by removing the d+ 1 rows and d 4+ 1 columns corresponding to
R. Then for almost all signed Laplacian L satisfying (L ® I5)€ = 0, all principal minors of

Ly are nonzero.

With this preparation, we are ready to prove Theorem @

Proof of Theorem @: Let Assumptions El] and @ hold. On one hand, it follows from Propo-
sition @ that for almost all signed Laplacian L of G satisfying (L ® I;)¢ = 0 (where £ is generic),
rank(L) > n —d — 1. On the other hand, since the first d + 1 rows of L corresponding to the d + 1
anchor agents are zero, we have rank(L) < n — d — 1. Therefore for almost all signed Laplacian L
satisfying (L ® I;) = 0, we have rank(L) = n — d — 1, which establishes the first condition in the

arbitrary dimensional localization problem.

For the second condition, first note again from Proposition @ that for almost all signed Lapla-
cian L satistying (L ® I4)€ = 0, all principal minors of Ly are nonzero. It then follows from

Lemma El] that there exists an invertible diagonal matrix E; = diag(€g42, . . ., €,) such that all the
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eigenvalues of I — Ey Ly lie inside the unit circle. Let

€1 0
E,
E, = , E:= 0 , L= 0 0 .
0 Ef Lfa Lff
0 - e
Here €1, ...,€4+1 # 0. Then F is invertible and
I I
I EL— of 0 0 _ 0 .
0 I EfLiq EfLyy —EfLpq I—EfLy;

Hence the spectrum (i.e. set of eigenvalues) of I — F'L is the union of the spectrum of I — E;Lyy
(all inside the unit circle) and {1,...,1} (set of d + 1 ones).

It is left to verify that for arbitrary initial states of the free agents x;(0) € R(™=4=1d 5. (k)
converges to —(Lyf @ In) ™ (Lya @ Ia)éa(= &5) when z4(k) = &, for all k > 0. Fix &, € RUTD4,
First note that

€a
—(Lyr ®1a) " (Lya ® Id)ga]

is the unique fixed point of () To see this, substituting Z into () yields Z (thanks to the
fact that both E; and Ly are invertible), which means that Z is a fixed point of () Moreover,
let

be another fixed point of (), namely
&) 3
7y a

Ty = —(Lys @ 10) " (Lya @ Lg)éa = Ty

I 0
—E¢Lga I —EysLgy

From the above we derive

This shows that z is the unique fixed point of () Moreover, since all the eigenvalues of I —Ey Ly

lie inside the unit circle, we derive

(Vap(0) € R Yim ap(k) = —(Lyy ® Is) " (Lya ® La)éa(= &f)

k—oc0
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Namely, the second condition in the arbitrary dimensional localization problem is established. This

completes the proof. |

9.4 Simulation Examples

zi3(k), i =1,..

1

zp(k),i=1,...,8, k>0 za(k),i=1,...,8, k>0

Figure 9.4: Estimations of four free agents converge to their true positions (Xx: initial estimation;
o: final estimation)

Example 9.3 Let us consider again Example @, where the (generic) configuration £ con-

sists of eight (three-dimensional) points on the unit sphere. We have designed a signed
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Figure 9.5: Estimation error of eight networked agents asymptotically converges to zero

Laplacian L (copied below for convenience)

[0 0 0 0 0 0 0 0 |

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
|0 0 0 0 0 0 0 0

1 37321 0 0 47321 —1.9319 1.9319 0

0 0 11 0 1.2247  —0.4082 —0.8165

1 0 0 0 1 —0.9659 —0.1494 1.1154

0 0 0 -1 -1 1 1 0 |

While it is satisfied that rank(L) = 4, two of the eigenvalues of I — L are unstable (i.e.
outside the unit circle). Thus we need to design an invertible diagonal matriz E such that,
except for the four eigenvalues 1, all the other four eigenvalues of I — EL are stable (i.e.
inside the unit circle).

Since the configuration £ is generic and the digraph G contains a spanning 4-tree whose



Chapter 9. Localization in Arbitrary Dimensional Space

four roots are the anchor agents 1,2,3,4, all the principal minors of the submatriz Ly are
nonzero. Therefore by Lemma , there exists an invertible diagonal matriz Ey such that
all the eigenvalues of I — E¢L¢y¢ lie inside the unit circle. For computing such E¢, we apply
Algorithm @ and obtain

E; = diag(0.2113,0.2449, —0.1487, 0.4).

Then an invertible diagonal matrixz E such that, except for four eigenvalues 1, all the other

four eigenvalues of I — EL lying inside the unit circle is:
E = diag(1,1,1,1,0.2113,0.2449, —0.1487,0.4).
Indeed, the eigenvalues of I — EL are:
1,1,1,1,0.903 4 0.3549j,0.903 — 0.3549j, 0.7854, 0.0864.

With the initial condition x,(0) = &, of the four anchor agents and a random initial condition
z;(0) € R2 of the four free agents, a simulation of the ADLA (i.e. x(k+1)= (I - EL)®
I3)x(k)) yields the trajectories displayed in Fig. . In the figure, X denotes the initial
estimated positions, while o the final estimated positions. First observe that the four anchor
agents never change their estimations of their positions, because these global positions are
already known and never need to be updated. For the four free agents, they start from some
random estimations of their positions, and it is observed that these estimations converge to
their true positions.

Let e(k) := ||z(k) — £]|2 be the total estimation error of the networked agents. Then Fig.

shows that e(k) converges to zero asymptotically.

Example 9.4 Consider a network of 12 agents in Fxample (F'ig. @ s copied here for
convenience). Agents 1,2,3,4 are anchor agents, and the rest are free agents. This digraph
contains a spanning 4-tree whose four roots are the four anchor agents.

Let us consider a configuration & which is a 8D cuboid with

T

o an added random perturbation [p1 pa ps]', where p1,pa,ps € (0,0.1)

jus

e axg

rotation along the x-aris
e a 3-time scaling along all three dimensions

o a translation: 1 along the first dimension, —1 along the second dimension, and 2 along
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Figure 9.6: Twelve networked agents

the third dimension.

It is verified that this & is generic.

Now let &, = [&] & &5 &/1T and & =& -+ €,]T. We design a signed graph Laplacian
L such that rank(L) = 8, and compute by Algorithm @ an invertible diagonal matriz E
such that all the eigenvalues (except for four eigenvalues 1) of I — EL are stable (i.e. inside
the unit circle). With the initial condition x,(0) = &, of the four anchor agents and a
random initial condition x;(0) € R?* of the eight free agents, a simulation of the ADLA
(i.e. x(k+1)=((I— EL)® I3)x(k)) yields the trajectories displayed in Fig. 9.7. Observe
that the estimations of the free agents converge to their true positions. The estimation error

e(k) :=||z(k) — &||2 is displayed in Fig. , which converges to zero asymptotically.
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Example 9.5 Consider a network of 27 agents as displayed in Fig. . Agents 1,2,3 are
anchor agents, and the rest are free agents. This digraph contains a spanning 3-tree whose
three roots are the three anchor agents.

Consider a configuration & which is a 2D ellipsoid obtained from the unit circle by
o a 2-time scaling along the second dimension
o a l-unit translation along the first dimension.

This £ is generic.

Let &, =& & &7 and & = [&f -+ &3;)7. We then design a signed graph Laplacian L
such that rank(L) = 24, and compute by Algorithm @ an invertible diagonal matriz E& such
that all the eigenvalues (except for three eigenvalues 1) of I — EL are stable (i.e. inside the
unit circle). With the initial condition x4(0) = &, of the three anchor agents and a random
initial condition x;(0) € R*® of the twenty-four free nodes, a simulation of the ADLA (i.e.
z(k+1) = ((I — EL) ® Iy)x(k)) yields the trajectories displayed in Fig. , Observe that
the estimations of the free agents converge to their true positions. The estimation error

e(k) := ||x(k) — &||2 is displayed in Fig. , which converges to zero asymptotically.

9.5 Notes and References

The arbitrary dimensional localization algorithm (ADLA) is originated here, as a natural extension

of 2D localization in Chapter H and arbitrary dimensional affine formation control in Chapter E
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25

zi(k),i=1,...,12, k>0 8

Figure 9.7: Generic configuration: estimations of eight free agents converge to their true positions
(x: initial estimation; o: final estimation)
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Figure 9.8: Generic configuration: estimation error of twelve networked agents asymptotically
converges to zero

Figure 9.9: Twenty-seven networked agents
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1,...,27, k>0

$i2(k¢), 1

Figure 9.10: Generic configuration: estimations of twenty-four free agents converge to their true
positions (x: initial estimation; o: final estimation)
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Figure 9.11: Generic configuration: estimation error of twenty-seven networked agents asymptoti-
cally converges to zero
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