Multi-Agent Systems

Kai Cai

cai@omu.ac.jp

Graph theory: basic concepts

Graph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

node set $\mathcal{V} = \{v_1, \dots, v_n\}$
edge set $\mathcal{E} = \{(v_i, v_j), \dots\}$

Directed, undirected

generally $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is directed (directed graph, or digraph)

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 is undirected if $(\forall v_i, v_j \in \mathcal{V})(v_i, v_j) \in \mathcal{E} \Rightarrow (v_j, v_i) \in \mathcal{E}$

Directed, undirected

generally $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is directed (directed graph, or digraph)

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 is undirected if $(\forall v_i, v_j \in \mathcal{V})(v_i, v_j) \in \mathcal{E} \Rightarrow (v_j, v_i) \in \mathcal{E}$

Subgraph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

graph $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$ is a subgraph of \mathcal{G}
if $\mathcal{V}' \subseteq \mathcal{V}$ and $\mathcal{E}' \subseteq \mathcal{E}$

Spanning subgraph

subgraph
$$\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$$
 of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $\mathcal{V}' = \mathcal{V}$ and $\mathcal{E}' \subseteq \mathcal{E}$

Spanning subgraph

subgraph
$$\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$$
 of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $\mathcal{V}' = \mathcal{V}$ and $\mathcal{E}' \subseteq \mathcal{E}$

Induced subgraph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 and $\emptyset \neq \mathcal{V}' \subseteq \mathcal{V}$ induced subgraph by \mathcal{V}' is $\mathcal{G}' = (\mathcal{V}', \mathcal{E}'), \mathcal{E}' = \mathcal{E} \cap (\mathcal{V}' \times \mathcal{V}')$

example: $V' = \{1, 2, 3, 4\}$

 \mathcal{G}

Induced subgraph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 and $\emptyset \neq \mathcal{V}' \subseteq \mathcal{V}$ induced subgraph by \mathcal{V}' is $\mathcal{G}' = (\mathcal{V}', \mathcal{E}'), \mathcal{E}' = \mathcal{E} \cap (\mathcal{V}' \times \mathcal{V}')$

example: $V' = \{1, 2, 3, 4\}$

Neighbor

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $v \in \mathcal{V}$ neighbor set of v is

$$\mathcal{N}_v = \{ u \in \mathcal{V} \mid (u, v) \in \mathcal{E} \}$$

Neighbor

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $v \in \mathcal{V}$ out-neighbor set of v is

$$\mathcal{N}_{v}^{o} = \{ u \in \mathcal{V} \mid (v, u) \in \mathcal{E} \}$$

Degree

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $v \in \mathcal{V}$ degree of v is $d_v = |\mathcal{N}_v|$ $(|\cdot|: number of elements in the set)$

Degree

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and node $v \in \mathcal{V}$ out-degree of v is $d_v^o = |\mathcal{N}_v^o|$

Balanced graphs

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

node $v \in \mathcal{V}$ is balanced if $d_v = d_v^o$

Balanced graphs

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ node $v \in \mathcal{V}$ is balanced if $d_v = d_v^o$ \mathcal{G} is balanced if every v is balanced (all undirected graphs are balanced) example:

