Multi-Agent Systems

Kai Cai

cai@omu.ac.jp

 $\begin{array}{l} \text{graph } \mathcal{G} = (\mathcal{V}, \mathcal{E}) \\ \text{strongly connected} \\ \text{strong component} \\ \text{closed strong component} \end{array}$

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ root

spanning tree

 \mathcal{G} contains a spanning tree

 $\operatorname{graph} \mathcal{G} = (\mathcal{V}, \mathcal{E})$

 \mathcal{G} contains a spanning tree iff \mathcal{G} contains a unique (exactly 1) closed strong component

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

2-root set

spanning 2-tree

 \mathcal{G} contains a spanning 2-tree

Fact

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if \mathcal{G} contains a spanning 2-tree then \mathcal{G} contains 1 or 2 closed strong components

Fact

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if \mathcal{G} contains a spanning 2-tree then \mathcal{G} contains 1 or 2 closed strong components example:

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ k-root set $(k \geq 2)$ spanning k-tree \mathcal{G} contains a spanning k-tree example (k = 3):

Fact

graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if \mathcal{G} contains a spanning k-tree then \mathcal{G} contains $i \in [1, k]$ closed strong components

example (k=3):

Graph theory: matrices

Weighted graph

graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

node set $\mathcal{V} = \{v_1, \dots, v_n\}$
edge set $\mathcal{E} = \{(v_i, v_j), \dots\}$
edge (v_i, v_j) has weight a_{ji}

Weighted graph

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

convention:

- \bullet $(\forall i \in [1, n])(v_i, v_i) \notin \overline{\mathcal{V}}$
- weight $a_{ji} = 0$ iff edge $(v_i, v_j) \notin \mathcal{V}$

Weighted degree

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

edge (v_i, v_j) has weight a_{ji}
weighted degree of v_j is $d_{v_j} = \sum_{i \in \mathcal{N}_i} a_{ji}$

Weighted degree

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

edge (v_i, v_j) has weight a_{ji}
weighted out-degree of v_j is
$$d_{v_j}^o = \sum_{i \in \mathcal{N}_i^o} a_{ij}$$

Balanced weighted graph

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

edge (v_i, v_j) has weight a_{ji}
node v_j is weight-balanced if $d_{v_j} = d_{v_j}^o$

Balanced weighted graph

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ edge (v_i, v_j) has weight a_{ji}

 \mathcal{G} is weight-balanced if every v is weight-balanced

Adjacency matrix

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ edge (v_i, v_j) has weight a_{ji} adjacency matrix $A = [a_{ij}]$

Degree matrix

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$$

edge (v_i, v_j) has weight a_{ji}
degree matrix $D = \text{diag}(d_{v_1}, \dots, d_{v_n})$
('diag' means diagonalization)

Adjacency & degree matrix

$$egin{bmatrix} 0 & 0 & 2 \ 0.5 & 0 & 0.5 \ 0 & 1 & 0 \ \end{bmatrix} egin{bmatrix} 2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ \end{bmatrix} \ A \ D \ egin{bmatrix} D \ \end{array}$$

$$\operatorname{diag}(A\mathbf{1}) = D, \ \mathbf{1} = egin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Laplacian matrix

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ $\text{edge } (v_i, v_j) \text{ has weight } a_{ji}$ Laplacian matrix L = D - A

Laplacian matrix

$$L = \begin{bmatrix} 2 & 0 & -2 \\ -0.5 & 1 & -0.5 \\ 0 & -1 & 1 \end{bmatrix}$$

Every row sums up to zero

$$L\mathbf{1} = (D - A)\mathbf{1}$$

Eigenvalue & eigenvector

```
weighted graph \mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n
Laplacian matrix L = D - A
```

L has an eigenvalue 0, with eigenvector $\mathbf{1}$ (?)

Rank

weighted graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$$

Laplacian matrix $L = D - A$

$$\operatorname{rank}(L) \le n - 1$$

if \mathcal{G} contains a spanning tree $\operatorname{rank}(L) \geq n-1$

if \mathcal{G} contains a spanning 2-tree $\operatorname{rank}(L) \geq n-2$

if \mathcal{G} contains a spanning k-tree $\operatorname{rank}(L) \geq n - k$

Rank vs. spanning tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning tree $\operatorname{rank}(L) = n - 1$

Rank vs. spanning 2-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning 2-tree $n-2 \leq \operatorname{rank}(L) \leq n-1$

Rank vs. spanning 2-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning 2-tree $n-2 \leq \operatorname{rank}(L) \leq n-1$

Rank vs. spanning k-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning k-tree $n-k \leq \operatorname{rank}(L) \leq n-1$

Rank vs. spanning k-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning k-tree $n-k \leq \operatorname{rank}(L) \leq n-1$

Rank vs. spanning k-tree

weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}), |\mathcal{V}| = n$ Laplacian matrix L = D - A

if \mathcal{G} contains a spanning k-tree $n-k \leq \operatorname{rank}(L) \leq n-1$

