Multi-Agent Systems

Kai Cai

cai@omu.ac.jp

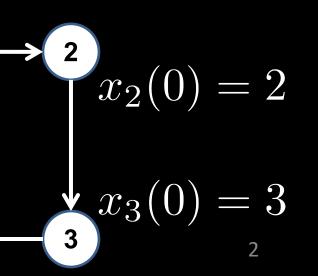
each agent v_i has an initial value $x_i(0)$ averaging: update $x_i(k), k = 1, 2, \ldots$, s.t. $x_i(k) \rightarrow \frac{x_1(0) + x_2(0) + x_3(0) + x_4(0)}{4} = 2.5$

example:

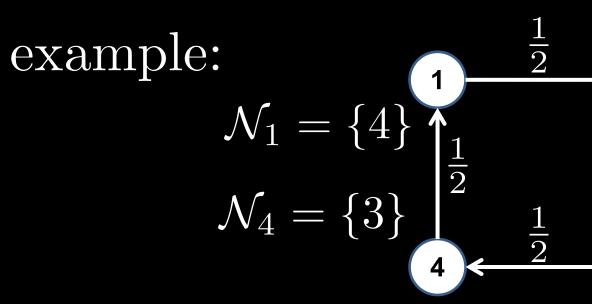
$$x_1(0) = 1$$

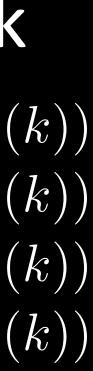
$$x_1(0) = 4$$

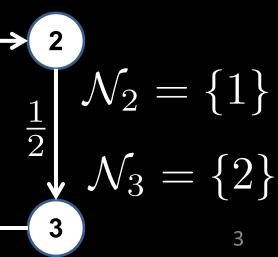
$$x_4(0) = 4$$



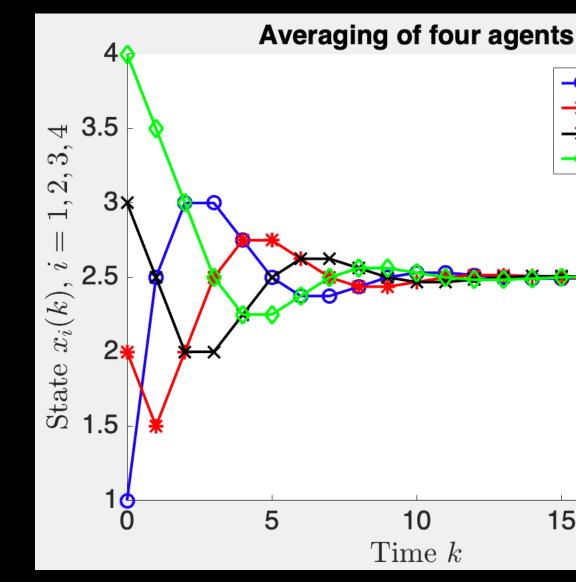
$$x_1(k+1) = \frac{1}{2}(x_1(k) + x_4)$$
$$x_2(k+1) = \frac{1}{2}(x_2(k) + x_1)$$
$$x_3(k+1) = \frac{1}{2}(x_3(k) + x_2)$$
$$x_4(k+1) = \frac{1}{2}(x_4(k) + x_3)$$

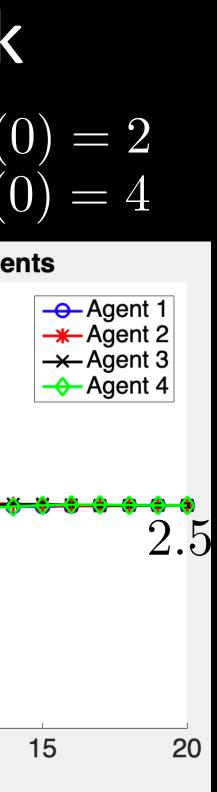






simulation: $x_1(0) = 1, x_2(0) = 2$ $x_3(0) = 3, x_4(0) = 4$





4

a system of *n* interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has an initial value $x_i(0)$

Problem: update $x_i(k), k = 1, 2, ...,$ s.t. $(\forall v_i \in \mathcal{V}) \lim_{k \to \infty} x_i(k) = \frac{1}{n} \sum x_i(0)$

 $v_i \in \mathcal{V}$

a system of *n* interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has an initial value $x_i(0)$

Distributed algorithm $x_{i+1}(k) = \frac{1}{1+|\mathcal{N}_i|} \left(x_i(k) + \sum_{j \in \mathcal{N}_i} x_j(k) \right)$

based on information $x_i(k)$ or relative information $\overline{x_i(k)} - \overline{x_i(k)}$ from neighbor agent(s) $j \in \mathcal{N}_i$

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has an initial value $x_i(0)$

$$x := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$x(k+1) = (I-L)x(k)$$

Last week: Theorem a system of *n* interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

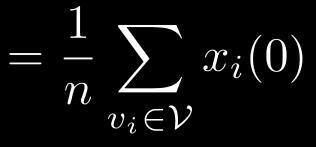
each agent v_i has an initial value $x_i(0)$

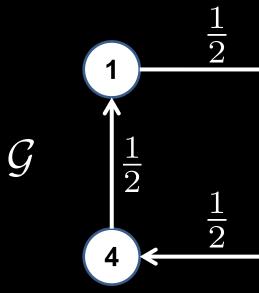
$$x(k+1) = (I-L)x(k) \text{ so}$$

i.e.
$$(\forall v_i \in \mathcal{V}) \lim_{k \to \infty} x_i(k) =$$

iff \mathcal{G} is strongly connected and weight balanced

olves averaging



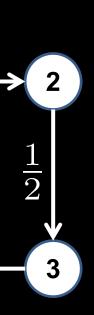


example:

weighted graph \mathcal{G}

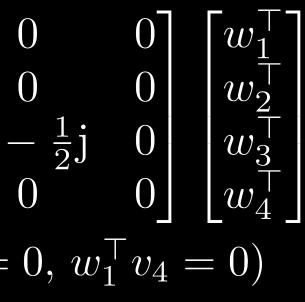
$$I - L = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \quad \begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \hline \lambda_{4} \\ \end{array}$$

column-stochastic



$= \rho(I - L) = 1$ = $\frac{1}{2} + \frac{1}{2}j (|\lambda_2| < 1)$ = $\frac{1}{2} - \frac{1}{2}j (|\lambda_3| < 1)$ = $0 (|\lambda_4| < 1)$

Convergence analysis diagonalization $I - L = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $= VJV^{-1}$ $= \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} + \frac{1}{2}j & 0 & 0 \\ 0 & 0 & \frac{1}{2} - \frac{1}{2}j & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $(w_1^{\top}v_1 = 1, w_1^{\top}v_2 = 0, w_1^{\top}v_3 = 0, w_1^{\top}v_4 = 0)$ $v_1 = 1, \, w_1 = rac{1}{4} 1$



10

Convergence analysis

$$\begin{aligned}
x(k+1) &= (I-L)x(k) \\
&= (I-L)^2 x(k-1)^2 x$$

1)(0)

11

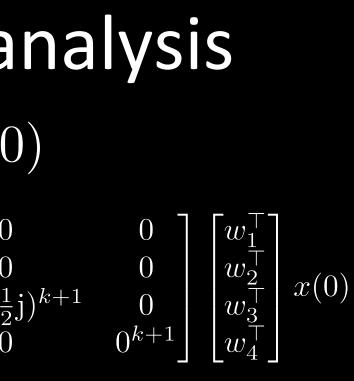
Convergence analysis

$$x(k+1) = VJ^{k+1}V^{-1}x(0)$$

$$= \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \end{bmatrix} \begin{bmatrix} 1^{k+1} & 0 & 0 \\ 0 & (\frac{1}{2} + \frac{1}{2}j)^{k+1} & 0 \\ 0 & 0 & (\frac{1}{2} - \frac{1}{2}) \\ 0 & 0 & 0 \end{bmatrix}$$

$$= v_1 w_1^{\top} x(0)$$
 ($v_1 = 1, w_1 =$

$$= \frac{1}{4} \mathbf{1}^{\top} x(0) \mathbf{1}$$



$x(0), as k \to \infty$

 $=\frac{1}{4}\mathbf{1}$

a system of *n* interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has an initial value $x_i(0)$

x(k+1) = (I-L)x(k) solves averaging

iff \mathcal{G} is strongly connected and weight balanced

Proof: (only if; necessity) leave it as an exercise

Proof: (if; sufficiency) if \mathcal{G} is strongly connected, weight balanced show x(k+1) = (I - L)x(k) solves averaging (i) I - L is a nonnegative matrix

hint: $x_i(k+1) = \frac{1}{1+|\mathcal{N}_i|} \left(x_i(k) + \sum_{j \in \mathcal{N}_i} x_j(k) \right)$

Proof: (if; sufficiency) if \mathcal{G} is strongly connected, weight balanced show x(k+1) = (I-L)x(k) solves averaging (ii) I - L is row stochastic alternative hint: $L\mathbf{1} = 0$

so spectral radius $\rho(I-L) = 1$ and 1 is an eigenvalue of I - Lwith eigenvector **1**

Proof: (if; sufficiency) if \mathcal{G} is strongly connected, weight balanced show x(k+1) = (I-L)x(k) solves averaging (iii) I - L is column stochastic hint: \mathcal{G} is weight balanced

so eigenvalue 1 has a left eigenvector **1**

16

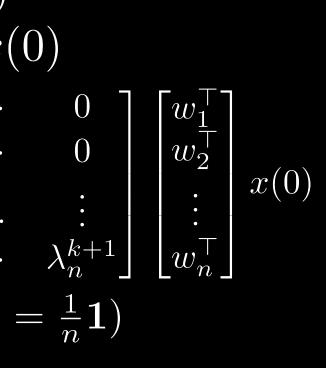
Proof: (if; sufficiency) if \mathcal{G} is strongly connected, weight balanced show x(k+1) = (I-L)x(k) solves averaging (iv) I - L is primitive hint: $\mathcal{G}(I-L)$ is strongly connected

by Perron-Frobenius

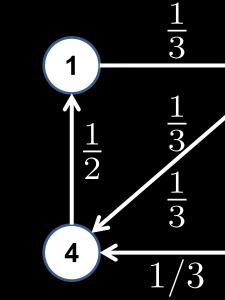
 $\rho(I - L) = 1$ is a simple eigenvalue of I - Land all other n-1 eigenvalues $\lambda_2, \ldots, \lambda_n$ satisfy $|\lambda_2| < 1, \ldots, |\lambda_n| < 1$

and every node of $\mathcal{G}(I-L)$ is selflooped

Proof: (if; sufficiency) if \mathcal{G} is strongly connected, weight balanced show $\overline{x(k+1)} = (I-L)\overline{x(k)}$ solves averaging (v) $x(k+1) = (I-L)^{k+1}x(0)$ $= (VJV^{-1})^{k+1}x(0)$ $= \begin{bmatrix} v_1 \ v_2 \cdots v_n \end{bmatrix} \begin{bmatrix} 1^{k+1} & 0 & \cdots & 0 \\ 0 & \lambda_2^{k+1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^{k+1} \end{bmatrix} \begin{bmatrix} w_1^\top \\ w_2^\top \\ \vdots \\ w_n^\top \end{bmatrix} x(0)$ $(w_1^{\top}v_1 = 1; v_1 = \mathbf{1}, w_1 = \frac{1}{n}\mathbf{1})$

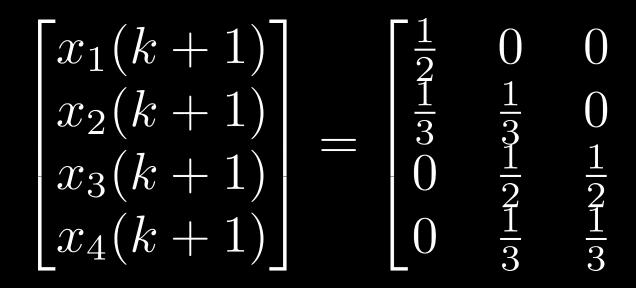


Proof: (if; sufficiency) if \mathcal{G} is strongly connected, weight balanced show x(k+1) = (I-L)x(k) solves averaging (v) $x(k+1) = (I-L)^{k+1}x(0)$ $= (VJV^{-1})^{k+1}x(0)$ $\rightarrow \begin{bmatrix} v_1 \ v_2 \cdots v_n \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} w_1^\top \\ w_2^\top \\ \vdots \\ \vdots \\ w_n^\top \end{bmatrix} x(0), \text{ as } k \rightarrow \infty$ $(w_1^{\top}v_1 = 1; v_1 = \mathbf{1}, w_1 = \frac{1}{n}\mathbf{1})$ $= v_1 w_1^{\top} x(0) = \frac{1}{n} \mathbf{1}^{\top} x(0) \mathbf{1}$

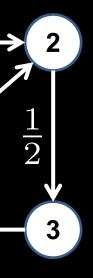


example:

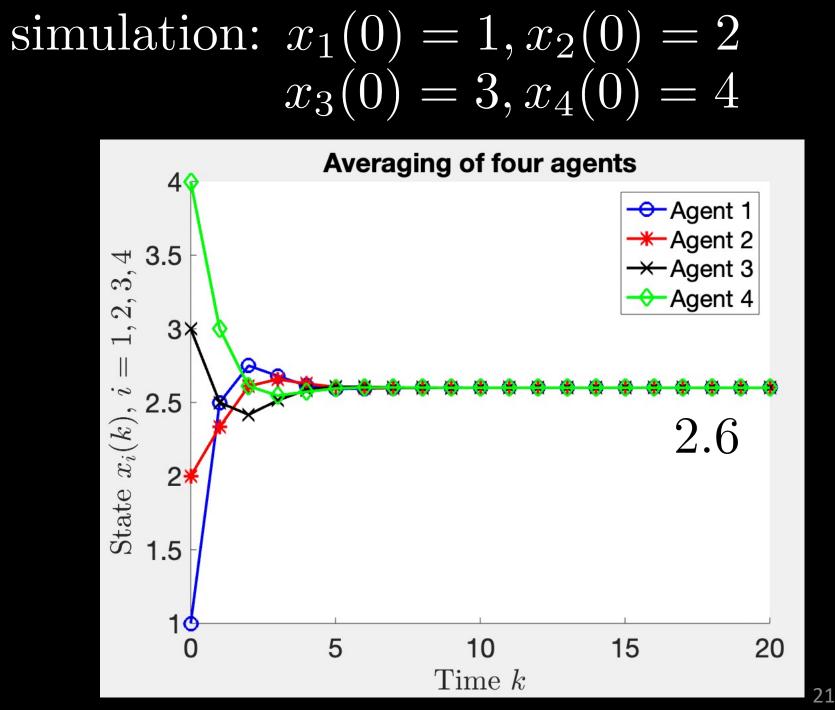
weighted graph \mathcal{G} not weight balanced

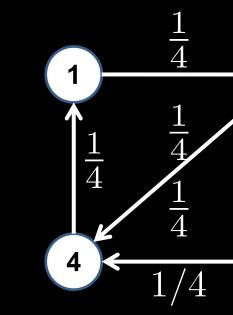


I - L: not column stochastic



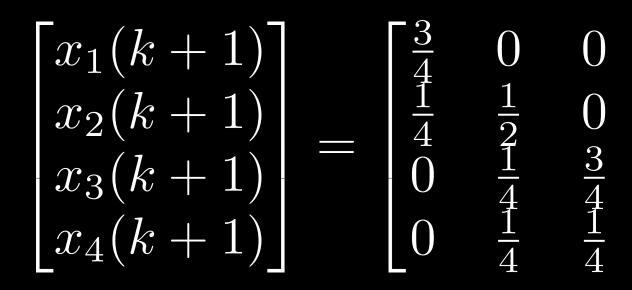
$\begin{array}{c} \frac{1}{2} \\ \frac{1}{3} \\ 0 \\ \frac{1}{3} \end{array} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \\ x_4(k) \end{bmatrix}$





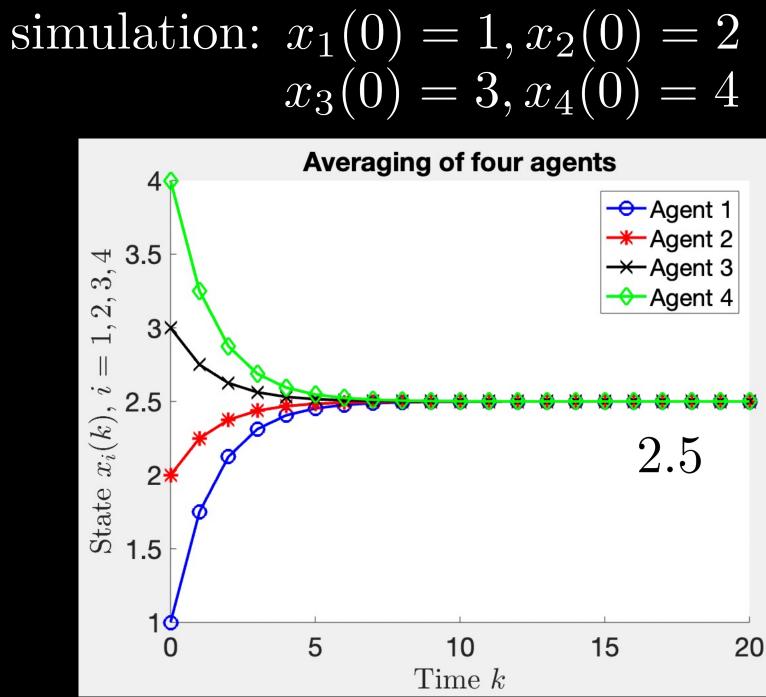
example:

weighted graph \mathcal{G} weight balanced



I - L: column stochastic

$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ 0 \\ \frac{1}{2} \end{array} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \\ x_4(k) \end{bmatrix}$



Different weights a system of *n* interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has an initial value $x_i(0)$

Distributed algorithm $x_{i+1}(k) = x_i(k) + \frac{1}{n} \sum_{j \in \mathcal{N}_i} (x_j(k) - x_i(k))$

x(k+1) = (I-L)x(k) solves averaging iff \mathcal{G} is strongly connected and weight balanced

Different weights a system of *n* interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

each agent v_i has an initial value $x_i(0)$ Distributed algorithm $x_{i+1}(k) = x_i(k) + a_{ij} \sum_{j \in \mathcal{N}_i} (x_j(k) - x_i(k))$ $(a_{ij} > 0, \sum_{j \in \mathcal{N}_i} a_{ij} < 1)$ x(k+1) = (I-L)x(k) solves averaging

iff \mathcal{G} is strongly connected and weight balanced