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Last week

each agent v; has an initial value z;(0)

averaging. update x;(k), k=1,2,...,

s, wy(k) = DQFr20) 42O+ 0) _ o g

example:
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Last week

simulation: x1(0) =1, 25(0) =
23(0) = 3,24(0) = 4

Averaging of four agents
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Last week

a system of n interacting agents
is modeled by graph G = (V, &)

each agent v; has an initial value z;(0)

Problem: update x;(k), k =1,2,...

s.t. (Vu; € V) lim x;(k)

k— 00




Last week

a system of n interacting agents
is modeled by graph G = (V, &)

each agent v; has an initial value z;(0)

Distributed algorithm

Tit1(k) = 1+|N| ( i(k) + 2 jen, xj(k))

based on information z;(k) or

relative information z;(k) — x; (k)

from neighbor agent(s) 7 € N



Last week

a system of n interacting agents
is modeled by graph G = (V, &)

each agent v; has an initial value z;(0)




Last week: Theorem

a system of n interacting agents
is modeled by graph G = (V, &)

each agent v; has an initial value z;(0)
r(k+1) = (I — L)x(k) solves averaging

ie. (Vu; € V) lim x;(k) = % Z x;(0)

k— o0
v, EV

iff G is strongly connected and
weight balanced



Last week

1
example: 5

weighted graph ¢
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Convergence analysis

diagonalization
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Convergence analysis

v(k+1)= (I — L)z(k)
;4J—Lfak—n

(I —L)**'z(0)
(VJV—HrH12(0)



Convergence analysis
r(k+1) = VJ" YV —1z(0)
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0 1 1:\k41 0 0 T
— [Ul Vo2 V3 ?)4] 0 (2 + 8J) (% B %J)k—l—l 0 Zj— $(0)
0 0 0 05| |wy |
1 0 0 0] [w;
0 0 0 0| |wg
— (U1 v2 V3 V4] 00 0 0 wir z(0), as k — o0
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= vw; z(0) (v =1, w; = $1)
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Theorem

a system of n interacting agents
is modeled by graph G = (V, &)

each agent v; has an initial value z;(0)

r(k+1) = (I — L)x(k) solves averaging

iff G is strongly connected and
weight balanced

Proof: (only if; necessity)
leave 1t as an exercise
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Theorem

Proof: (if; sufficiency)
if G is strongly connected, weight balanced
show x(k + 1) = (I — L)x(k) solves averaging

(i) I — L is a nonnegative matrix

hint:
rik +1) = i (@ik) + en, 25(R))
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Theorem

Proof: (if; sufficiency)
if G is strongly connected, weight balanced
show x(k + 1) = (I — L)x(k) solves averaging
(ii) I — L is row stochastic

alternative hint: L1 = 0

so spectral radius p(I — L) =1

and 1 is an eigenvalue of I — L

with eigenvector 1
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Theorem

Proof: (if; sufficiency)

if G is strongly connected, weight balanced
show x(k + 1) = (I — L)x(k) solves averaging
(iii) I — L is column stochastic

hint: G is weight balanced

so eigenvalue 1 has a left eigenvector 1

16



Theorem
Proof: (if; sufficiency)

if G is strongly connected, weight balanced
show x(k + 1) = (I — L)x(k) solves averaging
(iv) I — L is primitive

hint: G(I — L) is strongly connected
and every node of G(I — L) is selflooped

by Perron-Frobenius

p(I — L) =1 1is a simple eigenvalue of I — L
and all other n — 1 eigenvalues Ay, ..., A\,
satisfy [Ao| < 1,..., A, <1
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Theorem

Proof: (if; sufficiency)
if G is strongly connected, weight balanced
show x(k + 1) = (I — L)x(k) solves averaging
(v) z(k+1) = (I — L)*T1x(0)

= (VJV~H**12(0)

et e 0] Tw!”
0 Moo 0 wy

=1 vz S : M
o0 e ] ful

(wi vy =1: v1 =1, wy = +1)
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Theorem

Proof: (if; sufficiency)
if G is strongly connected, weight balanced
show x(k + 1) = (I — L)x(k) solves averaging

(v) z(k+1) = (I — L)*T1x(0)

= (VJV = HFz(0)
1 0 --- 0] [w]
0 0 --- 0| |wy
—lopve-o) |00 . | 2(0), as kE — o0
0 0 -+ 0f |w,
(wirfl)l:l 01:1, wl—%l)
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Example

example:

é

weighted graph ¢
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not weight balanced
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I — L: not column stochastic




Example

simulation: x1(0) = 1,25(0) = 2
ZCS(O) — 37334(0) —

Averaging of four agents

—©—Agent 1

—¥—Agent 2

—>—Agent 3
Agent 4
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Time k




Example

example: o 4 -0
1

A
weighted graph ¢ }/1
weight balanced 1
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I — L: column stochastic
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Example

simulation: x1(0) = 1,25(0) = 2
23(0) = 3,24(0) = 4

Averaging of four agents

—©—Agent 1

—¥—Agent 2

—>—Agent 3
Agent 4

10
Time k




Different weights

a system of n interacting agents
is modeled by graph G = (V, &)

each agent v; has an initial value z;(0)

Distributed algorithm
vip1(k) = zi(k) + 5 30 e, (25 (k) — i (k)

r(k+1) = (I — L)x(k) solves averaging
iff G is strongly connected and
welght balanced
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Different weights

a system of n interacting agents
is modeled by graph G = (V, &)

each agent v; has an initial value z;(0)

Distributed algorithm

Tip1(k) = 2i(k) + aij 2 jen, (2 (k) — zi(F))
(@ij >0, 3 icn, @ij < 1)

r(k+1)= (I — L)x(k) solves averaging

iff G is strongly connected and
weight balanced
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