Multi-Agent Systems

Kai Cai

cai@omu.ac.jp

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has an initial value $x_i(0)$

Distributed algorithm

$$x_{i}(k+1) = x_{i}(k) + a_{ij} \sum_{j \in \mathcal{N}_{i}} (x_{j}(k) - x_{i}(k))$$

$$(a_{ij} > 0, \sum_{j \in \mathcal{N}_{i}} a_{ij} < 1)$$

$$x(k+1) = (I-L)x(k) \quad x := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has an initial value $x_i(0)$

$$x(k+1) = (I-L)x(k)$$
 solves averaging

i.e.
$$(\forall v_i \in \mathcal{V}) \lim_{k \to \infty} x_i(k) = \frac{1}{n} \sum_{v_i \in \mathcal{V}} x_i(0)$$

iff \mathcal{G} is strongly connected and weight balanced

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has a local cost function quadratic $f_i(x) = x^2 + \alpha_i x + \beta_i$

$$F(x) := \frac{1}{n} \sum_{v_i \in \mathcal{V}} f_i(x)$$

which has a unique optimal solution x^*

Problem: update $x_i(k), k = 1, 2, ...,$ s.t. $(\forall v_i \in \mathcal{V}) \lim_{k \to \infty} x_i(k) = x^*$

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has a local cost function quadratic $f_i(x) = x^2 + \alpha_i x + \beta_i$

Distributed algorithm

$$x(k+1) = (I-L)x(k) \qquad x := \begin{vmatrix} \vdots \\ x_n \end{vmatrix}$$

with
$$x(0) = \begin{bmatrix} -\frac{\alpha_1}{2} & \cdots & -\frac{\alpha_n}{2} \end{bmatrix}^\top$$

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i has a local cost function quadratic $f_i(x) = x^2 + \alpha_i x + \beta_i$ x(k+1) = (I-L)x(k) with initial condition $x(0) = \begin{bmatrix} -\frac{\alpha_1}{2} & \cdots & -\frac{\alpha_n}{2} \end{bmatrix}^{\top}$ solves

optimization, i.e. $(\forall v_i \in \mathcal{V}) \lim_{k \to \infty} x_i(k) = x^*$

iff \mathcal{G} is strongly connected and weight balanced

Consensus/ Rendezvous

Flocking

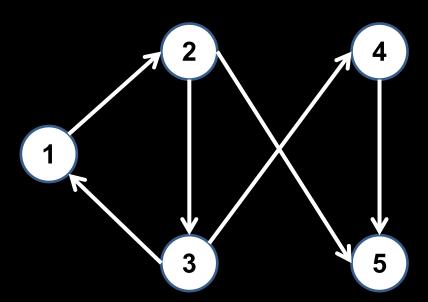
Schooling

Synchronization

Multi-agent system

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ node $v_i \in \mathcal{V}$: an agent edge $(v_j, v_i) \in \mathcal{E}$: agent j sends information to v_i

example:

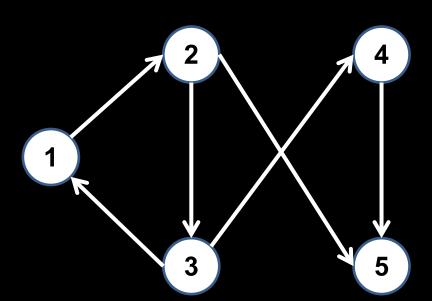


Consensus problem

each agent v_i updates its state based on $\dot{x}_i = u_i, \ x_i, u_i \in \mathbb{R}$

consensus: design input $u_i(t), t \ge 0$ s.t. $(\forall x_1(0), \dots, x_n(0))(\exists c \in \mathbb{R})x_i(t) \to c$ as $t \to \infty$

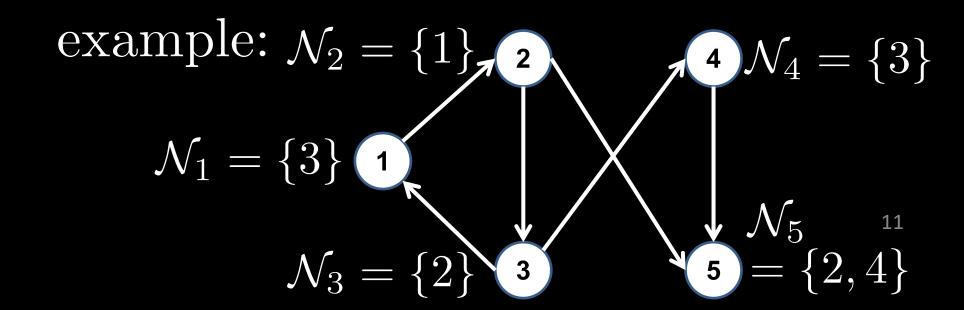
example:



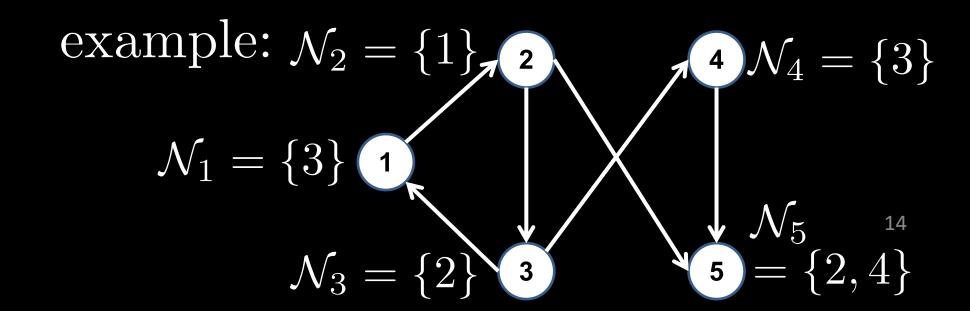
Distributed algorithm

each agent v_i can receive information $x_j(t)$ from neighbor(s) $j \in \mathcal{N}_i$

distributed algorithm: at time $t(\geq 0)$ design $u_i(t)$ based on information $x_j(t)$ where $j \in \mathcal{N}_i$



$$\dot{x}_1 = u_1 = x_3 - x_1$$
 $\dot{x}_2 = u_2 = x_1 - x_2$
 $\dot{x}_3 = u_3 = x_2 - x_3$
 $\dot{x}_4 = u_4 = x_3 - x_4$
 $\dot{x}_5 = u_5 = (x_2 - x_5) + (x_4 - x_5)$



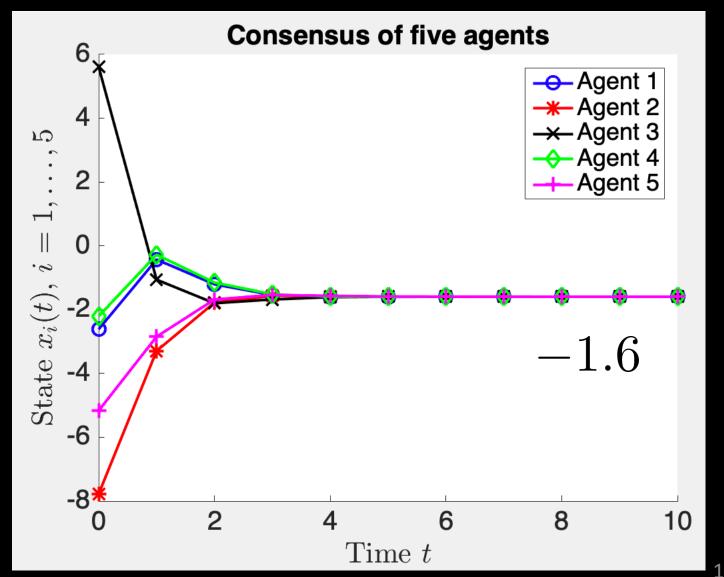
$$\dot{x}_1 = u_1 = x_3 - x_1
\dot{x}_2 = u_2 = x_1 - x_2
\dot{x}_3 = u_3 = x_2 - x_3
\dot{x}_4 = u_4 = x_3 - x_4
\dot{x}_5 = u_5 = (x_2 - x_5) + (x_4 - x_5)$$

$$\dot{x}_i = u_i = \sum_{j \in \mathcal{N}_i} (x_j - x_i)$$

relative state information

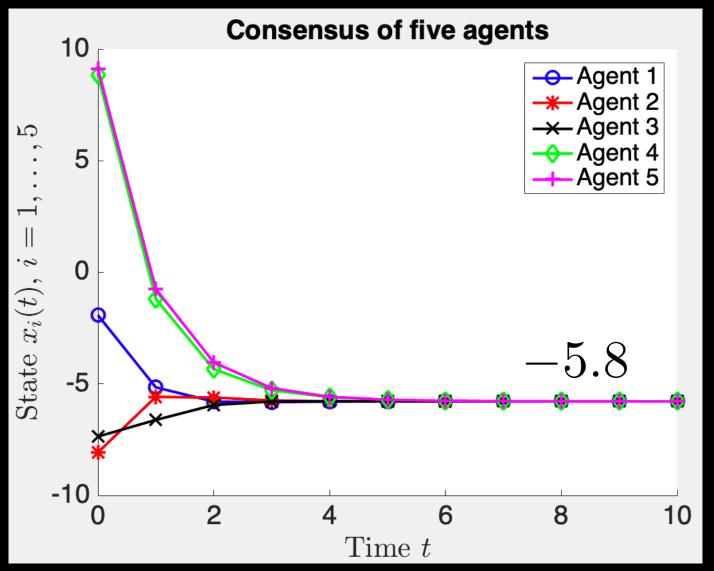
simulation:
$$x_1(0) = -2.6, x_2(0) = -7.8$$

 $x_3(0) = 5.6, x_4(0) = 2.2, x_5(0) = -5.2$



simulation:
$$x_1(0) = -1.9, x_2(0) = -8.1$$

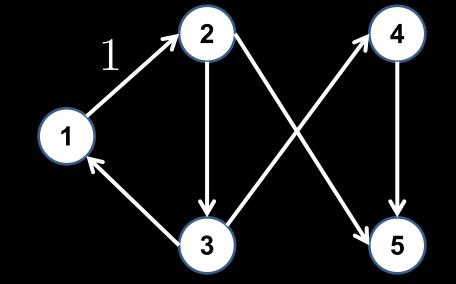
 $x_3(0) = -7.4, x_4(0) = 8.8, x_5(0) = 9.1$



Weighted graph

example:

weighted graph \mathcal{G}



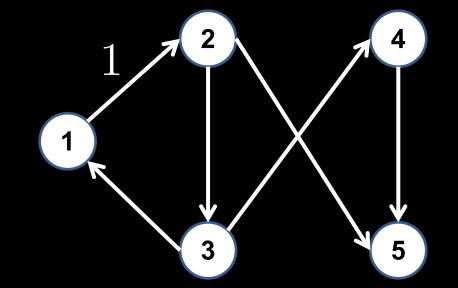
adjacency matrix

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Weighted graph

example:

weighted graph \mathcal{G}



Laplacian matrix

$$L = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & -1 & 2 \end{bmatrix}$$

Equation

$$\dot{x}_1 = u_1 = x_3 - x_1$$
 $\dot{x}_2 = u_2 = x_1 - x_2$
 $\dot{x}_3 = u_3 = x_2 - x_3$
 $\dot{x}_4 = u_4 = x_3 - x_4$
 $\dot{x}_5 = u_5 = (x_2 - x_5) + (x_4 - x_5)$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \dot{x}_5 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

Recap, generalization

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ each agent v_i updates its state based on $\dot{x}_i = u_i, \ x_i, u_i \in \mathbb{R}$

Problem: design u_i to update x_i

s.t.
$$(\forall v_i \in \mathcal{V})(\forall x_i(0))(\exists c) \lim_{t \to \infty} x_i(t) = c$$

Recap, generalization

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

each agent v_i updates its state based on $\dot{x}_i = u_i, \ x_i, u_i \in \mathbb{R}$

Distributed algorithm

$$\dot{x}_i = u_i = \sum_{j \in \mathcal{N}_i} (x_j - x_i)$$

based on information $x_j(t)$ or

relative information $\overline{x_j(t)} - \overline{x_i(t)}$

from neighbor agent(s) $j \in \mathcal{N}_i$

Recap, generalization

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

each agent v_i updates its state based on $\dot{x}_i = u_i, \ x_i, u_i \in \mathbb{R}$

$$x := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$\dot{x} = -Lx$$

Theorem

a system of n interacting agents is modeled by graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

each agent v_i updates its state based on $\dot{x}_i = u_i, \ x_i, u_i \in \mathbb{R}$

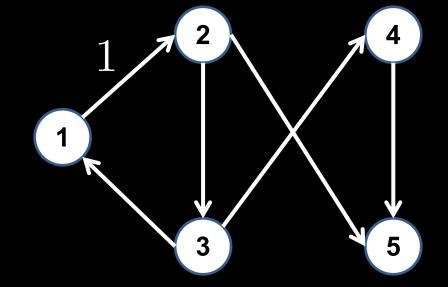
 $\dot{x} = -Lx$ solves consensus

s.t.
$$(\forall v_i \in \mathcal{V})(\forall x_i(0))(\exists c) \lim_{t \to \infty} x_i(t) = c$$

iff \mathcal{G} contains a spanning tree

example:

weighted graph \mathcal{G}



spanning tree (?)