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Preface

Cooperative control of multi-agent systems has been actively studied in the field of systems and
control in the past two decades. Such systems typically consist of a large number of distributed
agents, which locally interact with one another such that they jointly pursue a global goal. Research
results on cooperative control of multi-agent systems have found wide applications in robotics
(swarms of vehicles/drones) [CWRKG20, MC19, SVC+16], engineering (sensor/power networks)
[CAYM15,DB10,OS07], physics (systems of oscillators) [DCB13,PR11,SS08], epidemics (spreading
processes) [YLAC21,KBG14,OGNK13], and social/political science (opinion dynamics) [YLA+18,
FJB16,AL15]. The literature has grown in near-intractable volumes, but excellent textbooks (e.g.
[Bul22, FM16, BAW11, ME10, RB08]) and surveys (e.g. [OPA15, DB14, CYRC13, GS10, OSFM07])
have kept the content in organized manners.

In writing this book, we aim to provide a new perspective to link together various research work
on cooperative control of multi-agent systems. This perspective is on different types of graph Lapla-
cian matrices. The standard (conventional) Laplacian matrix is defined based on a nonnegative
adjacency matrix [Bap10, GR00], which describes the interaction graph topology of a multi-agent
system. This type of Laplacian matrix is fundamental in describing the dynamics of a number of
multi-agent cooperative control problems including consensus, averaging, synchronization, regula-
tion, flocking, and optimization [JLM03, INK19, CI11, CI12, Ren08, Lun12, WSA11, KCK20, OS06,
XHC+17, ZYC20]. The algebraic properties of this type of Laplacian matrix have been found to
characterize stability and performance of the corresponding cooperative control algorithms. These
algebraic properties are also closely related to the connectivity properties of the interaction graph.

More recently, two other types of Laplacian matrices have been proposed in designing cooperative
control algorithms. One type is defined from a complex-valued (entry-wise) adjacency matrix,
and is called complex Laplacian. A complex Laplacian matrix has been found useful in solving
a class of formation control and localization problems on a 2D space (that can be represented
as a complex plane) [LDY+13, LWHF14, LFD15, LHZF16, LWHF16]. The other type of Laplacian
matrix is defined from a general real adjacency matrix which need not be nonnegative. This
type of Laplacian matrix is called signed Lapalcian, and has been found effective in designing
cooperative control algorithms to solve formation control and localization in a 3D (and higher-
dimensional) space [LWC+16, Zha18, HLZ+17, CWL+17, CLC+16]. For both types – complex and
signed Laplacian matrices – their algebraic properties are again essential in characterizing stability
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and performance of the corresponding cooperative control algorithms. In addition, these algebraic
properties are also related to certain connectivity properties of the interaction graph.

The three different types of Laplacian matrices thus offer a new angle to look into the relevant
literature on multi-agent cooperative control. Although there are many different cooperative control
problems in their appearances, they have a few basic points in common. The interaction graph
topology of the agents can be described by graphs, the dynamics of multi-agent systems is hence
underlied by Laplacian matrices, and the algebraic properties of these Laplacian matrices dictate
stability/performance of the corresponding cooperative control algorithms. These common points
therefore allow us to interlink and organize different cooperative control problems and their solutions
by different types of Laplacian matrices and the corresponding algebraic properties.

Eight cooperative control problems and their solutions are covered in this book: averaging,
optimization, consensus, synchronization, 2D similar formation control, 2D localization, arbitrary-
dimensional affine formation control, and arbitrary-dimensional localization. Focus is given exclu-
sively to agents’ interaction topology modeled by directed graphs. The reason for choosing this focus
is multifold. First, directed graphs are more general than undirected graphs; hence the theoretical
results of directed graphs include those of undirected graphs as special cases. Second, directed
graphs can be more widely applicable, as bidirectional communication may not always possible
(e.g. leader-follower structured robotic teams or sensor networks where nodes have heterogeneous
communication ranges). Finally, results on directed graphs are scattered in the literature, which
calls for an organized presentation. This books serves this purpose.

How to read this book

This book consists of nine chapters:

• Chapter 1: mathematical preliminaries on graphs and their matrices

• Chapters 2–9: eight cooperative control problems

Each chapter is self-contained. Our recommendation is that the reader reads Chapter 1 first, and
then feels free to jump to any later chapter on a cooperative control problem of interest. More
experienced reader may skip Chapter 1, though we suggest a skim of Sections 1.5 and 1.6 whose
content may be less familiar.

Based on different types of Laplacian matrices, Chapters 2–9 are further divided as follows:

• Standard Laplacian: Chapters 2–5 (averaging, optimization, consensus, synchronization)

• Complex Laplacian: Chapters 6–7 (2D similar formation control, 2D localization)

• Signed Laplacian: Chapters 8–9 (arbitrary dimensional affine formation control, arbitrary
dimensional localization)
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From an alternative angle, Chapters 2–9 are divided into four parts. This division is based on
different connectivity conditions on directed graphs.

• Strongly connected and weight-balanced: Chapters 2–3 (averaging, optimization)

• Spanning tree: Chapters 4–5 (consensus, synchronization)

• Spanning 2-tree: Chapters 6–7 (2D similar formation control, 2D localization)

• Spanning multiple tree: Chapters 8–9 (arbitrary dimensional affine formation control, arbi-
trary dimensional localization)

Each of these eight chapters is structured similarly. The first two sections provide illustrative
examples of the problem studied and explanation of ideas behind the designed algorithm. The third
section is technical, with statements of formal results and their proofs (which may be skipped at the
first reading). The simulation section presents more illustrative examples of larger-scale networks
of agents. The final section provides the main references relevant to the presented algorithms
and results. In addition, Chapters 3 and 5 each include an Appendix that introduces background
knowledge on the respective subject.

We hope that these different ways of organizing the content of this book provide flexibility to
the reader with different purposes. One may choose to read different cooperative control problems
independently, or different types of graph Laplacian independently, or graph connectivity conditions
progressively.

Who to read this book

This book is written for applied science and engineering students in the graduate level or higher
undergraduate levels, as a textbook or a reference for a relevant course. The book is also intended for
researchers in systems control, robotics, artificial intelligence, machine learning, signal processing,
and computer engineering with interests in multi-agent systems, networked control, and cooperative
behaviors.

Where to find additional material

Supplementary material (slides, codes) and updates to this book can be found on the website
below:

https://www.control.eng.osaka-cu.ac.jp/mas

Kai Cai and Zhiyun Lin
March 16, 2023

https://www.control.eng.osaka-cu.ac.jp/mas
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Part I
Mathematical Preliminaries

This part introduces the basic concepts of directed graphs and their associated matrices. Three
types of graph Laplacian matrices are defined, and their algebraic properties presented. These con-
cepts and properties lay a theoretical foundation for the multi-agent cooperative control problems
introduced later in the book.
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Chapter 1

Graphs and Laplacian Matrices

We introduce basic elements of directed graphs, including nodes, edges, subgraphs, neighbors,
and degrees. Then graph connectivity concepts key for multi-agent cooperative control problems
are introduced; these concepts include strongly connectedness, strong components, spanning trees,
and spanning multiple trees. We then introduce relevant matrices of directed graphs, including
adjacency matrices, degree matrices, and Laplacian matrices. In particular, we define three types
of Laplacian matrices and analyze their algebraic properties (eigenstructures and ranks). Key
relations between these algebraic properties of graph matrices and graph connectivity conditions
are established.

1.1 Directed graphs

A directed graph (or simply digraph) G = (V, E) consists of a non-empty finite set V of elements
called nodes, and a finite set E of ordered pairs of nodes called edges. Thus E ⊆ V×V (the Cartesian
product of V and itself). The set V is called the node set and E the edge set of digraph G.

Three examples of digraphs are displayed in Fig. 1.1:

G1 = ({v1, v2, v3, v4}, {(v1, v2), (v1, v3), (v2, v4), (v3, v2), (v3, v4), (v4, v1), (v4, v2)})

G2 = ({v1, v2, v3}, {(v1, v2), (v1, v3), (v3, v2)})

G3 = ({v1, v2, v3}, {(v1, v1), (v1, v2), (v1, v3), (v3, v2)}).

For an edge (u, v) the first node u is its tail and the second node v is its head. The edge (u, v)

is said to leave u and enter v. The head and tail of an edge are its end-nodes. A loop is an edge
whose end-nodes are the same node. An edge is multiple if there is another edge with the same
end-nodes. A digraph is simple if it has no loops or multiple edges.1

1In this book, unless otherwise specified, only simple digraphs are considered.

15



16 Chapter 1. Graphs and Laplacian Matrices

v1

v2 v3

v4

G1

v1

v2

v3

G2

v1

v2

v3

G3

Figure 1.1: Directed graphs (digraphs)

For example, consider the digraphs in Fig. 1.1. Here, digraph G1 is simple; digraph G2 has
multiple edges, namely (v1, v2); and digraph G3 has a loop, namely (v1, v1).

In the special case where for every edge (u, v) ∈ E , the edge (v, u) of the opposite direction is
also an edge, i.e. (v, u) ∈ E , G = (V, E) is called an undirected graph.

Two examples of undirected graphs are given in Fig. 1.2:

G1 = ({v1, v2, v3, v4}, {(v1, v2), (v2, v1), (v2, v3), (v3, v2), (v3, v4), (v4, v3), (v4, v1), (v1, v4)})

G2 = ({v1, v2, v3}, {(v1, v2), (v2, v1), (v1, v3), (v3, v1)}).

For undirected graphs, their edges are commonly drawn without arrows as in Fig. 1.2.

v1

v2 v3

v4

G1

v1

v2

v3

G2

Figure 1.2: Undirected graphs
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Subdigraphs

Let G = (V, E) be a digraph. We say that G′ = (V ′, E ′) is a subdigraph of G if V ′ ⊆ V and
E ′ ⊆ E . If moreover V ′ = V, then G′ is a spanning subdigraph of G. For a digraph G = (V, E) and
a nonempty subset V ′ ⊆ V, the induced subdigraph by V ′ is G′ = (V ′, E ′), with E ′ = E ∩ (V ′ × V ′).

For example, consider the digraphs displayed in Fig. 1.3. Here G11, G12, and G13 are subdi-
graphs of G1 = (V, E) in Fig. 1.1. Only G12 is a spanning subdigraph, while only G13 is the
induced subdigraph by V ′ = {v1, v2, v4} ⊆ V. Note that G11 is not the induced subdigraph
by V ′ = {v1, v2, v4} because edge (v4, v2) is absent and E ′ ⫋ E ∩ (V ′ × V ′).

v1

v2

v4

G11

v1

v2 v3

v4

G12

v1

v2

v4

G13

Figure 1.3: Subdigraphs

Neighbors and degrees

The local structure of a digraph is described by the neighbors and the degrees of its nodes. For
a digraph G = (V, E) and a node v ∈ V, the (in-)neighbor set of v is Nv := {u ∈ V | (u, v) ∈ E},
while the out-neighbor set of v is N o

v := {u ∈ V | (v, u) ∈ E}. Thus Nv is a set of nodes that are
connected to v with an edge (v being the head), whereas N o

v is a set of nodes to which v is connected
with an edge (v being the tail). The nodes in Nv and N o

v are respectively the (in-)neighbors and
out-neighbors of v.

The (in-)degree, dv, of a node v is the cardinality of the neighbor set Nv, written dv = |Nv|.
Similarly, the out-degree, dov, of a node v is the cardinality of the out-neighbor set N o

v , i.e. dov = |N o
v |.

A node v with dv = dov is called balanced. A digraph G is balanced if every node is balanced.
Every undirected graph is balanced.

As an illustration, consider the digraph G1 displayed in Fig. 1.1. For node v1, its neighbor
set is Nv1 = {v4} and out-neighbor set N o

v1 = {v2, v3}; hence its degree is dv1 = 1 and
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out-degree dov1 = 2. As a result, v1 is not balanced. Next consider the digraph G11 in
Fig. 1.3. Observe that every node has degree 1 and out-degree 1, so every node is balanced
and digraph G11 is balanced.

1.2 Connectivity of digraphs
A (directed) path in a digraph G = (V, E) is a sequence of nodes

v1v2 · · · vk (k ≥ 1)

such that (vi, vi+1) ∈ E for every i = 1, 2, . . . , k−1. The path is said to be from v1 to vk. If v1 = vk,
the path is called a cycle. The length of a path is the number of the consisting edges. Hence the
path above has length k − 1. It is allowed that k = 1, in which case the path is of length 0. Also
note that a loop (vi, vi) is a cycle of length 1.

Let u, v ∈ V be two nodes of G. We say that v is reachable from u if there is a path from u to v;
written u → v. If v is not reachable from u, we write u ̸→ v. Every node v is reachable from itself,
i.e. v → v, by the (trivial) path v of length 0. For any node v, the set of nodes reachable from v is

V(v→) = {v′ ∈ V | v → v′}

while the set of nodes from which v is reachable is

V(→v) = {v′ ∈ V | v′ → v}.

We call V(v→) the reachable set of v, and V(→v) the backward reachable set of v. Both V(v→) and
V(→v) are nonempty, because v belongs to both.

A digraph G = (V, E) is strongly connected if

(∀u, v ∈ V)u → v

namely every node is reachable from every other node. In this case, V(v→) = V(→v) = V for every
node v ∈ V.

For example, consider digraph G1 in Fig. 1.4. Although for i = 1, 2, 3 there holds V(v→i ) =

V(→vi) = V, for i = 4, 5 only V(v→i ) = {v4, v5} ⫋ V. The latter means that nodes v4, v5

cannot reach v1, v2, v3. Hence G1 is not strongly connected. By contrast, G2 is strongly
connected: V(v→i ) = V(→vi) = V for all i = 1, 2, 3.
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v3

v2 v4

v5

G1

v1

v2

v3

G2

v1

Figure 1.4: Reachability and strongly connected digraphs

A strongly connected digraph G contains at least one cycle. Given a strongly connected digraph
G containing m(≥ 1) cycles, let l1, . . . , lm be the lengths of these cycles and denote by p their
greatest common divisor, i.e.

p := g.c.d.{l1, . . . , lm}.

If p > 1, we say that G is periodic with period p. Otherwise (p = 1), we say that G is aperiodic.
Note that a strongly connected digraph with a loop is aperiodic (as in this case the loop is a cycle
of length 1 and this renders the greatest common divisor p = 1).

In a digraph G = (V, E), a node r ∈ V is called a root if

(∀v ∈ V)r → v

that is, every node is reachable from r (equivalently V(r→) = V). Note that in a strongly connected
digraph G, every node is a root.

Let r be a root of digraph G = (V, E). A spanning subdigraph G′ = (V, E ′) is called a spanning
tree (with root r) if

• r has no neighbor, i.e. Nr = ∅;

• every node v ∈ V \ {r} has exactly one neighbor, i.e. dv = 1.

Definition 1.1 Let G = (V, E) be a digraph. We say that G contains a spanning tree if there
exists a spanning subdigraph of G that is a spanning tree.

Note that by definition, G contains a spanning tree if and only if there exists a root in G.
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v1

v2 v3
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G1

v1

v2 v3

v4

G2

v1

v2 v3

v4

G3

v1

v2 v3

v4
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Figure 1.5: Strongly connected digraphs and spanning trees

Consider the digraphs displayed in Fig. 1.5. Digraph G1 is a spanning tree with root v3.
G2 is strongly connected, and (so) it contains a spanning tree (say G1). G3 is not strongly
connected, but contains a spanning tree (G1). Finally G4 is neither strongly connected nor
contains a spanning tree.

Note that if G is strongly connected, then G contains a spanning tree; but the reverse need not
hold. Nevertheless whether or not G contains a spanning tree may be verified by inspecting its
strongly connected subdigraphs.

Strong components

Let G′ = (V ′, E ′) be a subdigraph of G = (V, E), where ∅ ̸= V ′ ⊆ V and E ′ = E ∩ (V ′ × V ′).
Namely G′ is an induced subdigraph of G by V ′. We say that G′ is a strong component of G if G′

is strongly connected and for every other induced subdigraph G′′ = (V ′′, E ′′) with V ′ ⊆ V ′′ and
E ′ ⊆ E ′′, G′′ is not strongly connected. In other words, G′ is a maximal strongly connected induced
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subdigraph of G (which need not be unique). Let G1 = (V1, E1) and G2 = (V2, E2) be two strong
components of G = (V, E). Then they are either identical (i.e. V1 = V2, E1 = E2) or disjoint (i.e.
V1 ∩ V2 = ∅, E1 ∩ E2 = ∅).

A strong component G′ = (V ′, E ′) is said to be closed if

(∀u ∈ V ′)(∀v ∈ V \ V ′)v ̸→ u

namely no edge enters any node in V ′. In this case, V ′ = V(→u) ⊆ V(u→) for every node u ∈ V ′.

Fig. 1.6 provides examples of induced subdigraphs, G1, G2, and G3, of the first digraph G,
where G1 is not a strong component, G2 is a closed strong component, and G3 is a strong
component but not closed.

v1 v2 v3 v4G

v2 v3 v4

v1 v2

v3 v4

G2

G1

G3

Figure 1.6: Strong components and closed strong components

Theorem 1.1 Let G = (V, E) be a digraph. The following statements are equivalent:

(i) G contains a spanning tree;

(ii) G contains a unique closed strong component.

Proof. (i) ⇒ (ii). Suppose that G = (V, E) contains a spanning tree. Let Vr be the subset of
all roots, i.e.

Vr := {r ∈ V | V(r→) = V}.

Thus Vr ̸= ∅. Let Gr be the induced subdigraph by Vr. It will be shown that Gr is the unique
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closed strong component of G.
If Vr = V, namely every node is a root, then Gr = G is strongly connected; thus maximality,

closedness, and uniqueness follow trivially.
If Vr ⫋ V (i.e. Vr is a strict subset of V), first note that Gr is closed. To see this, suppose on

the contrary that there exist r ∈ Vr and v ∈ V \ Vr such that v → r. Since r is a root, v is also a
root, but this contradicts v /∈ Vr. Next, note that Gr is strongly connected. This follows from the
fact that every node in Vr is a root and Gr is closed. Moreover, no node in V \ Vr (i.e. non-root)
can be added to Vr while preserving strongly connectedness, so Gr is a closed strong component of
G. Finally, we prove that Gr is unique. Let G′

r = (V ′
r, E ′

r) be another closed strong component of G.
Then either V ′

r ∩Vr = ∅ or V ′
r = Vr. Since all nodes in Vr are roots, they can reach all nodes in V ′

r,
but this contradicts closedness of G′

r. Hence, it is only possible that V ′
r = Vr, and G′

r = Gr after all.
This establishes that Gr is the unique closed strong component of G.

(ii) ⇒ (i). Suppose that G contains a unique closed strong component Gr = (Vr, Er). We will
prove that G contains a spanning tree by showing that every node in Vr is a root.

Let r ∈ Vr and suppose on the contrary that r is not a root. Then V(r→) ⫋ V. Let U :=

V \ V(r→); thus U ̸= ∅. Note that no node in V(r→) can reach any node in U , because otherwise r

could also reach some node in U . Hence the induced subdigraph Gu by U is closed. In the following,
it will be shown that Gu contains at least one closed strong component.

Select an arbitrary node u1 ∈ U , and check if V(→u1) ⊆ V(u→
1 ). If so, it follows that the

induced subdigraph G1 by V(→u1) is a closed strong component of Gu. If the condition fails, then
select another arbitrary node u2 ∈ V \ V(→u1), and check if V(→u2) ⊆ V(u→

2 ). Note that here
V(→u2) ⊆ V \V(→u1) necessarily holds, for otherwise u1 could be reached from u2. If the condition
holds, then the induced subdigraph G2 by V(→u2) is a closed strong component of Gu. If not, repeat
the above procedure. Since the node set U is finite, in the worst case after (say) k repetitions and
check failures, the subset V(→uk+1) ⊆ V \ V(→u1) \ · · · \ V(→uk) contains a singleton node uk+1.
Since V(→uk+1) ⊆ V(u→

k+1) holds trivially, the induced subdigraph Gk+1 by V(→uk+1) is a closed
strong component of Gu.

We have thus proved that Gu contains a closed strong component, say G′
u. Since Gu is closed in

G, G′
u is also a closed strong component of G. But G′

u is different from Gr, which is a contradiction
to the assumed uniqueness of the strong component Gr. Therefore, every node r ∈ Vr is a root and
G contains at least one spanning tree. □

To illustrate Theorem 1.1, consider the digraphs in Fig. 1.4. G1 contains two strong com-
ponents, but only the one induced by {v1, v2, v3} is closed. Hence G1 has a unique closed
strong component, and therefore G1 contains a spanning tree with root (say) v1. G2 contains
only one strong component, namely itself, which is (trivially) closed. So again G2 contains
a spanning tree with root (say) v3. On the other hand, consider digraph G4 in Fig. 1.5. We
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have identified that G4 does not contain a spanning tree. Indeed, this digraph contains 4

strong components, two of which are closed: one induced by {v1} and the other by {v3}.
Namely G4 fails to have a unique closed strong component.

Spanning multiple trees

Let us now generalize the concept of spanning trees to allow multiple roots.
Consider a digraph G = (V, E). Let R ⊆ V be a subset of nodes, and k := |R|. Consider k ≥ 2,

i.e. R contains at least two nodes. Let v ∈ V \ R. We say that v is k-reachable from R if there
is a path from a node in R to v after removing arbitrary k − 1 nodes except for v itself; written
R →k v. More formally, R →k v if

(∀U ⊆ V \ {v})|U| = k − 1 ⇒ (∃r ∈ R ∩ (V \ U))r → v in G′ induced by V \ U .

If v is not k-reachable from R, we write R ̸→k v.
The subset R of k(≥ 2) nodes is called a k-root subset if

(∀v ∈ V \ R)R →k v

that is, every node (not in R) is k-reachable from R. Note that in G = (V, E), if R is a k-root
subset, then for every r ∈ R, R\{r} is a (k−1)-root subset in the induced subgraph by V \{r}. In
the special case k = 2, i.e. R = {r1, r2}, r1 (resp. r2) is a root of the induced subgraph by V \ {r2}
(resp. by V \ {r1}).

Consider the digraphs in Fig. 1.7. In G1, v1 is 2-reachable from {v2, v3}, and {v2, v3} is a
2-root set. By contrast, in G2, v1 is not 2-reachable from {v2, v3}, because after removing v2,
v1 is no longer reachable from v3. Similarly, in G3, v1 is 3-reachable from {v2, v3, v4}, and
{v2, v3, v4} is a 3-root set. But in G4, v1 is not 3-reachable, because after removing v2 and v3,
v1 is not reachable from v4. Finally, removing v2 in G1, v3 is a root of the induced subgraph
by {v1, v3}; also removing v4 in G3, {v2, v3} is a 2-root subset of the induced subgraph by
{v1, v2, v3}.

Let R be a k-root subset of G = (V, E). A spanning subdigraph G′ = (V, E ′) is called a spanning
k-tree (with k-root subset R) if

• every root r ∈ R has no neighbor, i.e. Nr = ∅;

• every node v ∈ V \ R has exactly k neighbors, i.e. dv = k.
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Figure 1.7: k-reachability

Definition 1.2 Let G = (V, E) be a digraph and k ≥ 2. We say that G contains a spanning
k-tree if there exists a spanning subdigraph of G that is a spanning k-tree.

By this definition, G contains a spanning k-tree if and only if there exists a k-root subset in G.

As an illustration, G1 in Fig. 1.7 contains a spanning 2-tree G′
1, which is displayed in Fig. 1.8.

For another example, G3 in Fig. 1.7 contains a spanning 3-tree G′
2 in Fig. 1.8.

A counterpart of Theorem 1.1 is the following, which establishes the relation between G con-
taining a spanning k-tree and the number of closed strong components.

Theorem 1.2 Let G = (V, E) be a digraph and k ≥ 2. If G contains a spanning k-tree, then
G contains l ∈ [1, k] closed strong components.
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Figure 1.8: Spanning k-tree

Proof. Suppose on the contrary that G contains k+1 closed strong components: G1, . . . ,Gk,Gk+1.
It will be shown that there cannot exist a k-root subset, and consequently G does not contain a
spanning k-tree.

Consider an arbitrary subset V ′ of k nodes in G. Since there are k+1 closed strong components,
there exists at least one closed strong component Gi = (Vi, Ei) (i ∈ [1, k+1]) such that V ′ ∩Vi = ∅.
Namely Gi does not contain any node in V ′. Now choose a node vi in Gi, so vi ∈ Vi and vi /∈ V ′.
Then remove k − 1 nodes from the other k closed strong components (Gi excluded). Since Gi is
closed, the chosen node vi cannot be reached from the subset V ′. This by definition means that V ′

is not a k-root subset. Since V ′ is arbitrary, we conclude that there cannot exist a k-root subset in
G. This completes the proof. □

To illustrate Theorem 1.2, first consider k = 2. Both G1 in Fig. 1.7 and G′
1 in Fig. 1.8

contain a spanning 2-tree. While G1 contains 1 closed strong component (induced by {v3}),
G′
1 contains 2 closed strong components (induced respectively by {v2} and {v3}). Next

consider k = 3. The digraphs in Fig. 1.9 contain a spanning 3-tree. G′
3 has 1 closed strong

component (induced by {v2, v3, v4}), while G′
4 has 2 closed strong components (induced

respectively by {v2, v4} and {v3}). In addition, the spanning 3-tree G′
2 in Fig. 1.8 has 3

closed strong components (induced respectively by {v2}, {v3}, and {v4}).

1.3 Matrices of digraphs

Given a digraph G = (V, E) with V = {v1, . . . , vn}, we may assign to each edge (vj , vi) ∈ E a weight
aij . If a pair (vj , vi) is not an edge, i.e. (vj , vi) /∈ E , then aij = 0. The weight aij may be a positive
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Figure 1.9: Number of closed strong components in digraphs containing a spanning multiple tree

real number, or any real number, or even a complex number. We note that even if (vj , vi) ∈ E ,
the corresponding weight aij can still be 0, i.e. an edge can have zero weight. In this case, it is
equivalent to treat such a zero-weight edge as nonexisting in the digraph. With weights assigned
to edges, the digraph G is called a weighted digraph.

The adjacency matrix of a weighted digraph G is an n × n matrix A = (aij). Depending on
the field where aij belongs, A may be a nonnegative matrix (entry-wise nonnegative) if aij > 0, an
arbitrary real matrix if aij ∈ R, or a complex matrix if aij ∈ C. In the case that the adjacency
matrix A is nonnegative, aij > 0 if and only if (vj , vi) ∈ E .

Conversely for a given n× n matrix A = (aij), we may construct a weighted digraph G(A) of n
nodes such that an edge (vj , vi) exists with weight aij if and only if aij ̸= 0.

Illustration of adjacency matrices is provided in Fig. 1.10. Given a weighted digraph G of
five nodes, its adjacency matrix A is a 5× 5 matrix with each entry aij the weight on edge
(vj , vi). Conversely for a given 4 × 4 matrix A′, its corresponding digraph G(A′) has four
nodes, and an edge (vj , vi) with weight aij exists whenever aij ̸= 0. Note that the two loops
in G(A′) are due to the nonzero diagonal entries a11 and a44.

We write A ≥ 0 if A is a nonnegative matrix, and A > 0 if A is a positive matrix (entry-
wise positive). The same notation is used for nonnegative and positive vectors (which are special
one-column matrices).

When the adjacency matrix A is a nonnegative matrix (i.e. A ≥ 0), there are several important
properties concerning its spectrum (i.e. set of eigenvalues) that we shall introduce in the sequel (the
Perron-Frobenius Theorem in Theorem 1.5). To this end, we introduce two types of nonnegative
matrices in order: irreducible matrices and primitive matrices.
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Figure 1.10: Adjacency matrices

Irreducible matrices

A square matrix P is a permutation matrix if for each row and each column, there is exactly one
entry equal to 1. That is, the columns of a permutation matrix are a reordering of the standard
basis vectors. Indeed, if P is a permutation matrix and M an arbitrary matrix, then the operation
M 7→ PM amounts to reordering the rows of M ; further PM 7→ PMP⊤ amounts to doing the
same reordering of the columns of PM . A permutation matrix P is orthogonal: P⊤P = PP⊤ = I.

Let A ∈ Rn×n be a nonnegative matrix, i.e. A ≥ 0. We say that A is reducible if either (i) n = 1

and A = 0, or (ii) there exists a permutation matrix P such that PAP⊤ is block upper triangular
as follows: [

B C

0 D

]

where B and D are square matrices. Otherwise A is irreducible.
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For example, consider two nonnegative matrices

A1 =


0 0 0 1

2 0 3 0

0 0 0 0

0 4 5 0

 , A2 =


0 0 0 1

2 0 0 0

0 3 0 0

0 4 5 0

 .

A1 is reducible because there exists the following permutation matrix

P =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 such that PA1P
⊤ =


0 0 1 0

2 0 0 3

0 4 0 5

0 0 0 0

 .

On the other hand, A2 is irreducible: no permutation matrix P can render PA2P
⊤ in a

block upper triangular form.

Irreducibility of matrices is elegantly characterized by connectivity of digraphs.

Theorem 1.3 Let G be a weighted digraph with n nodes and A ≥ 0 the corresponding
nonnegative adjacency matrix. Then A is irreducible if and only if G is strongly connected.

For the example A1, A2 above, they are respectively the nonnegative adjacency matrices of
digraphs G1 and G2 in Fig. 1.11. A1 is reducible and digraph G1 is not strongly connected;
whereas A2 is irreducible and digraph G2 is strongly connected.

v1

v2 v3

v4

G1

v1

v2 v3

v4

G2
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3

4 5
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4 5

Figure 1.11: Irreducibility of nonnegative matrices characterized by graph connectivity
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To prove Theorem 1.3, the following lemma is useful, which establishes a link between positivity
of entries in powers of an adjacency matrix and reachability of the corresponding nodes. For an
arbitrary positive integer k ≥ 1, denote by akij the (i, j)-entry of the matrix Ak.

Lemma 1.1 Let G be a weighted digraph with n nodes and A ≥ 0 the corresponding non-
negative adjacency matrix. Then for every i, j ∈ {1, . . . , n} and every positive integer k ≥ 1,
akij > 0 if and only if there exists a path of length k from node vj to node vi.

Proof. The proof is by induction on k ≥ 1. For the base case where k = 1, the assertion holds
by the definition of nonnegative adjacency matrix A. Namely, aij > 0 if and only if there is an edge
(vj , vi) ∈ E (i.e. path of length 1 from vj to vi).

For the induction step, suppose that the assertion holds for k− 1. Note from Ak = Ak−1A that

akij =

n∑
m=1

ak−1
im amj .

Thus akij > 0 if and only if there is m ∈ {1, . . . , n} such that ak−1
im > 0 and amj > 0. That is, there

exist a path of length k − 1 from node vm to vi and a path of length 1 from vj to vm. These two
paths constitute a path of length k from vj to vi. This finishes the induction step, and thereby
establishes the assertion for any positive integer k ≥ 1. □

Proof of Theorem 1.3. (If) Suppose on the contrary that A is reducible. By definition, there
is a permutation matrix P such that

PAP⊤ =

[
B C

0 D

]
=: Ã.

Then the matrix I + Ã is also block upper triangular, and so is its n − 1 powers (I + Ã)n−1.
Consequently (I + Ã)n−1 is not a positive matrix. Note that

(I + Ã)n−1 = P (I +A)n−1P⊤

so neither is (I +A)n−1 positive. Since in general

(I +A)n−1 = I + c1A+ c2A
2 + · · ·+ cn−1A

n−1

and the combinatorial coefficients c1, . . . , cn−1 are all positive, there exist i, j ∈ {1, . . . , n} (i ̸= j)
such that for every k ∈ {1, . . . , n − 1} it holds that akij = 0. But this means (by Lemma 1.1) that
there is no path of any length k ∈ {1, . . . , n− 1} from node vj to node vi. Namely vj ̸→ vi; hence
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digraph G is not strongly connected.
(Only if) Suppose on the contrary that G is not strongly connected. By definition, there exist

two nodes vi, vj such that vj ̸→ vi. Thus the set of nodes that cannot reach vi is nonempty, i.e.
V \ V(→vi) ̸= ∅. In fact, there does not exist any path from any node in V \ V(→vi) to any node in
V(→vi). To see this, suppose that there exist vl ∈ V \ V(→vi) and vm ∈ V(→vi) such that vl → vm.
Since vm → vi, we have vl → vi, but this contradicts vl /∈ V(→vi). By this fact, we reorder the
nodes according to the partition of the node set: {V \V(→vi),V(→vi)}. The reordering amounts to
a permutation of the indices of nodes, and correspondingly there is a permutation matrix P such
that

PAP⊤ =

[
B C

0 D

]

But this means that A is reducible. □

Primitive matrices

Next we introduce primitive matrices. Let A ∈ Rn×n be a nonnegative matrix, i.e. A ≥ 0. We
say that A is primitive if

(∃k ≥ 1)Ak > 0.

A primitive matrix is irreducible, but the converse need not hold. This is evident from the fol-
lowing graphical characterization of primitive matrices, as compared to that of irreducible matrices
in Theorem 1.3.

Theorem 1.4 An n × n nonnegative matrix A is primitive if and only if G(A) is strongly
connected and aperiodic.

Consider again the matrix A2 which is the adjacency matrix of digraph G2 in Fig. 1.11. We
have analyzed that A2 is irreducible, as G2 is strongly connected. Moreover G2 is aperiodic:
there are two cycles in G2 of length 3 and 4, respectively; hence p = g.c.d.{3, 4} = 1. By
Theorem 1.4, A2 is primitive. Indeed, it is checked that A10

2 is a positive matrix.
Let us consider two more matrices

A3 =


0 0 0 1

2 0 0 0

0 3 0 0

0 0 5 0

 , A4 =


4 0 0 1

2 0 0 0

0 3 0 0

0 0 5 0

 .
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First, A3 is not primitive because digraph G(A3) in Fig. 1.12 is not aperiodic. Indeed G(A3)

is a strongly connected digraph of period 4. Hence A3 is irreducible but not primitive. On
the other hand, A4 is the same as A3 except for the positive (1, 1) entry. This diagonal
entry is crucial, however, since digraph G(A4) in Fig. 1.12 is aperiodic due to the loop at v1.
Therefore A4 is primitive (in fact A6

4 > 0).
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Figure 1.12: Primitivity of nonnegative matrices characterized by graph connectivity

The proof of Theorem 1.4 requires the following lemmas.

Lemma 1.2 Let m1,m2 ≥ 1 be two positive integers. If g.c.d.{m1,m2} = 1, then there is
an integer k̄ ≥ 0 such that for any integer k ≥ k̄,

k = αm1 + βm2

for some nonnegative integers α, β.

Proof. Since
g.c.d.{m1,m2} = 1,

1 is an integer combination of m1 and m2, i.e.

1 = α1m1 − β1m2

for some nonnegative integers α1, β1. Let k̄ := β1m
2
2. Thus k̄ ≥ 0 and for all k ≥ k̄,

k = β1m
2
2 + im2 + j
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for some integers i, j satisfying i ≥ 0 and 0 ≤ j < m2. Substituting 1 = α1m1 − β1m2 into the
above equation yields

k = β1m
2
2 + im2 + j(α1m1 − β1m2)

= (jα1)m1 + (β1(m2 − j) + i)m2.

Let
α := jα1 and β := β1(m2 − j) + i.

Then α, β are nonnegative integers due to j < m2. Therefore, the conclusion follows. □
The next result shows the relationship between the period of a strongly connected digraph and

the period of each node in the digraph. For an arbitrary node v in a strongly connected digraph
G, let lv,1, . . . , lv,m be the lengths of all m(≥ 1) cycles from v to v. Denote by pv their greatest
common divisor, i.e.

pv := g.c.d.{lv,1, . . . , lv,m}

and we say that pv is the period of node v.

Lemma 1.3 Consider a strongly connected digraph G. Let p be the period of a digraph G
and pi be the period of node vi, i ∈ {1, . . . , n}. Then p = p1 = · · · = pn.

Proof. Let i ∈ {1, . . . , n}. We will establish p = pi by showing that p divides pi and pi divides p.

First let L := {l1, . . . , lk} be the set of all the lengths of all k(≥ 1) cycles in digraph G. Then
by definition, p is the greatest common divisor of the elements in L. Note that for every path from
vi to vi, it is either a (simple) cycle or consists of a number of cycles. So the length lvi of any path
from vi to vi is an integer combination of lj , j ∈ {1, . . . , k}, with nonnegative integer coefficients.
This means that every lj ∈ L divides lvi . Therefore p divides lvi , which further implies p divides
pi.

On the other hand, consider an arbitrary cycle in digraph G, and let its length be lj ∈ L. If the
cycle goes through vi, then pi divides lj . If not, then the cycle necessarily goes through some other
node, say vm. Since G is strongly connected, there must exist a cycle going through vi and vm.
Denote by li,m the length of this cycle. Thus pi divides li,m. Note that these two cycles constitute
a path of length li,m + lj from vi to vi. So pi divides li,m + lj and therefore pi divides lj . Hence, pi
divides any lj in L. This means that pi divides p.

Based on the above established two facts that pi divides p and p divides pi, we conclude that
p = pi for every i ∈ {1, . . . , n}. □
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Lemma 1.4 Let A be an n × n nonnegative matrix. If G(A) is strongly connected and
p-periodic, then akii = 0 for any i ∈ {1, . . . , n} and for any k that is not a multiple of p.

Proof. Let pi, i ∈ {1, . . . , n}, be the period of the node vi in G(A). Thus by Lemma 1.3

p = p1 = · · · = pn

since G(A) is strongly connected. Hence the length of any path from vi to vi is a multiple of p.
Namely there is no path from vi to vi with length k that is not a multiple of p. So it follows from
Lemma 1.1 that akii = 0 for every i ∈ {1, . . . , n} and any k that is not a multiple of p. □

With the three lemmas above, we present the proof of Theorem 1.4.
Proof of Theorem 1.4. (If) Since G(A) is strongly connected and aperiodic, by Lemma 1.3 the
period of G(A) and the period of each node vi are equal to 1. For any node vi, let l1vi , l

2
vi (l

1
vi ̸= l2vi)

be the lengths of two paths from vi to vi. By Lemma 1.2 there is sufficiently large k̄i such that for
any k ≥ k̄i, k may be expressed by a nonnegative integer combination of l1vi and l2vi , which means
that there is a path of length k from vi to vi. Let vj be another node. Since G(A) is strongly
connected, there is a path from vi to vj ; let its length be lij . Thus for any k ≥ qij := k̄i + lij there
is a path of length k from vi to vj . It follows from Lemma 1.1 that akij > 0 for all k ≥ qij . Let

q := max{qij | i, j = 1, . . . , n}.

Then we have akij > 0 for all i, j = 1, . . . , n and k ≥ q. Therefore by definition, A is a primitive
matrix.

(Only if) Suppose on the contrary that G(A) is not strongly connected, or that it is strongly
connected but not aperiodic. For the first case that G(A) is not strongly connected, there is a pair
of nodes vi and vj such that vj is not reachable from vi. So by Lemma 1.1, akij = 0 for all k > 0.
Hence there is no positive integer k such that Ak is positive and consequently A is not primitive.

For the second case, G(A) is strongly connected but not aperiodic, that is, it is p-periodic where
p > 1. It follows from Lemma 1.4 that ak

′

ii = 0 for any positive integer k′ that is not a multiple of
p. Hence there is no positive integer k such that Ak is positive, as otherwise if there were a positive
integer k∗ such that Ak∗ is positive, then Ak is positive for any k ≥ k∗, which contradicts ak

′

ii = 0

for any positive integer k′ that is not a multiple of p. Therefore, A is not primitive. □

Perron-Frobenius Theorem

We are now ready to introduce the Perron-Frobenius Theorem. Denote by σ(A) the spectrum of
matrix A, i.e. the set of all eigenvalues of A, and ρ(A) the spectral radius of A, i.e. the maximum
magnitude of the eigenvalues of A.
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Theorem 1.5 (Perron-Frobenius Theorem) Consider a nonnegative matrix A. If A is
irreducible, then

• ρ(A) > 0;

• ρ(A) is a simple eigenvalue of A;

• ρ(A) has a positive eigenvector and a positive left-eigenvector.a

Moreover, if A is primitive, then all eigenvalues except for ρ(A) have absolute values smaller
than ρ(A):

• (∀λ ∈ σ(A))λ ̸= ρ(A) ⇒ |λ| < ρ(A).

aLeft-eigenvector w corresponding to an eigenvalue λ of A satisfies w⊤A = w⊤λ.

Of particular interest is specialization of the Perron-Frobenius Theorem to a special class of
nonnegative matrices: stochastic matrices. A nonnegative matrix A is called row-stochastic (resp.
column-stochastic) if every row (resp. every column) of A sums up to one; if A is both row-stochastic
and column-stochastic, it is called doubly-stochastic.

Lemma 1.5 If A is a row-stochastic (column-stochastic, doubly-stochastic) matrix, then
ρ(A) = 1.

Proof. We prove the statement for row-stochastic matrices; the proofs for column-stochastic and
doubly-stochastic matrices are similar.

Since A is row-stochastic, we have A1 = 1. This means that 1 is an eigenvalue of A. Hence
ρ(A) ≥ 1. On the other hand,

ρ(A) = max{|λ| | λ is an eigenvalue of A}

= max{∥λx∥∞ | λ is an eigenvalue of A, x is a corresponding eigenvector, ∥x∥∞ = 1}

= max{∥Ax∥∞ | x is an eigenvector of A, ∥x∥∞ = 1}

≤ max{∥Ax∥∞ | ∥x∥∞ = 1}

= ∥A∥∞

= max
i

∑
j

|aij | = 1.

The last equality follows from the fact that every row of A sums to one. Therefore ρ(A) = 1. □
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Theorem 1.6 (Perron-Frobenius Theorem for Stochastic Matrices) Consider
a row-stochastic (column-stochastic, doubly-stochastic) matrix A. If A is irreducible,
then ρ(A) = 1 is a simple eigenvalue of A, with a positive eigenvector and a positive
left-eigenvector. Specifically:

• if A is row-stochastic, then eigenvalue 1 has a positive eigenvector 1 (A1 = 1) and a
positive left eigenvector πl (π⊤

l A = π⊤
l );

• if A is column-stochastic, then eigenvalue 1 has a positive eigenvector πr (Aπr = πr)
and a positive left eigenvector 1 (1⊤A = 1⊤);

• if A is doubly-stochastic, then eigenvalue 1 has a positive eigenvector 1 (A1 = 1) and
a positive left eigenvector 1 (1⊤A = 1⊤).

Moreover, if A is primitive, then all eigenvalues except for 1 have absolute values smaller
than 1:

• (∀λ ∈ σ(A))λ ̸= 1 ⇒ |λ| < 1.

Laplacian matrices

For a weighted digraph G, the weighted (in-)degree di of a node i is the sum of the weights of
all edges entering i, i.e. di =

∑n
j=1 aij . Similarly, the weighted out-degree doi of a node i is the

sum of the weights of all edges leaving i, i.e. doi =
∑n

j=1 aji. A node i with di = doi is called
weight-balanced. A digraph G is weight-balanced if every node is weight-balanced.

The degree matrix of a weighted digraph G is D := diag(d1, . . . , dn). Let A be the adjacent
matrix of G; then D = diag(A1) (where 1 is the vector of all ones).

The Laplacian matrix of a weighted digraph G is L := D − A. By definition L1 = 0; namely
each row of L sums to zero. Thus 0 is an eigenvalue of L, with a corresponding eigenvector 1.

We distinguish three types of Laplacian matrices depending on their entries. Each type is useful
for a set of cooperative control problems introduced in later chapters.

• If A is nonnegative, then L has nonnegative diagonal entries and nonpositive off-diagonal
entries. This L is called standard Laplacian matrix.

• If A is (arbitrary) real, then L is called signed Laplacian matrix.

• If A is complex, then L is called complex Laplacian matrix.
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Continuing the example in Fig. 1.10, the degree matrix is D := diag(d1, d2, d3, d4, d5), where
d1 = a12, d2 = a21, d = a31 + a32 + a35, d4 = a41 + a43 + a45, and d5 = a52 + a54. Thus the
Laplacian matrix is

L :=


d1 −a12 0 0 0

−a21 d2 0 0 0

−a31 −a32 d3 0 −a35

−a41 0 −a43 d4 −a45

0 −a52 0 −a54 d5

 .

Since 0 is by definition an eigenvalue of Laplacian matrix L, its kernel (i.e. null space)2 is at
least one-dimensional. It turns out that the dimensions of the kernel of Laplacian matrices play a
central role in characterizing the types of allowable cooperative behaviors.

Remark 1.1 It is sometimes convenient to define degree matrix and Laplacian matrix with respect
to the out-degrees of nodes. Consider a weighted digraph G and its adjacency matrix A. The
out-degree matrix of G is Do := diag(do1, . . . , d

o
n); hence Do = diag(1⊤A). Correspondingly, the

out-degree Laplacian matrix of G is Lo := Do−A. By this definition 1⊤Lo = 0; namely each column
of Lo sums to zero. Thus 0 is again an eigenvalue of Lo, with a corresponding left-eigenvector 1.

1.4 Standard Laplacian Matrices

Let G be a weighted digraph with n nodes, A the associated adjacency matrix, and D(= diag(A1))

the degree matrix. In this section we consider that A is nonnegative, and L = D−A the standard
Laplacian matrix.

The kernel of L is at least one-dimensional, for L has at least one eigenvalue 0. The following
is a graphical condition that characterizes when the kernel of L is exactly one-dimensional (namely
the 0 eigenvalue of L is simple). We use dim(·) to denote the dimension of a vector space.

Theorem 1.7 Let G be a weighted digraph with n nodes and L the standard Laplacian
matrix. Then dim(kerL) = 1 if and only if G contains a spanning tree.

Note that dim(kerL) = 1 is equivalent to rank(L) = n − 1. To prove Theorem 1.7, it is useful
to first present the following sufficient condition for rank(L) = n− 1.

2Kernel of matrix L (viewed as a linear map) is defined as kerL := {v | Lv = 0}.
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Lemma 1.6 Let G be a weighted digraph with n nodes and L the standard Laplacian matrix.
If G is strongly connected, then rank(L) = n− 1.

Proof. Suppose that G is strongly connected. Then by Theorem 1.3, the nonnegative adjacency
matrix A of G is irreducible and the degree matrix D is invertible. As a result, the Laplacian matrix
L = D −A can be written as

L = D(I −D−1A).

Let Ã := D−1A and L̃ := D−1L = I − Ã. Then Ã is also nonnegative and has zero entries at the
same locations as A does; the latter means that Ã is irreducible too.

Note moreover that every row of Ã sums up to 1. Thus Ã is row-stochastic and its spectral
radius equals one by Lemma 1.5, i.e. ρ(Ã) = 1. It then follows from the Perron-Frobenius Theorem
for Stochastic Matrices (Theorem 1.6) that ρ(Ã) = 1 is a simple eigenvalue of Ã. By spectrum
mapping, we derive that 0 is a simple eigenvalue of L̃ = I − Ã, i.e. rank(L̃) = n − 1. Therefore
rank(L) =rank(DL̃) = n− 1. □

Remark 1.2 In the proof of Lemma 1.6, the Perron-Frobenius Theorem for Stochastic Matrices
(Theorem 1.6) is invoked to show that rank(L) = n − 1, namely the eigenvalue 0 of L is simple.
Not needed in the above proof but will be useful later (in Chapters 2 and 3 of averaging/optimiza-
tion problems), the Perron-Frobenius Theorem for Stochastic Matrices also asserts that the simple
eigenvalue 0 of L has a positive left-eigenvector. That is, there exists πl > 0 such that π⊤

l L = 0.
Similarly for the standard out-degree Laplacian matrix Lo in Remark 1.1, if G is strongly

connected, then the eigenvalue 0 of Lo is simple (hence rank(Lo) = n − 1) and has a positive
eigenvector. That is, there exists πr > 0 such that Loπr = 0.

We provide examples to illustrate Lemma 1.6 and Theorem 1.7. In Fig. 1.13, weighted
digraph G1 is strongly connected; thus according to Lemma 1.6, its standard Laplacian
matrix has rank 2. Indeed it is verified that rank(L1) = 2. Next for G2, it is not strongly
connected but contains a spanning tree; hence it follows from Theorem 1.7 that its standard
Laplacian matrix also has rank 2. This is also confirmed: rank(L2) = 2. Finally, G3 does
not contain a spanning tree, so its standard Laplacian matrix has rank less than 2 by
Theorem 1.7. Indeed rank(L3) = 1.

Now we prove Theorem 1.7.
Proof of Theorem 1.7. (Only if) Suppose on the contrary that the (weighted) digraph G does

not contain a spanning tree. Then by Theorem 1.1, G contains at least two (disjoint) closed strong
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Figure 1.13: Rank of standard Laplacian matrix

components, say G1 and G2. It follows from Lemma 1.6 that their Laplacian matrices L1 and L2

(say) each have a simple eigenvalue 0. Since G1 and G2 are closed, the Laplacian matrix L of G has
the following structure:

L =

L1 0 0

0 L2 0

∗ ∗ ∗

 .

Consequently L has at least two eigenvalues 0, which implies rank(L) < n− 1.
(If) Suppose that G contains a spanning tree. Let Vr be the subset of all possible roots, i.e.

Vr := {r ∈ V | V(r→) = V}.

Thus Vr ̸= ∅.
If Vr = V, namely every node is a root, then G is strongly connected, and by Lemma 1.6 we

have rank(L) = n− 1.
If Vr ⫋ V (i.e. Vr is a strict subset of V), then the induced subdigraph Gr is the unique closed

strong component of G (by Theorem 1.1). Thus every node in Vr can reach every node in V \ Vr,
whereas no node in V\Vr can reach any node in Vr. Consider without loss of generality the case that
the nodes are ordered according to the partition Vr ∪ (V \ Vr) (reordering corresponds merely to a
permutation of node indices and the associated similarity transformation does not change spectrum
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of the matrices involved). Then the nonnegative adjacency matrix A and degree matrix D have the
following forms:

A =

[
A1 0

A2 A3

]
, D =

[
D1 0

0 D3

]
.

Note that A1 = D1 = 0 if and only if Vr is a singleton set (i.e. containing a single node). Accordingly
the Laplacian matrix L is block (lower) triangular:

L = D −A =

[
D1 0

0 D3

]
−

[
A1 0

A2 A3

]
=:

[
L1 0

L2 L3

]
.

Since Gr is strongly connected, its Laplacian matrix L1 has rank(L1) = |Vr| − 1 (by Lemma 1.6).
Thus 0 is a simple eigenvalue of L1, and it remains to show that L3 does not have an eigenvalue 0.

To that end, let D̃ := D if Vr contains more than one node; and

D̃ :=

[
1 0

0 D3

]

if Vr contains exactly one node. Thus the defined D̃ is invertible. Use D̃−1 to define

Ã := D̃−1A =

[
Ã1 0

Ã2 Ã3

]
, L̃ := D̃−1L = I − Ã =

[
L̃1 0

L̃2 L̃3

]
.

Note that Ã is nonnegative and every row sums up to 1. Hence for every integer k ≥ 1, it holds
that Ãk is nonnegative and every row sums up to 1. Let us focus on Ãn (i.e. k = n), which has the
form

Ãn :=

[
Ãn

1 0

X Ãn
3

]
.

Since every node in Vr can reach every node in V \ Vr, it follows from Lemma 1.1 that all the
entries of the (2, 1)-block X are positive. Hence the largest row sum of Ãn

3 is smaller than one, i.e.
∥Ãn

3∥∞ < 1. By the same proof of Lemma 1.5, we derive ρ(Ãn
3 ) ≤ ∥Ãn

3∥∞ < 1. Therefore ρ(Ã3) < 1

and L̃3 = I − Ã3 has no eigenvalue 0. This implies that L̃3 has full rank, and so does L3 = D3L̃3.
The latter means that L3 has no eigenvalue 0. Therefore L has a simple eigenvalue 0 (which is from
L1), and rank(L) = n− 1. □

We end this section with a result which is a generalization of Theorem 1.7. The result states
that the dimension of kerL is equal to the number of (disjoint) closed strong components in G.
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Theorem 1.8 Let G be a weighted digraph with n nodes and L the standard Laplacian
matrix. Consider an integer k ∈ [1, n]. Then dim(kerL) = k if and only if G contains k

closed strong components.

Proof. (If) Suppose that G contains k (∈ [1, n]) closed strong components, denoted by G1 =

(V1, E1), . . . ,Gk = (Vk, Ek). Let Vk+1 be the set of remaining nodes (if any), i.e. Vk+1 := V \ (V1 ∪
· · · ∪ Vk). To show dim(kerL) = k, it is equivalent to show rank(L) = n− k.

Renumber (if necessary) the nodes in the order of V1, . . . ,Vk,Vk+1, and permute the correspond-
ing rows and columns in the Laplacian matrix L. Since the k strong components G1, . . . ,Gk are
closed, the above permutation yields a matrix L̂ (similarly transformed from L) of the following
form:

L̂ :=



L̂1 0 · · · 0 0

0
. . . . . . 0 0

... . . . . . . . . . ...
0 0 · · · L̂k 0

X1 X2 · · · Xk L̂k+1


.

Since L and L̂ are similar via a permutation matrix, rank(L) = rank(L̂). Moreover, since every
strong component Gi (i ∈ [1, k]) is strongly connected, its Laplacian matrix Li has rank(Li) = |Vi|−1

(by Lemma 1.6); hence rank(L̂i) = |Vi| − 1 for all i ∈ [1, k]. Given the block lower triangular
structure of L̂, to show rank(L) = rank(L̂) = n− k, it suffices to establish that L̂k+1 does not have
an eigenvalue 0. This is along the same lines as the sufficiency proof of Theorem 1.7, but with a
higher dimension in general.

To proceed, let Â and D̂ be the adjacency matrix and degree matrix corresponding to L̂:

Â :=



Â1 0 · · · 0 0

0
. . . . . . 0 0

... . . . . . . . . . ...
0 0 · · · Âk 0

Y1 Y2 · · · Yk Âk+1


, D̂ :=



D̂1 0 · · · 0 0

0
. . . . . . 0 0

... . . . . . . . . . ...
0 0 · · · D̂k 0

0 0 · · · 0 D̂k+1


.

Let D̃i := D̂i (i ∈ [1, k]) if Vi contains more than one node; D̃i := 1 if Vi contains exactly one node.
Also let D̃k+1 := D̂k+1. Note that D̃k+1 ̸= 0 regardless of the number of nodes in Vk+1 (as long as
Vk+1 ̸= ∅). This is because the induced digraph Gk+1 by Vk+1 is not closed; otherwise Gk+1 would
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contain a closed strong component (as shown in the proof of Theorem 1.1). Thus define

D̃ :=



D̃1 0 · · · 0 0

0
. . . . . . 0 0

... . . . . . . . . . ...
0 0 · · · D̃k 0

0 0 · · · 0 D̃k+1


which is invertible. Now use D̃−1 to define

Ã := D̃−1Â =



Ã1 0 · · · 0 0

0
. . . . . . 0 0

... . . . . . . . . . ...
0 0 · · · Ãk 0

Ỹ1 Ỹ2 · · · Ỹk Ãk+1


, L̃ := D̃−1L̂ = I − Ã =



L̃1 0 · · · 0 0

0
. . . . . . 0 0

... . . . . . . . . . ...
0 0 · · · L̃k 0

X̃1 X̃2 · · · X̃k L̃k+1


.

Note that Ã is nonnegative and every row sums up to 1. Hence for every integer m ≥ 1, it holds
that Ãm is nonnegative and every row sums up to 1. Let us focus on Ãm for m ≥ n− k, which has
the form

Ãm :=



Ãm
1 0 · · · 0 0

0
. . . . . . 0 0

... . . . . . . . . . ...
0 0 · · · Ãm

k 0

Z1 Z2 · · · Zk Ãm
k+1


.

We claim that for every row of Z := [Z1 · · · Zk], there exists at least one positive entry.

First since Gk+1 is not closed, there is a node u1 ∈ Vk+1 and vi ∈ Vi for some i ∈ [1, k] such that
(vi, u1) ∈ E (i.e. an edge exists with tail v and head u1). It then follows from Gi being a strong
component that there is a node v′i ∈ Vi such that v′i → u1 with a path of any length l ≥ 1. Next
let Vk+2 := Vk+1 \ {u1}. If Vk+2 ̸= ∅, then the induced digraph Gk+2 is again not closed. Thus
there is a node u2 ∈ Vk+2 and v ∈ V1 ∪ · · · ∪ Vk ∪ {u1} such that (v, u2) ∈ E . Since there is an edge
(vi, u1), it follows from a similar argument to above that there is a node v′ ∈ V1 ∪ · · · ∪ Vk such
that v′ → u2 with a path of any length l ≥ 2. Note that Vk+1 has at most n− k nodes. Repeating
the above argument at most n− k times leads to the conclusion that for every m ≥ n− k, there is
a path of length m from some node in V1 ∪ · · · ∪ Vk to every node in Vk+1. This proves our claim
by invoking Lemma 1.1.
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Therefore the largest row sum of Ãm
k+1 is smaller than one, i.e. ∥Ãm

k+1∥∞ < 1, which implies
that ρ(Ãm

k+1) ≤ ∥Ãm
k+1∥∞ < 1. Hence ρ(Ãk+1) < 1 and L̃k+1 = I − Ãk+1 has no eigenvalue 0. It

follows that L̃k+1 has full rank, and so does L̂k+1 = D̃k+1L̃k+1. The latter means that L̂k+1 has
no eigenvalue 0. The sufficiency proof is now complete.

(Only if) Suppose that G contains k′ ∈ [1, n] closed strong components and k′ ̸= k. Then by the
above proved sufficiency result, dim(kerL) = k′ ̸= k. □

1.5 Complex Laplacian Matrices
Let G be a weighted digraph with n nodes, A the associated adjacency matrix, and D(= diag(A1))

the degree matrix. In this section we consider the second type that A is a complex matrix, and
L = D −A is the complex Laplacian matrix.

The following is a graphical condition that suffices to ensure that the kernel of L is at most
2-dimensional.

Theorem 1.9 Let G be a weighted digraph with n nodes and L the complex Laplacian matrix.
If G contains a spanning 2-tree, then dim(kerL) ≤ 2 for L with almost all complex entries.

The phrase “almost all complex entries” in Theorem 1.9 means for all complex entries except
for those in some set of zero Lebesgue measure.

Unlike Theorem 1.7 in the preceding section, the graphical condition in Theorem 1.9 that G con-
tains a spanning 2-tree is sufficient but not necessary to establish dim(kerL) ≤ 2 (for L with almost
all complex entries). The reason that the condition is not necessary follows from Theorem 1.8: a
digraph G containing two closed strong components also gives rise to dim(kerL) = 2 for standard
Laplacian matrix L which is a special case of complex Laplacian matrix; however, such a digraph
need not contain a spanning 2-tree.

An example to illustrate this point is given in Fig. 1.14. Here the digraph G contains two
closed strong components, but it does not contain a spanning 2-tree. Consider the unit
weight for all edges in G. Then the Laplacian matrix is displayed in Fig. 1.14, which has
rank 3. Hence we indeed have dim(kerL) = 2, but G does not contain a spanning 2-tree.

Note that dim(kerL) ≤ 2 means that rank(L) ≥ n − 2. To show this lower bound on rank(L),
it is sufficient to show that there exists a nonzero minor of L with size n− 2.

A minor with size k ∈ [1, n] of L is the determinant of a k×k submatrix of L (by deleting n−k

rows and columns). If a minor with size k is nonzero, it implies that there are at least k linearly
independent columns of L, hence giving a lower-bound k on the rank of L. In fact, rank(L) is equal
to the maximum size of a nonzero minor of L.
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Figure 1.14: Digraph G contains two closed strong components but does not contain a spanning
2-tree

To prove Theorem 1.9, it is convenient to establish the following lemma.

Lemma 1.7 Let G be a weighted digraph with n nodes and L the complex Laplacian matrix.
If G contains a spanning tree, then rank(L) = n− 1 for L with almost all complex entries.

The conclusion of this lemma is analogous to the sufficiency part of Theorem 1.7. But since
we are dealing with complex L, the proof for Theorem 1.7 does not apply here, and a new proof
technique is needed.

Proof of Lemma 1.7. Suppose that G = (V, E) contains a spanning tree T = (V, ET ). Here
ET ⊆ E . Without loss of generality let v1 ∈ V be the root. Then the standard Laplacian matrix T

of T has the following form:

T :=

[
0 0

T1 T2

]
.

Since T is a spanning tree, by Theorem 1.7 we have rank(T ) = n− 1. Hence the determinant of T2

is nonzero, i.e. det(T2) ̸= 0. This is a nonzero minor with size n− 1.
Now consider the complex Laplacian matrix L′ of T , which has the same form as T : namely

L′ :=

[
0 0

L′
1 L′

2

]
.

However, the entries of L′
1, L

′
2 are complex numbers. According to the fact that a polynomial is

either constantly zero or nonzero almost everywhere (i.e. nonzero for almost all indeterminates
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of the polynomial), it follows from det(T2) ̸= 0 that det(L′
2) ̸= 0 for L′

2 with almost all complex
entries.

Finally consider the complex Laplacian matrix L of G which generally has more edges than T
(i.e. ET ⊆ E). As a result, L generally contains more nonzero entries than L′:

L :=

[
∗ ∗
L1 L2

]
.

Again according to the fact that a polynomial is either constantly zero or nonzero almost everywhere,
it follows from det(L′

2) ̸= 0 that det(L2) ̸= 0 for L2 with almost all complex entries. This means
that for L with almost all complex entries, there is a nonzero minor with size n − 1, equivalently
rank(L) is at least n− 1. On the other hand, since 0 is an eigenvalue of L, rank(L) can be at most
n− 1. This concludes that rank(L) = n− 1 for L with almost all complex entries. □

Now we prove Theorem 1.9.

Proof of Theorem 1.9. Suppose that G = (V, E) contains a spanning 2-tree. Without loss
of generality let v1, v2 ∈ V be the two roots, and write the complex Laplacian matrix L of G as
follows:

L :=



l11 l12 l13 · · · l1n

l21 l22 l23 · · · l2n

l31 l32 l33 · · · l3n
...

...
... . . . ...

ln1 ln2 ln3 · · · lnn


.

Remove the first row and the first column of L (all the following holds if the second row and the
second column of L are removed). Denote the resulting submatrix by

L′ :=


l22 l23 · · · l2n

l32 l33 · · · l3n
...

... . . . ...
ln2 ln3 · · · lnn

 .

The above removal corresponds to removing from the digraph G the root v1 and all those edges
where v1 is head or tail. Denote the resulting subdigraph as G′. Since G contains a spanning 2-tree,
G′ contains a spanning tree. Then it follows from Lemma 1.7 that rank(L′) = n − 2 for L′ with
almost all complex entries. This means that for L′ with almost all complex entries, there is a
nonzero minor of L′ with size n− 2. Since L′ is a submatrix of L, we derive that for L with almost
all complex entries, there is a nonzero minor of L with size n − 2, equivalently rank(L) ≥ n − 2.
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This establishes the conclusion that dim(kerL) ≤ 2 for L with almost all complex entries. □
Combining the conclusion of Theorem 1.9 and the fact that 0 is an eigenvalue of an arbitrary

complex Laplacian L, we derive that if G contains a spanning 2-tree, then either dim(kerL) = 1 or
dim(kerL) = 2 holds for L with almost all complex entries. For the special case that the digraph G
is a spanning 2-tree, the following corollary asserts that the kernel of its complex Laplacian matrix
L is exactly 2 for L with almost all complex entries.

Corollary 1.1 Let G be a weighted digraph with n nodes and L the complex Laplacian
matrix. If G is a spanning 2-tree, then dim(kerL) = 2 for L with almost all complex entries.

Proof. By Theorem 1.9, we know that dim(kerL) ≤ 2. Without loss of generality let v1, v2 ∈ V
be the two roots; thus the complex Laplacian matrix L of G has the following form:

L :=



0 0 0 · · · 0

0 0 0 · · · 0

l31 l32 l33 · · · l3n
...

...
... . . . ...

ln1 ln2 ln3 · · · lnn


.

It follows from the above structure that dim(kerL) ≥ 2. Therefore dim(kerL) = 2 after all. □

We end this section with two examples to illustrate Corollary 1.1, Lemma 1.7, and Theo-
rem 1.9. In Fig. 1.15, both weighted digraphs G1,G2 contain a spanning 2-tree; thus according
to Theorem 1.9, the rank of their complex Laplacian matrices can be 1 or 2. Indeed, it is
verified that rank(L1) = 2 and rank(L2) = 1. Moreover, G1 in fact contains a spanning tree,
so it follows from Lemma 1.7 that its rank satisfies rank(L1) = 2. Finally, G2 is a spanning
2-tree and hence by Corollary 1.1 we have rank(L2) = 1.

1.6 Signed Laplacian Matrices

Let G be a weighted digraph with n nodes, A the associated adjacency matrix, and D(= diag(A1))

the degree matrix. In this section we consider the third type that A is an arbitrary real matrix,
and L = D −A is the signed Laplacian matrix.

Let k ∈ [2, n−1] be an integer. The following is a graphical condition that is sufficient to ensure
that the kernel of L is at most k-dimensional.
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Figure 1.15: Rank of complex Laplacian matrices

Theorem 1.10 Let G be a weighted digraph with n nodes, L the signed Laplacian matrix,
and k ∈ [2, n − 1] an integer. If G contains a spanning k-tree, then dim(kerL) ≤ k for L

with almost all real entries.

The conclusion is a generalization of Theorem 1.9 for k not only equal to 2 but also greater than
2; meanwhile a restriction of Theorem 1.9 to the case of real entries.

Like Theorem 1.9, the graphical condition that G contains a spanning k-tree is only sufficient but
not necessary to establish dim(kerL) ≤ k (for L with almost all real entries). The reason that the
condition is not necessary again follows from Theorem 1.8: a digraph G containing k closed strong
components also gives rise to dim(kerL) = k for standard Laplacian matrix L which is a special
case of signed Laplacian matrix; however, such a digraph need not contain a spanning k-tree.
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For example, consider the digraph in Fig. 1.16. This digraph G contains three closed strong
components, but it does not contain a spanning 3-tree. Consider the unit weight for all
edges in G. Then the Laplacian matrix is displayed in Fig. 1.16, which has rank 3. Hence
we indeed have dim(kerL) = 3, but G does not contain a spanning 3-tree.
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v4

G

v6 L =





























1 0 0 −1 0 0
0 1 −1 0 0 0
0 −1 1 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 −1 −1 −1 3





























rank(L) = 3

v5

Figure 1.16: Digraph G contains three closed strong components but does not contain a spanning
3-tree

Note that dim(kerL) ≤ k means that rank(L) ≥ n− k. To show this lower bound on rank(L),
it will be shown that there exists a nonzero minor of L with size n− k.

Proof of Theorem 1.10. The proof is by induction on k ∈ [2, n− 1].
Base case. Suppose that G contains a spanning 2-tree. Since a signed Laplacian matrix is a

special complex Laplacian matrix, the conclusion for this case follows from Theorem 1.9.
Induction step. Suppose that if G contains a spanning k-tree (k ∈ [2, n−2]), then dim(kerL) ≤

k for L with almost all real entries. The latter means that rank(L) ≥ n − k for L with almost all
real entries, and equivalently there exists a nonzero minor of L with size n − k. Let G contain a
spanning (k + 1)-tree; without loss of generality let v1, . . . , vk+1 ∈ V be the k + 1 roots, and write
the signed Laplacian matrix L of G as follows:

L :=



l11 l12 l13 · · · l1n

l21 l22 l23 · · · l2n
...

...
...

...
...

l(k+1)1 l(k+1)2 l(k+1)3 · · · l(k+1)n

...
...

... . . . ...
ln1 ln2 ln3 · · · lnn


.
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Remove the first row and the first column of L (all the following holds if the ith row and the ith
column of L are removed for any i ∈ [2, k + 1]). Denote the resulting submatrix by

L′ :=



l22 l23 · · · l2n
...

...
...

...
l(k+1)2 l(k+1)3 · · · l(k+1)n

...
... . . . ...

ln2 ln3 · · · lnn


.

The above removal corresponds to removing from the digraph G the root v1 and all those edges
where v1 is head or tail. Denote the resulting subdigraph G′. Since G contains a spanning (k + 1)-
tree, G′ contains a spanning k-tree. Then it follows from the hypothesis that for L′ with almost
all real entries, there is a nonzero minor of L′ with size n − 1 − k = n − (k + 1). Since L′ is a
submatrix of L, we derive that for L with almost all real entries, there is a nonzero minor of L with
size n− (k+1), equivalently rank(L) ≥ n− (k+1). This establishes dim(kerL) ≤ k+1 for L with
almost all real entries.

Following the above induction on k ∈ [2, n− 1], the proof is now complete. □
Now combining the conclusion of Theorem 1.10 and the fact that 0 is an eigenvalue of an arbitrary

signed Laplacian L, we derive that if G contains a spanning k-tree, then dim(kerL) ∈ [1, k] for L

with almost all real entries. For the special case that the digraph G is a spanning k-tree, the
following corollary asserts that the kernel of its signed Laplacian matrix L is exactly k for L with
almost all real entries.

Corollary 1.2 Let G be a weighted digraph with n nodes, L the signed Laplacian matrix,
and k ∈ [2, n − 1] an integer. If G is a spanning k-tree, then dim(kerL) = k for L with
almost all real entries.

Proof. By Theorem 1.10, we know that dim(kerL) ≤ k. Without loss of generality let
v1, . . . , vk ∈ V be the k roots; thus the signed Laplacian matrix L of G has the following form:

L :=



0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

l(k+1)1 l(k+1)2 l(k+1)3 · · · l(k+1)n

...
...

... . . . ...
ln1 ln2 ln3 · · · lnn


.

It follows from the above structure that dim(kerL) ≥ k. Therefore dim(kerL) = k after all. □
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Figure 1.17: Rank of signed Laplacian matrices

We provide examples to illustrate Corollary 1.2 and Theorem 1.10. In Fig. 1.17, all three
weighted digraphs G1,G2,G3 contain a spanning 3-tree; thus according to Theorem 1.10,
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the rank of their signed Laplacian matrices can be 1, 2, or 3. Indeed, it is verified that
rank(L1) = 3, rank(L2) = 2, and rank(L3) = 1. Moreover, G3 is in fact a spanning 3-tree
and hence by Corollary 1.2 we have rank(L3) = 1.

We end this section by noting that the proofs above for Theorem 1.10 and Corollary 1.2 hold
true even if “real entries” are replaced by “complex entries”. This gives rise to the following theorem,
which is a general result subsuming Theorems 1.9, 1.10 and Corollaries 1.1, 1.2.

Theorem 1.11 Let G be a weighted digraph with n nodes, L the complex Laplacian matrix,
and k ∈ [2, n− 1] an integer.

• If G contains a spanning k-tree, then dim(kerL) ≤ k for L with almost all complex
entries.

• If G is a spanning k-tree, then dim(kerL) = k for L with almost all complex entries.

1.7 Notes and References
The material on digraphs, their connectivity and associated matrices is standard, and can be found
in textbooks on graph theory, e.g.

• C. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001

• R.B. Bapat, Graphs and Matrices, Springer, 2010

The concepts of spanning multiple trees, complex and signed Laplacian matrices originate from

• Z. Lin, L. Wang, Z. Han, M. Fu, A graph laplacian approach to coordinate-free formation
stabilization for directed networks, IEEE Transactions on Automatic Control, vol.61, pp.1269–
1280, 2016

• Z. Lin, L. Wang, Z. Chen, M. Fu, Necessary and sufficient graphical conditions for affine
formation control, IEEE Transactions on Automatic Control, vol.61, pp.2877–2891, 2016

Theorems 1.9, 1.10, and 1.11 are also adapted from the above.
Theorems 1.1, 1.2, 1.3, 1.4, 1.7, and 1.8 are adapted from

• Z. Lin, Distributed Control and Analysis of Coupled Cell Systems, VDM Verlag, 2008

• F. Bullo, Network Systems, Kindle Direct Publishing, 2020

Theorems 1.5 and 1.6 (Perron-Frobenius Theorem) can be found in e.g.

• R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, 2013



Part II
Strongly Connected Digraphs:
Averaging and Optimization

This part introduces two basic cooperative control problems — distributed averaging and dis-
tributed optimization over digraphs. The necessary graphical condition for solving these two prob-
lems is that digraphs are strongly connected. The type of Laplacian matrices involved in these
two problems is the standard Laplacian matrices. For agent dynamics, discrete-time linear time-
invariant first-order systems are considered.
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Chapter 2

Averaging

The first cooperative control problem we introduce is distributed averaging. Averaging is simple
and useful in many contexts of networked systems. One example is load balancing: say there are five
interconnected machines and ten jobs, having each machine process two jobs is the most efficient.
Another example is environment measuring by sensor networks: if each sensor has measured an
environment parameter, say temperature, contaminated by white noise, then the average of these
measurements is the unbiased, minimum mean-squared error estimate of the true temperature.
Other examples include cyclic pursuit, clock synchronization, and social influencing.

Networked systems and the interactions among component agents (via sensing or communi-
cation) are naturally modeled by digraphs. In this chapter, we show that a necessary graphical
condition to achieve distributed averaging is that the digraph is strongly connected, namely every
agent is reachable from every other agent. This is intuitively evident, as for locally computing the
global average, each agent needs a ‘channel’, direct or indirect, to receive information from every
other agent.

If the digraph is furthermore balanced, meaning roughly that each agent receives equal amount
of in-flow information and out-going information, then averaging is easily solvable by a distributed
algorithm (the consensus algorithm to be introduced in Chapter 4). However, balanced is neither
a mild graphical condition nor a necessary condition for averaging. Hence we will assume only
strongly connected digraphs (possibly unbalanced), and design a distributed algorithm that achieves
averaging.

2.1 Problem Statement
Consider a network of n (> 1) agents. Each agent i (∈ [1, n]) has a state variable xi(k) ∈ R, where
k ≥ 0 is a nonnegative integer and denotes the discrete time.

We model the interconnection structure of the networked agents by a digraph G = (V, E): Each
node in V = {1, ..., n} stands for an agent, and each (directed) edge (j, i) in E ⊆ V ×V denotes that
agent j communicates to agent i (namely, the information flow is from j to i). The (in-)neighbor
set of agent i is Ni := {j ∈ V | (j, i) ∈ E}, while the out-neighbor set N o

i := {j ∈ V | (i, j) ∈ E}.

53
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We say that an algorithm is distributed if every agent i updates its state xi(k) based only on
the information received from Ni, and sends information only to N o

i .

Averaging Problem:
Consider a network of n agents interconnected through a digraph G. Design a distributed

algorithm to update the agents’ states xi(k), i = 1, . . . , n, such that

(∀i ∈ [1, n])(∀xi(0) ∈ R) lim
k→∞

xi(k) =
1

n

n∑
i=1

xi(0).

1

2 3

4

Figure 2.1: Illustrating example of averaging problem with four agents

Example 2.1 We provide an example to illustrate the averaging problem. As displayed
in Fig. 2.1, four agents are interconnected through a digraph G. The neighbor sets of the
agents are N1 = {4}, N2 = {1, 3, 4}, N3 = {1}, N4 = {2, 3}; and the out-neighbor sets are
N o

1 = {2, 3}, N o
2 = {4}, N o

3 = {2, 4}, N o
4 = {1, 2}.

Suppose that the initial states of the agents are x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4.
Then the average is 2.5. The averaging problem is to design a distributed algorithm such
that each agent’s state asymptotically converges to the average value 2.5.

A necessary graphical condition for solving the averaging problem is given below.

Proposition 2.1 Suppose that there exists a distributed algorithm that solves the averaging
problem. Then the digraph G is strongly connected.

Proof. The proof is by contradiction. Suppose that the digraph G = (V, E) is not strongly
connected. Then at least one node (agent) in V is not a root of G. Let R denote the set of roots.
Then R ̸= V. We consider two cases separately: R = ∅ and R ̸= ∅.

If R = ∅, i.e. G does not contain a spanning tree, then it follows from Theorem 1.1 that G has at
least two (distinct) closed strong components (say) G1,G2. In this case, consider an initial condition
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such that the agents in G1 have initial state c1 ∈ R, those in G2 have c2 ∈ R, and c1 ̸= c2. Since
G1 and G2 are closed, information cannot be communicated from one to the other. Consequently,
there exists no distributed algorithm that can solve the averaging problem.

It is left to consider R ̸= ∅. In this case, G contains a spanning tree, and again by Theorem 1.1
that the induced subdigraph by R is the unique closed strong component in G. Consider an initial
condition such that all agents in R have initial state c ∈ R, those in V \R have c′ ∈ R, and c ̸= c′.
Since R is closed, information cannot be communicated from V \R to R. Consequently, there exists
no distributed algorithm that can solve the averaging problem. □

Owing to Proposition 2.1, we shall henceforth assume that the digraph G is strongly connected.

Assumption 2.1 The digraph G modeling the interconnection structure of the networked agents is
strongly connected.

2.2 Distributed Algorithm

Example 2.2 Consider again Example 2.1. To achieve averaging, a natural idea is that
each agent iteratively computes the (local) average of the state values received from neighbors
and its own state value. Namely, for i ∈ [1, 4]

xi(k + 1) =
1

|Ni|+ 1
(xi(k) +

∑
j∈Ni

xj(k))

= xi(k) +
∑
j∈Ni

1

|Ni|+ 1
(xj(k)− xi(k)).

For the initial states of the agents x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4, let us compute
by the above equation the new states at k = 1:

x1(1) = x1(0) +
1

2
(x4(0)− x1(0)) =

1

2
x1(0) +

1

2
x4(0) = 2.5

x2(1) = x2(0) +
1

4
(x1(0)− x2(0)) +

1

4
(x3(0)− x2(0)) +

1

4
(x4(0)− x2(0)) = 2.5

x3(1) = x3(0) +
1

2
(x1(0)− x3(0)) =

7

3

x4(1) = x4(0) +
1

3
(x2(0)− x4(0)) +

1

3
(x3(0)− x4(0)) = 3.

Observe that the state sum at time k = 1 is
∑4

i=1 xi(1) = 31
3 , while the initial state sum∑4

i=1 xi(0) = 10. The state sum has changed (by 1
3) after one update, and this is in fact

due to unbalanced structure of the digraph G in Fig. 2.1. Indeed, let aij = 1
|Ni|+1 be the
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(positive) weight of edge (j, i) ∈ E; then the weighted degrees are d1 = 1
2 , d2 = 3

4 , d3 = 1
2 ,

d4 = 2
3 , while the weighted out-degrees do1 = 3

4 , do2 = 1
3 , do3 = 7

12 , do4 = 3
4 — the weighted

digraph is thus not weight-balanced.
Note that the adjacency matrix and standard Laplacian matrix of the weighted digraph G are:

A =


0 0 0 1

2
1
4 0 1

4
1
4

1
2 0 0 0

0 1
3

1
3 0

 , L =


1
2 0 0 − 1

2

− 1
4

3
4 − 1

4 − 1
4

− 1
2 0 1

2 0

0 − 1
3 − 1

3
2
3

 .

Hence the above state-update scheme may be written in vector form:
x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)

 =


1
2 0 0 1

2
1
4

1
4

1
4

1
4

1
2 0 1

2 0

0 1
3

1
3

1
3



x1(k)

x2(k)

x3(k)

x4(k)

 = (I − L)


x1(k)

x2(k)

x3(k)

x4(k)

 .

The matrix I−L is nonnegative and every row sums up to one; thus I−L is a row-stochastic
matrix. On the other hand, not every column of I − L sums up to one, so I − L is not
column-stochastic (and this is caused by non-weight-balancedness of the digraph G). This
means that the initial sum is not kept invariant during each state update, and consequently
asymptotic convergence to the initial average is not achievable. This is illustrated in Fig. 2.2.

The problem illustrated by Example 2.2 suggests a plausible remedy: equip each agent i with
an additional variable si(k) to record the changes in state xi(k), such that the sum of xi(k) and
si(k) is a constant, i.e.

(∀k ≥ 0)

n∑
i=1

(xi(k + 1) + si(k + 1)) =

n∑
i=1

(xi(k) + si(k)) .

We call si(k) the surplus variable of agent i at time k. At k = 0, set si(0) = 0 for all i; this is
intuitive because there is no change yet in state xi(0) to be recorded. Hence for every k ≥ 0, there
holds

n∑
i=1

(xi(k) + si(k)) =

n∑
i=1

(xi(0) + si(0)) =

n∑
i=1

xi(0). (2.1)

Namely the initial state sum is kept invariant using the surplus variables.
In the following, we describe a distributed algorithm that updates the state xi(k) and the surplus
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Figure 2.2: Failure to achieve averaging

si(k) such that (2.1) holds.

Surplus-based Averaging Algorithm (SAA):
Every agent i has a state variable xi(k) whose initial value is an arbitrary real number, and a

surplus variable si(k) whose initial value is 0. At each time k ≥ 0, every agent i performs three
operations:

1) Agent i sends its state xi(k) and weighted surplus ajisi(k) to each out-neighbor j ∈ N o
i . The

weights aji satisfy
∑

j∈No
i
aji < 1.

2) Agent i receives the state xj(k) and weighted surplus aijsj(k) from each (in-)neighbor j ∈ Ni.
The weights aij satisfy

∑
j∈Ni

aij < 1.
3) Agent i updates its state xi(k) and surplus si(k) as follows:

xi(k + 1) = xi(k) +
∑
j∈Ni

aij(xj(k)− xi(k)) + εsi(k) (2.2)

si(k + 1) = (1−
∑
j∈No

i

aji)si(k) +
∑
j∈Ni

aijsj(k)−
(
xi(k + 1)− xi(k)

)
. (2.3)

The parameter ε in (2.2) is a positive real number, i.e. ε > 0.

Remark 2.1 In SAA, (2.2) is the state update equation where the first two terms on the right
constitute the averaging scheme in Example 2.2, and the last term specifies a certain amount of
surplus used to influence the state update. On the other hand, (2.3) is the surplus update equation
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where the first two terms on the right represent sending (resp. receiving) surplus to out-neighbors
(resp. from neighbors), and the third term records the change of state. Summing up (2.3) from
i = 1 to n on both sides, we derive

n∑
i=1

si(k + 1) =

n∑
i=1

(1−
∑
j∈No

i

aji)si(k) +
∑
j∈Ni

aijsj(k)

−
n∑

i=1

(
xi(k + 1)− xi(k)

)

⇒
n∑

i=1

si(k + 1) +

n∑
i=1

xi(k + 1)) =

n∑
i=1

si(k) +

n∑
i=1

xi(k).

Hence SAA ensures constant sum of states and surpluses for all times; namely (2.1) holds.

Remark 2.2 In SAA, the weights aij are required to satisfy two conditions:
∑

j∈No
i
aji < 1 and∑

j∈Ni
aij < 1. In Example 2.2 the weights are chosen to be aij = 1

|Ni|+1 for every j ∈ Ni, and
for that example the two conditions are satisfied. However, in general this choice only ensures∑

j∈Ni
aij < 1 but not necessarily

∑
j∈No

i
aji < 1. An example illustrating this point is a variant

of the digraph in Fig. 2.1 with an additional edge (4, 3): in this case
∑

j∈No
4
aj4 = 1

2 + 1
4 + 1

3 > 1.
A simple choice that does ensure both conditions is the following:

aij = min
{ 1

|Ni|+ 1
,

1

|N o
i |+ 1

}
.

Another simple choice that requires the knowledge of the number of agents is aij =
1
n .

Remark 2.3 Let x := [x1 · · ·xn]
⊤ ∈ Rn and s := [s1 · · · sn]⊤ ∈ Rn be the aggregated state and

surplus, respectively, of the networked agents. Then the n equations of (2.2) become

x(k + 1) = (I − L)x(k) + εs(k).

Since
∑

j∈Ni
aij < 1, I − L is nonnegative. Moreover, since L has zero row sums, I − L is row

stochastic. On the other hand, the n equations of (2.3) become

s(k + 1) = (I − Lo)s(k)− (x(k + 1)− x(k))

= Lx(k) + (I − Lo − εI)s(k)

where Lo is the out-degree Laplacian matrix (Remark 1.1 in Section 1.3). Since
∑

j∈No
i
aji < 1,

I −Lo is also nonnegative. Moreover, since Lo has zero column sums, I −Lo is column stochastic.
Together, SAA is written compactly as follows:[

x(k + 1)

s(k + 1)

]
= M

[
x(k)

s(k)

]
, where M :=

[
I − L εI

L I − Lo − εI

]
. (2.4)
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The initial conditions are x(0) ∈ Rn (arbitrary) and s(0) = 0. Notice that

• the matrix M has negative entries due to the presence of the Laplacian matrix L in the
(2, 1)-block;

• the column sums of M are equal to one, which implies that the quantity 1T (x(k) + s(k)) is a
constant for all k ≥ 0 (cf. (2.1));

• the state evolution specified by the (1, 1)-block of M , i.e. x(k+1) = (I−L)x(k) is the averaging
scheme in Example 2.2.
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Figure 2.3: Convergence to average consensus when ε = 0.1

Example 2.3 Let us revisit Example 2.2. It is checked that the weights aij satisfy the two
conditions

∑
j∈No

i
aji < 1 and

∑
j∈Ni

aij < 1. We have seen the standard Laplacian matrix
L and the row-stochastic I − L. The following are the out-degree Laplacian matrix Lo and
the column-stochastic I − Lo:

Lo =


3
4 0 0 − 1

2

− 1
4

1
3 − 1

4 − 1
4

− 1
2 0 7

12 0

0 − 1
3 − 1

3
3
4

 , I − Lo =


1
4 0 0 1

2
1
4

2
3

1
4

1
4

1
2 0 5

12 0

0 1
3

1
3

1
4

 .

With these matrices, the matrix M in (2.4) may be constructed. Fig. 2.3 displays the case
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in which convergence to the initial average 2.5 is achieved when the parameter ε = 0.1; while
Fig. 2.4 shows that when ε = 0.5, convergence does not occur. Hence the parameter ε needs
to be carefully chosen (to be small enough) so as to achieve averaging.
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Figure 2.4: Failure to converge when ε = 0.5

2.3 Convergence Result
The following is the main result of this section.

Theorem 2.1 Suppose that Assumption 2.1 holds. If the parameter ε > 0 is sufficiently
small, then SAA solves the averaging problem.

To prove Theorem 2.1, we will analyze the eigenvalues and eigenvectors of matrix M in (2.4).
Write M in two parts: M = M0 + εE, where

M0 :=

[
I − L 0

L I − Lo

]
, E :=

[
0 I

0 −I

]
.

The proof of Theorem 2.1 is structured in two steps. First, we analyze the eigenvalues and eigen-
vectors of M0. Second, we analyze the (infinitesimal) movement of M0’s eigenvalues upon being
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perturbed by εE.

Let us introduce two lemmas corresponding to the two steps outlined above.

Lemma 2.1 Suppose that Assumption 2.1 holds. Then

• I − L has a simple eigenvalue 1, with a positive eigenvector 1 and a positive left-
eigenvector πl; all the other eigenvalues λ satisfy |λ| < 1.

• I − Lo has a simple eigenvalue 1, with a positive eigenvector πr and a positive left-
eigenvector 1; all the other eigenvalues λ satisfy |λ| < 1.

Proof. Under Assumption 2.1, it follows from Lemma 1.6 that the standard Laplacian matrix
L has a simple eigenvalue 0. By spectrum mapping, I − L has a simple eigenvalue 1. Since I − L

is row-stochastic, ρ(I − L) = 1 (by Lemma 1.5). Note also that the digraph G(I − L) constructed
according to I −L is strong connected and aperiodic, since at least one node has a loop. Therefore
by the Perron-Frobenius Theorem for Stochastic Matrices (Theorem 1.6), all the other eigenvalues
λ of I − L satisfy |λ| < 1.

Again under Assumption 2.1, the simple eigenvalue 0 of the standard Laplacian matrix L has a
positive eigenvector 1 and a positive left-eigenvector πl (Remark 1.2). It follows from

(I − L)1 = 1− L1 = 1

π⊤
l (I − L) = π⊤

l − π⊤
l L = π⊤

l

that the simple eigenvalue 1 of I −L has a positive eigenvector 1 and a positive left-eigenvector πl.

The proof for the second statement concerning the out-degree Laplacian matrix is similar. □

Lemma 2.2 Consider M = M0+εE and ε > 0. Let λ be a semi-simple double eigenvalue of
M0 (i.e. algebraic and geometric multiplicities of λ are both two), with (linearly independent)
eigenvectors v1, v2 and (linearly independent) left-eigenvectors u1, u2 such that the following
normalization condition holds: [

uT
1

uT
2

] [
v1 v2

]
=

[
1 0

0 1

]
.

If ε is sufficiently small, then the two (perturbed) eigenvalues λ(ε) of M corresponding to λ

are λ(ε) = λ+ελ′+O(ε2), where λ′ has two values which are the eigenvalues of the following
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matrix: [
uT
1 Ev1 uT

1 Ev2

uT
2 Ev1 uT

2 Ev2

]
. (2.5)

Proof. Suppose that the positive perturbation parameter ε is sufficiently small. Then the two
perturbed eigenvalues λ(ε) of M corresponding to the semi-simple double eigenvalue λ of M0 and
the corresponding two perturbed eigenvectors v(ε) may be expressed in terms of the following power
series:

λ(ε) = λ+ ελ′ + ε2λ′′ + · · · = λ+ ελ′ +O(ε2)

v(ε) = v + εv′ + ε2v′′ + · · · = v + εv′ +O(ε2).

It is left to show that λ′ has two values which are the eigenvalues of the matrix in (2.5). Substituting
the above two power series and M = M0+ εE into the eigenvalue-eigenvector equation M(ε)v(ε) =

λ(ε)v(ε) yields

(M0 + εE)(v + εv′ +O(ε2)) = (λ+ ελ′ +O(ε2))(v + εv′ +O(ε2))

⇒ M0v + ε(Mv′ + Ev) +O(ε2) = λv + ε(λv′ + λ′v) +O(ε2).

Hence we obtain

M0v = λv (2.6)

Mv′ + Ev = λv′ + λ′v. (2.7)

It follows from (2.6) that v is an eigenvector corresponding to the eigenvalue λ of M0; thus there
exist c1, c2 ∈ R such that v = c1v1+ c2v2. Note that at least one of c1, c2 is nonzero. Next multiply
(2.7) by u⊤

1 from the left:

u⊤
1 (Mv′ + Ev) = u⊤

1 (λv
′ + λ′v)

⇒ u⊤
1 Mv′ + u⊤

1 Ev = λu⊤
1 v

′ + λ′u⊤
1 v

⇒ u⊤
1 Ev = λ′u⊤

1 v

⇒ u⊤
1 E(c1v1 + c2v2) = λ′u⊤

1 (c1v1 + c2v2)

⇒ c1u
⊤
1 Ev1 + c2u

⊤
1 Ev2 = c1λ

′.



2.3. Convergence Result 63

Similarly, multiplying (2.7) by u⊤
2 from the left yields:

c1u
⊤
2 Ev1 + c2u

⊤
2 Ev2 = c2λ

′.

The above two equations may be written in vector form:[
uT
1 Ev1 uT

1 Ev2

uT
2 Ev1 uT

2 Ev2

][
c1

c2

]
= λ′

[
c1

c2

]
.

The matrix in the above equation is the one in (2.5). Since c1, c2 are not both zero, we conclude
that λ′ has two values which are the two eigenvalues of this matrix. This completes our proof. □

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. Suppose that Assumption 2.1 holds and the parameter ε > 0 is sufficiently
small. Write M in (2.4) as M = M0 + εE, where

M0 :=

[
I − L 0

L I − Lo

]
, E :=

[
0 I

0 −I

]
.

The proof is structured into the following two steps.
Step 1: analyze the eigenvalues of M0. Since M0 is block (lower) triangular, its spectrum is

σ(M0) = σ(I − L) ∪ σ(I − Lo). By Lemma 2.1, 1 is a simple eigenvalue of I − L (resp. I − Lo)
and all the other eigenvalues λ of I − L (resp. I − Lo) satisfy |λ| < 1. Hence M0 has a double
eigenvalue 1 (i.e. with algebraic multiplicity two), denoted by λ1 = λ2 = 1; and all the other 2n−2

eigenvalues have absolute values smaller than 1: 1 > |λ3| ≥ · · · ≥ |λ2n|.
Step 2: analyze the (infinitesimal) movement λ1 = λ2 = 1 of M0 upon being perturbed by εE;

for this we invoke Lemma 2.2. First we verify that the double eigenvalue 1 is semi-simple, namely
with geometric multiplicity two. This may be done by checking the rank of

M0 − I =

[
I − L 0

L I − Lo

]
−

[
I 0

0 I

]
=

[
−L 0

L −Lo

]
.

By elementary row operations — adding rows 1, . . . , n respectively to rows n + 1, . . . , 2n — the
above matrix is transformed to [

−L 0

0 −Lo

]

and this matrix has rank 2n − 2. The latter follows from Lemma 1.6 and Remark 1.2 that
rank(−L) =rank(−Lo) = n − 1 under Assumption 2.1. Since elementary row operations do not
change rank, it holds that rank(M0 − I) = 2n − 2. This means that the eigenspace of 1 is two-
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dimensional, namely the geometric multiplicity of eigenvalue 1 is two. This verifies that the double
eigenvalue 1 is semi-simple.

Next we need to find (linearly independent) eigenvectors v1, v2 and left-eigenvectors u1, u2.
Recall from Lemma 2.1 that the simple eigenvalue 1 of I−L (resp. I−Lo) has a positive eigenvector 1
(resp. πr) and a positive left-eigenvector πl (resp. 1). Scale πl, πr (if necessary) such that 1⊤πl = 1

and 1⊤πr = 1, and consider the following:

v1 =

[
0

πr

]
, v2 =

[
1

−nπr

]
, u1 =

[
1

1

]
, u2 =

[
πl

0

]
.

It is verified that [
uT
1

uT
2

] [
v1 v2

]
=

[
1 0

0 1

]
.

With the above preparation, we may qualify the changes of the semi-simple eigenvalue λ1 = λ2 =

1 of M0 under a small perturbation εE by computing λ1(ε) and λ2(ε) according to Lemma 2.2; here
λ1(ε) and λ2(ε) are the eigenvalues of M corresponding respectively to λ1 and λ2. It follows from
Lemma 2.2 that for sufficiently small ε > 0, λ1(ε) = λ1+ ελ′

1+O(ε2) and λ2(ε) = λ2+ ελ′
2+O(ε2)

where λ′
1, λ

′
2 are the eigenvalues of the following matrix[

u⊤
1 Ev1 u⊤

1 Ev2

u⊤
2 Ev1 u⊤

2 Ev2

]
=

[
0 0

π⊤
l πr −nπ⊤

l πr

]
.

Hence λ′
1 = 0 and λ′

2 = −nπ⊤
l πr < 0. This implies that λ1(ε) stays put at 1, while λ2(ε) moves to

the left along the real axis. Then by continuity, there must exist a positive δ1 such that λ1(δ1) = 1

and λ2(δ1) < 1. On the other hand, since eigenvalues are continuous functions of matrix entries,
there must exist a positive δ2 such that |λi(δ2)| < 1 for all i ∈ {3, . . . , 2n}. Thus for any sufficiently
small ϵ ∈ (0,min{δ1, δ2}), the matrix M has a simple eigenvalue 1 and all the other eigenvalues
have absolute values smaller than one. For the simple eigenvalue 1, it follows from

M

[
1
0

]
=

[
1
0

]
,
[
1⊤ 1⊤

]
M =

[
1⊤ 1⊤

]
that its eigenvector and left-eigenvector are

y1 :=

[
1

0

]
, z1 :=

1

n

[
1

1

]
.

We scale z1 by 1
n such that z⊤1 y1 = 1.



2.4. Parameter Bound and Convergence Speed 65

Now write M in Jordan canonical form as

M = WJW−1 =
[
y1 y2 · · · y2n

] [1 0

0 J ′

]
z⊤1

z⊤2
...

z⊤2n


where yi, zi ∈ C2n (i ∈ {1, . . . , 2n}) are respectively the (generalized) right and left eigenvectors of
M ; and J ′ ∈ C(2n−1)×(2n−1) is a block diagonal matrix consisting of the Jordan blocks corresponding
to those eigenvalues with absolute values smaller than one. Hence the kth power of M is

Mk = WJkW−1 = W

[
1 0

0 (J ′)k

]
W−1

→ y1z
⊤
1 =

[
1
n11⊤ 1

n11⊤

0 0

]
, as k → ∞.

Therefore based on the SAA in (2.4):[
x(k)

s(k)

]
= Mk

[
x(0)

s(0)

]

→

[
1
n11⊤ 1

n11⊤

0 0

][
x(0)

s(0)

]

=

[
1
n11⊤x(0)

0

]
=

[
1
n

∑n
i=1 xi(0)1
0

]
, as k → ∞.

That is,

lim
k→∞

xi(k) =
1

n

n∑
i=1

xi(0), lim
k→∞

si(k) = 0

i.e. SAA solves the averaging problem. □

2.4 Parameter Bound and Convergence Speed

Having shown that SAA solves the averaging problem for sufficiently small parameter ε > 0, in this
section we aim to derive an upper bound on ε for convergence. As before write the matrix M in
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(2.4) as M = M0 + εE, where

M0 :=

[
I − L 0

L I − Lo

]
, E :=

[
0 I

0 −I

]
.

We have shown that the eigenvalues of M0 satisfy

1 = λ1 = λ2 > |λ3| ≥ · · · ≥ |λ2n|.

The following is the main result of this section.

Theorem 2.2 Suppose that Assumption 2.1 holds. SAA solves the averaging problem if the
parameter ε satisfies ε ∈ (0, ε̄), where

ε̄ :=

(
1− |λ3|

32

)2n

. (2.8)

Remark 2.4 (Convergence Speed) By Theorem 2.2 if the parameter ε ∈ (0, ε̄) with ε̄ in (2.8), then
SAA converges to the initial average. The speed of convergence is governed by the second largest
(in terms of absolute value) eigenvalue of the updating matrix M , i.e. |λ2(ε)|. We refer to |λ2(ε)|
as the convergence factor of SAA; that is, SAA converges linearly at the rate of O(|λ2(ε)|k). Note
that |λ2(ε)| < 1 is equivalent to averaging (as in the proof of Theorem 2.1); and the value of |λ2(ε)|
depends not only on the digraph topology G but also on the parameter ε. We will illustrate this
latter point using simulation examples in Section 2.5.

To prove Theorem 2.2, we will relate the parameter ε to the distance between perturbed eigen-
values of M and unperturbed eigenvalues of M0. To this end, we begin by introducing a metric for
the distance between their spectra. Let σ(M0) := {λ1, . . . , λ2n} and σ(M) := {λ1(ε), . . . , λ2n(ε)}.
The optimal matching distance d (σ(M0), σ(M))) is defined by

d (σ(M0), σ(M))) := min
π

max
i∈[1,2n]

|λi − λπ(i)(ϵ)| (2.9)

where π is taken over all permutations of {1, . . . , 2n}. Thus if we draw 2n identical circles centered
respectively at λ1, . . . , λ2n, then d (σ(M0), σ(M))) is the smallest radius such that these circles
include all λ1(ε), . . . , λ2n(ε). Here is an upper bound on the optimal matching distance.

Lemma 2.3 Consider M ∈ Rn×n and M = M0 + εE. Then

d (σ(M0), σ(M)) ≤ 22−
1
2n (∥M0∥+ ∥M∥)1− 1

2n ∥εE∥ 1
2n .
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Proof. Let c ∈ [0, 1] and N(c) := (1 − c)M0 + cM . Thus the eigenvalues of N(c) trace 2n

continuous curves in the complex plane as c changes from 0 to 1. The starting points of these
curves are the eigenvalues of M0 and the ending points are those of M . To prove the upper bound
on d (σ(M0), σ(M))), it suffices to show that if Γ is any one of these curves, and a, b are the starting
and ending points of Γ, then |a− b| is bounded by the upper bound.

Without loss of generality assume that ∥M0∥ ≤ ∥M∥ (the other case is symmetric). Let L be
the straight line through a, b, and S be the segment of L between a, b; namely

L = {z | z = a+ l(b− a), l ∈ R}

S = {z | z = a+ l(b− a), l ∈ [0, 1]}.

For each eigenvalue λi (i ∈ {1, . . . , 2n}) of M0, let λ′
i = a + li(b − a), li ∈ R, be the orthogonal

projection of λi on the straight line L. Also let z = a+ l(b− a) be an arbitrary point on L. Then

2n∏
i=1

|z − λ′
i| =

2n∏
i=1

|(l − li)(b− a)| = |a− b|2n
2n∏
i=1

|l − li|.

By Chebyshev’s inequality

max
l∈[0,1]

2n∏
i=1

|l − li| ≥
1

24n−1

there exists a point z0 = a+ l0(b− a) on the segment S, for some l0 ∈ [0, 1], such that

n∏
i=1

|z0 − λ′
i| ≥

|a− b|2n

24n−1
.

Since Γ is a continuous curve between a and b, there exists a point λ0 on Γ such that its orthogonal
projection λ′

0 = z0 on S. It follows from the projection relation that for every i ∈ {1, . . . , 2n},
|λ0 − λi| ≥ |λ′

0 − λ′
i|; hence

|det(M0 − λ0I)| =
2n∏
i=1

|λ0 − λi| ≥
2n∏
i=1

|z0 − λ′
i| ≥

|a− b|2n

24n−1
.

Since λ0 is a point on Γ, there exists c0 ∈ [0, 1] such that λ0 is an eigenvalue of N(c0) =

(1 − c0)M0 + c0M . Choose an orthonormal basis e1, . . . , e2n such that N(c0)e1 = λ0e1. Then it
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follows from Hadamard’s inequality that

|det(M0 − λ0I)| ≤
2n∏
i=1

∥(M0 − λ0I)ei∥.

Owing to the chosen basis, ∥(M0−λ0I)e1∥ = ∥(M0−N(t0))e1∥ ≤ ∥M0−N(t0)∥. For i = 2, . . . , 2n,

∥(M0 − λ0I)ei∥ ≤ ∥M0ei∥+ |λ0| ≤ ∥M0∥+ ∥N(t0)∥.

Hence

|det(M0 − λ0I)| ≤ ∥M0 −N(t0)∥(∥M0∥+ ∥N(t0)∥)2n−1

≤ c0∥M0 −M∥(∥M0∥+ (1− c0)∥M0∥+ c0∥M∥)2n−1

≤ ∥M0 −M∥(∥M0∥+ ∥M∥)2n−1.

The last inequality is due to ∥M0∥ ≤ ∥M∥. From the above two inequalities of |det(M0 − λ0I)|, we
derive

|a− b|2n

24n−1
≤ ∥M0 −M∥(∥M0∥+ ∥M∥)2n−1.

Taking 2nth root yields

|a− b| ≤ 22−
1
2n ∥M0 −M∥ 1

2n (∥M0∥+ ∥M∥)1− 1
2n

= 22−
1
2n (∥M0∥+ ∥M∥)1− 1

2n ∥εE∥ 1
2n .

This is the upper bound on d (σ(M0), σ(M)), and the proof is complete. □

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Suppose that the parameter ε ∈ (0, ε̄) with ε̄ in (2.8). The proof is
divided into two steps.

Step 1: we show that |λ3(ε)|, . . . , |λ2n(ε)| < 1.

Recall the two conditions on the weights aij of SAA:
∑

j∈No
i
aji < 1 and

∑
j∈Ni

aij < 1,
or equivalently

∑n
j=1 aji < 1 and

∑n
j=1 aij < 1. Since the Laplacian matrix L is defined as

L = D − A, we derive ∥L∥∞ = 2maxi
∑n

j=1 aij < 2. On the other hand, by the definition of
out-degree Laplacian matrix Lo = Do − A we have ∥I − Lo∥∞ = ∥(I − Do) + A∥∞ ≤ maxi(1 −∑n

j=1 aji) + maxi
∑n

j=1 aij < 2. Hence ∥M0∥∞ ≤ ∥L∥∞ + ∥I − Lo∥∞ < 4 and ∥E∥∞ ≤ 1. It then
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follows from Lemma 2.3 that

d (σ(M0), σ(M)) ≤22−
1
2n (∥M0∥+ ∥M∥)1− 1

2n ∥εE∥ 1
2n

≤ 22−
1
2n (2∥M0∥+ ε∥E∥)1− 1

2n ∥εE∥ 1
2n

< 22−
1
2n (8 + ϵ)1−

1
2n ϵ

1
2n

< 4(8 + ϵ)ϵ
1
2n

< 1− |λ3|.

The last inequality is due to ε < ε̄ in (2.8). Now recall from the proof of Theorem 2.1 that the
unperturbed eigenvalues λ3, . . . , λ2n of M0 lie inside the unit circle. Therefore, perturbing the
eigenvalues λ3, . . . , λ2n by an amount less than ε̄, the resulting eigenvalues λ3(ε), . . . , λ2n(ε) will
remain inside the unit circle.

Step 2: we show that |λ2(ε)| < 1.
This is established by contraposition. First recall from the proof of Theorem 2.1 that λ2 = 1

and for sufficiently small ε > 0, it holds that |λ2(ε)| < 1. Now suppose that there exists δ ∈ (0, ε̄)

such that |λ2(δ)| ≥ 1. Owing to the continuity of eigenvalues, it suffices to consider |λ2(δ)| = 1.
There are three such cases; for each we derive a contradiction.

Case 1: λ2(δ) is a complex number with nonzero imaginary part and |λ2(δ)| = 1. Since M

is a real matrix, there must exists another eigenvalue λi(δ), for some i ∈ [3, 2n], such that λi(δ)

is the complex conjugate of λ2(δ). Then |λi(δ)| = |λ2(δ)| = 1, which is in contradiction to the
conclusion established in Step 1 above: all the eigenvalues λ3(δ), . . . , λ2n(δ) stay inside the unit
circle as δ ∈ (0, ε̄).

Case 2: λ2(δ) = −1. This implies that the optimal matching distance d (σ(M0), σ(M)) = 2,
which contradicts d (σ(M0), σ(M)) < 1− |λ3| < 1 when (2.8) holds.

Case 3: λ2(δ) = 1. This means that the algebraic multiplicity of eigenvalue 1 equals two. The
corresponding geometric multiplicity, however, equals one because rank(M − I) = 2n − 1. To see
this, write

M − I =

[
I − L εI

L I − Lo − εI

]
−

[
I 0

0 I

]
=

[
−L εI

L −Lo − εI

]
.

By elementary row operations — adding rows 1, . . . , n respectively to rows n + 1, . . . , 2n — the
above matrix is transformed to [

−L εI

0 −Lo

]

and this matrix has rank 2n − 1 (since rank(−Lo) = n − 1 under Assumption 2.1 as stated in
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Remark 1.2). Thus there exists a generalized eigenvector u = [u⊤
1 u⊤

2 ]
⊤ ∈ R2n such that (M−I)2u =

0, and (M − I)u is an eigenvector corresponding to the eigenvalue 1. Since [1⊤ 0]⊤ is also an
eigenvector corresponding to the eigenvalue 1, it must hold that

(M − I)u = c[1⊤ 0]⊤, for some scalar c ̸= 0

⇒

[
−L εI

L −Lo − εI

][
u1

u2

]
= c

[
1
0

]

⇒

{
−Lu1 + ϵu2 = c1
Lu1 − Lou2 − ϵu2 = 0

⇒ − Lou2 = c1.

Since rank(Lo) = n − 1 but rank([Lo c1]) = n, there is no solution for u2, which in turn implies
that the generalized eigenvector u cannot exist. Therefore the eigenvalue 1 of M is simple, which
contradicts that the algebraic multiplicity of eigenvalue 1 equals two.

Based on the impossibility of the above three cases, we conclude that for all ε ∈ (0, ε̄), the
eigenvalues of M satisfy

1 = λ1(ε) > |λ2(ε)| ≥ |λ3(ε)| ≥ · · · ≥ |λ2n(ε)|.

Following the same lines as in the proof of Theorem 2.1, the conclusion that SAA solves the averaging
problem ensues. □

2.5 Simulation Examples

Let us illustrate, by simulation examples, that using SAA the states of the agents indeed converge to
the desired (initial) average value, as well as how the convergence speed is affected by the parameter
ε.

Ga Gb Gc

Figure 2.5: Three examples of strongly connected but unbalanced digraphs
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Table 2.1: Convergence factor |λ2(ε)| with respect to different values of parameter ε

ε = 0.01 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.45 ε = 0.5
Ga 0.9915 0.9567 0.9754 0.9838 0.9990 1.0000 1.0487
Gb 0.9909 0.9188 0.9203 0.9316 0.9400 0.9931 1.0611
Gc 0.9906 0.9057 0.9062 0.9224 0.9333 0.9777 1.0000
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Figure 2.6: State trajectories when ε = 0.45

Example 2.4 Consider the three digraphs displayed in Fig. 2.5, with 10 nodes and respec-
tively 17, 29, and 38 edges. All the digraphs are strongly connected, but they are unbalanced
(indeed, no single node is balanced). We apply SAA by setting weights aij as in Remark 2.2;
with these weights, these weighted digraphs are not weight-balanced.
The convergence factor |λ2(ε)| for seven different values of the parameter ε are summarized
in Table 2.1. Observe that small ε ensures convergence of SAA (|λ2(ε)| < 1), whereas large
ε can lead to instability. Moreover, in those converging cases the factor |λ2(ε)| decreases as
the number of edges increases from Ga to Gc, which indicates faster convergence when there
are more communication channels available for information exchange. We also see that SAA
is more robust on digraphs with more edges, in the sense that a larger range of values of ε
is allowed.
For ε = 0.45, we display in Figs. 2.6 and 2.7 the trajectories of both states and surpluses
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Figure 2.7: Surplus trajectories when ε = 0.45

when SAA is applied on digraphs Ga,Gb,Gc (with x(0) = [−5 − 4 − 3 − 2 − 1 1 2 3 4 5]⊤

and s(0) = 0). Consistent with the stability properties indicated by |λ2(ε)|, Ga results in
divergence, Gb convergence to the initial average 0 but with oscillatory transient behavior,
and Gb convergence to the initial average 0 most smoothly.

Example 2.5 We demonstrate the influence of parameter ε on the speed of convergence,
specifically the convergence factor |λ2(ε)|. To reduce the effect of network topology in this
demonstration, we employ the Erdos-Reyni random digraph model: an edge between every
pair of nodes can exist with probability p = 1/2, independent across the network and invariant
over time; we take only those digraphs that are strongly connected.
For SAA, consider Erdos-Reyni random digraphs of 100 nodes and uniform weights 1/100

(uniform weights are valid for SAA as asserted in Remark 2.2). Fig. 2.8 displays the curve
of convergence factor |λ2(ε)| with respect to the parameter ε, each plotted point being the
mean value of |λ2(ε)| over 100 random digraphs.
To account for the trend of this curve, first recall from the perturbation argument in The-
orem 2.1 that the matrix M in (2.4) has two (maximum) eigenvalues 1 when ε = 0, and
small ε causes that one of them (denote its absolute value by λin) moves into the unit circle.
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Figure 2.8: Convergence factor |λ2(ε)| versus parameter ε

Meanwhile, some other eigenvalues of M inside the unit circle move outward; denote the
maximum absolute value among these eigenvalues by λout. In Fig. 2.8 it is observed that
when ε is small, |λ2(ε)| = λin(> λout) and λin moves further inside as perturbation becomes
larger; so |λ2(ε)| decreases (faster convergence) as ε increases in the beginning. Since the
eigenvalues move continuously, there exists some ε such that |λ2(ε)| = λin = λout (the low-
est point of the curve), corresponding to the fastest convergence speed. After that, |λ2(ε)|
switches to λout(> λin) and λout moves further outside as ε increases; hence |λ2(ε)| increases
and convergence becomes slower, and eventually divergence occurs (when |λ2(ε)| ≥ 1).
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vol.57, pp.3186–3191, 2012
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• S. Kawamura, K. Cai, M. Ye, and Z. Lin, Tight bound on parameter of surplus-based averaging
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Chapter 3

Optimization

The second cooperative control problem we introduce is distributed optimization. Optimization is
an important subject across mathematics, science, and engineering. Motivation of performing opti-
mization over networked systems in a distributed fashion is driven by one or several combined fac-
tors including large scales, decentralized data collections, distributed computing technologies, and
privacy concerns. One example of distributed optimization is large-scale machine learning, where
big image/video data are collected and stored at different data centers, and multiple workstations
in these centers perform optimization computation for global data classification or model predic-
tion. Another example is economic dispatching in grid-connected smart buildings, where individual
buildings process data of local energy generation and consumption which may be privacy-sensitive,
and these buildings perform optimization computation for minimizing grid-wide generation costs
subject to the constraint of meeting all consumption demands. Other application domains include
power networks, smart grids, smart cities, transportation networks, and the Internet of Things
(IoT).

In this chapter, we show that a necessary graphical condition to achieve distributed optimization
is that the digraph is strongly connected. This is the same as the necessary condition for distributed
averaging in the preceding chapter. Indeed, distributed optimization requires tracking the average
value of the iteratively updated local optima, which intuitively demands that every agent possess
a direct or indirect ‘channel’ in order to receive information from every other agent.

Owing to this close relation to averaging, we design a distributed optimization algorithm based
on the surplus-based algorithm presented for achieving averaging over strongly connected digraphs
(which need not be balanced). Further, we will relate the distributed optimization problem to a
widely studied problem of distributed resource allocation. Hence the latter may also be solved by
the same distributed optimization algorithm.

75
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3.1 Problem Statement

Consider a network of n (> 1) agents. Each agent i (∈ [1, n]) has a state variable xi(k) ∈ R,
and a local cost function fi : R → R.1 The goal of distributed optimization is that the agents
cooperatively solve the following problem:

min
x1,...,xn∈R

n∑
i=1

fi(xi) (3.1)

subject to x1 = · · · = xn.

Let F (ξ) :=
∑n

i=1 fi(ξ) be the global cost function for the multi-agent network. Thus prob-
lem (3.1) means that every agent minimizes the global cost function. We shall restrict our attention
to the case where F has a unique optimal solution ξ∗ ∈ R. Denote the optimal value by

F ∗ := F (ξ∗) = min
ξ∈R

F (ξ).

Under the following assumption, F indeed admits a unique optimal solution ξ∗ (see Lemma 3.8 in
Appendix) and a reasonable rate of convergence to the solution ξ∗ is ensured.

Assumption 3.1 Every local cost function fi (i ∈ [1, n])

• is continuously differentiable with gradient ∇fi (which is derivative for one-dimensional fi);

• is strongly convex with parameter mi > 0 (or simply mi-strongly convex), i.e.

(∀ξ1, ξ2 ∈ R)fi(ξ1) ≥ fi(ξ2) +∇fi(ξ2)(ξ1 − ξ2) +
mi

2
∥ξ1 − ξ2∥22; (3.2)

• has a Lipschitz-continuous gradient with parameter li > 0 (or li-smooth), i.e.

(∀ξ1, ξ2 ∈ R)∥∇fi(ξ1)−∇fi(ξ2)∥2 ≤ li∥ξ1 − ξ2∥2. (3.3)

A straightforward characterization of the latter two conditions in Assumption 3.1 in the case
that the inverse of the Hessian ∇2fi (which is the reciprocal of the second derivative for fi with
one-dimensional domain) exists is:

mi ≤ ∇2fi ≤ li.

1The choice of one-dimensional domain R of function f is made deliberately for simplicity of presentation, and
the essential ideas and techniques are the same for functions of multi-dimensional domain RN .
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Namely, strong convexity and smoothness provide respectively lower and upper bounds on ∇2fi.
As a result, mi ≤ li always holds. Let

l̄ := max
i∈[1,n]

li, l :=

n∑
i=1

li, m :=

n∑
i=1

mi. (3.4)

Then under Assumption 3.1, the global cost function F is m-strongly convex and l-smooth, with
the condition number Q := l

m ≥ 1.

Optimization Problem:

Consider a network of n agents interconnected through a digraph G. Suppose that Assump-
tion 3.1 holds and ξ∗ is the (unique) optimal solution to minξ∈R F (ξ). Design a distributed algorithm
to update the agents’ states xi(k), i = 1, . . . , n, such that

(∀i ∈ [1, n])(∀xi(0) ∈ R) lim
k→∞

xi(k) = ξ∗.

1

2 3

4

Figure 3.1: Illustrating example of optimization problem with four agents

Example 3.1 We provide an example to illustrate the optimization problem. As displayed
in Fig. 3.1, four agents are interconnected through a digraph G. The neighbor sets of the
agents are N1 = {4}, N2 = {1, 3, 4}, N3 = {1}, N4 = {2, 3}; and the out-neighbor sets are
N o

1 = {2, 3}, N o
2 = {4}, N o

3 = {2, 4}, N o
4 = {1, 2}.
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Let the local cost functions of the agents be

f1(ξ) = log(1 + e−ξ) + 2ξ2

f2(ξ) = 3 log(1 + e−ξ) + ξ2

f3(ξ) = 2 log(1 + e−ξ) + 2ξ2 + 4

f4(ξ) = log(1 + e−ξ) + ξ2 + ξ.

Compute ∇2f1(ξ) =
eξ

(eξ+1)2
+ 4, which lies in the interval (4, 4.25]; thus f1 is 4.05-strongly

convex and 4.25-smooth. Similarly, f2 is 2.05-strongly convex and 2.75-smooth; f3 is 4.05-
strongly convex and 4.5-smooth; and f4 is 2.05-strongly convex and 2.25-smooth. Hence
Assumption 3.1 holds.
The global cost function F is

F (ξ) =

4∑
i=1

fi(ξ) = 7 log(1 + e−ξ) + 6ξ2 + ξ + 4

which is 12.05-strongly convex and 13.75-smooth. The unique optimal solution to
minξ∈R F (ξ) is ξ∗ = 0.1819, and the optimal value is F ∗ = 8.6247.
Suppose that the initial states of the agents are x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4.
The optimization problem is to design a distributed algorithm such that each agent’s state
asymptotically converges to the optimal solution ξ∗ = 0.1819.

A necessary graphical condition for solving the optimization problem is that the digraph G is
strongly connected (this is the same as that for solving the averaging problem).

Proposition 3.1 Suppose that there exists a distributed algorithm that solves the optimiza-
tion problem. Then the digraph G is strongly connected.

Proof. The proof is by contradiction. Suppose that the digraph G = (V, E) is not strongly
connected. Then at least one node (agent) in V is not a root of G. Let R denote the set of roots.
Then R ̸= V. We consider two cases separately: R = ∅ and R ̸= ∅.

If R = ∅, i.e. G does not contain a spanning tree, then it follows from Theorem 1.1 that G has
at least two (distinct) closed strong components (say) G1 = (V1, E1),G2 = (V2, E2). In this case,
consider local cost functions fi and an initial condition such that the agents in G1 have initial state
c1 ∈ R that minimizes

∑
i∈V1

fi(·), those in G2 have c2 ∈ R that minimizes
∑

i∈V2
fi(·), and c1 ̸= c2.

Since G1 and G2 are closed (i.e. information cannot be communicated from one to the other) and the
agents in G1 (resp. G2) have the same state value that minimizes

∑
i∈V1

fi(·) (resp.
∑

i∈V2
fi(·)),
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there does not exist any distributed algorithm that can update the states of the agents in G1 or G2.
Consequently, no distributed algorithm can solve the optimization problem.

It is left to consider R ̸= ∅. In this case, G contains a spanning tree, and again by Theorem 1.1
that the induced digraph by R is the unique closed strong component in G. Consider local cost
functions fi and an initial condition such that all agents in R have the same state c ∈ R, which
minimizes

∑
i∈R fi(·); but c ̸= ξ∗ where ξ∗ is the optimal solution for

∑
i∈V fi(·). Since R is

closed (i.e. information cannot be communicated from V \R to R) and the agents therein have the
same state value that minimizes

∑
i∈R fi(·), there does not exist any distributed algorithm that

can update the states of the agents in R. Consequently, no distributed algorithm can solve the
optimization problem. □

Owing to Proposition 3.1, we shall henceforth assume that the digraph G is strongly connected.

Assumption 3.2 The digraph G modeling the interconnection structure of the networked agents is
strongly connected.

3.2 Distributed Algorithm

Example 3.2 Consider again Example 3.1. To converge to the optimal solution ξ∗, a
natural idea is that each agent employs gradient descent with respect to its local cost function,
while iteratively computes the average of the state values received from neighbors. Namely,
for i ∈ [1, 4]

xi(k + 1) = xi(k) +
∑
j∈Ni

1

|Ni|+ 1
(xj(k)− xi(k))− ε∇fi(xi(k))

where ε > 0 is a (small or diminishing) stepsize. In vector form we have
x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)

 =


1
2 0 0 1

2
1
4

1
4

1
4

1
4

1
2 0 1

2 0

0 1
3

1
3

1
3



x1(k)

x2(k)

x3(k)

x4(k)

−


ε 0 0 0

0 ε 0 0

0 0 ε 0

0 0 0 ε



∇f1(x1(k))

∇f2(x2(k))

∇f3(x3(k))

∇f4(x4(k))

 (3.5)

Denote by L the standard Laplacian matrix of the weighted digraph G in Fig. 3.1. Note that
the first matrix above is I − L, which is row-stochastic but is not column-stochastic. The
four eigenvalues of I − L are:

1, 0.1667, 0.125± 0.2602j
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namely there is a simple eigenvalue 1 and other eigenvalues lie within the unit circle. Thus
the spectral radius of I −L is ρ(I −L) = 1. The (normalized) left eigenvector corresponding
to the simple eigenvalue 1 is: πl := [0.4615 0.3077 0.4615 0.6923]⊤; thus π⊤

l (I − L) = π⊤
l .

Multiplying π⊤
l on both sides of (3.5) above yields:

4∑
i=1

πixi(k + 1) =

4∑
i=1

πixi(k)− ε

4∑
i=1

πi∇fi(xi(k)).

This is a gradient descent algorithm for a different global function F ′(ξ) :=
∑4

i=1 πifi(ξ),
weighted by the left eigenvector πl (for a different global state x′ :=

∑4
i=1 πlxi). Hence the

above scheme does not solve the optimization of F (ξ) =
∑4

i=1 fi(ξ), i.e. the states do not
asymptotically converge to the optimal solution of F . This is illustrated in Fig. 3.2; here
ε = 0.1 and the states converge to a vector [0.1035 0.2331 0.1599 0.0911]⊤, no component of
which equals the optimal solution ξ∗ = 0.1819.
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Figure 3.2: States fail to converge to the optimal solution of global cost function

Since our global function F (ξ) =
∑n

i=1 fi(ξ) is equally weighted over the local cost functions,
if the left eigenvector πl with respect to eigenvalue 1 of I − L was 1 (the vector of all ones), then
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the scheme in Example 3.2 would have worked. In general, however, πl ̸= 1 for strongly connected
digraphs (unless weight-balanced); instead we resort again to using surplus variables to achieve the
same effect of uniform weights. Specifically, we equip each agent i with a surplus variable si(k)

to record the changes in the gradient of the local cost function, i.e. ∇fi(xi(k)). At k = 0, we set
si(0) = ∇fi(xi(0)) for all i.

In the following, we describe a distributed algorithm that updates the state xi(k) and the surplus
si(k).

Surplus-based Optimization Algorithm (SOA):
Every agent i has a state variable xi(k) whose initial value is an arbitrary real number, and a

surplus variable si(k) whose initial value is ∇fi(xi(0)). At each time k ≥ 0, every agent i performs
three operations:

1) Agent i sends its state xi(k) and weighted surplus ajisi(k) to each out-neighbor j ∈ N o
i . The

weights aji satisfy
∑

j∈No
i
aji < 1.

2) Agent i receives the state xj(k) and weighted surplus aijsj(k) from each (in-)neighbor j ∈ Ni.
The weights aij satisfy

∑
j∈Ni

aij < 1.
3) Agent i updates its state xi(k) and surplus si(k) as follows:

xi(k + 1) = xi(k) +
∑
j∈Ni

aij(xj(k)− xi(k))− εsi(k) (3.6)

si(k + 1) = (1−
∑
j∈No

i

aji)si(k) +
∑
j∈Ni

aijsj(k) +
(
∇fi(xi(k + 1))−∇fi(xi(k))

)
. (3.7)

The parameter ε in (2.2) is a positive real number, i.e. ε > 0. The weights may be chosen as in
Remark 2.2 to satisfy the two conditions

∑
j∈No

i
aji < 1 and

∑
j∈Ni

aij < 1.

Remark 3.1 In SOA, (3.6) is the state update equation by the gradient descent scheme as described
in Example 3.2, treating si(k) as the estimate of gradient of the local cost function. On the
other hand, (3.7) is the surplus update equation where the first two terms represent sending (resp.
receiving) surplus to out-neighbors (resp. from neighbors), and the third term records the change in
gradients. Summing up (3.7) from i = 1 to n on both sides, we derive

n∑
i=1

si(k + 1) =

n∑
i=1

(1−
∑
j∈No

i

aji)si(k) +
∑
j∈Ni

aijsj(k)

+

n∑
i=1

(
∇fi(xi(k + 1))−∇fi(xi(k))

)

⇒
n∑

i=1

si(k + 1)−
n∑

i=1

si(k) =

n∑
i=1

∇fi(xi(k + 1))−
n∑

i=1

∇fi(xi(k)).
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Since si(0) = ∇fi(xi(0)), we conclude that for every k ≥ 0,

n∑
i=1

si(k) =

n∑
i=1

∇fi(xi(k)).

Thus the sum of surplus variables si(k) is the sum of gradients of the local cost functions at time k.

Remark 3.2 (Relation with SAA) Consider (i) the special quadratic cost function fi(xi) :=
1
2x

2
i

(thus ∇fi(xi) = xi); and (ii) change of variable ŝi := −si. Substituting these into SOA, we obtain
SAA with surplus variable ŝi. Note that si → 0 if and only if ŝi → 0. Owing to this relation, SOA
is a generalization of SAA.

Remark 3.3 Let

x :=


x1

...
xn

 ∈ Rn, s :=


s1
...
sn]

 ∈ Rn, ∇f(x) :=


∇f1(x1)

...
∇fn(xn)

 ∈ Rn

be respectively the aggregated state, surplus, and gradient of the networked agents. Then SOA is
written compactly as follows:

x(k + 1) = (I − L)x(k)− εs(k)

s(k + 1) = (I − Lo)s(k) + (∇f(x(k + 1))−∇f(x(k))) (3.8)

where I − L is row-stochastic and I − Lo column-stochastic. The initial conditions are x(0) ∈ Rn

(arbitrary) and s(0) = ∇f(x(0)).

Example 3.3 Let us revisit Example 3.2. It is checked that the weights aij satisfy the two
conditions

∑
j∈No

i
aji < 1 and

∑
j∈Ni

aij < 1. Then SOA in vector form is:


x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)

 =


1
2 0 0 1

2
1
4

1
4

1
4

1
4

1
2 0 1

2 0

0 1
3

1
3

1
3



x1(k)

x2(k)

x3(k)

x4(k)

−


ε 0 0 0

0 ε 0 0

0 0 ε 0

0 0 0 ε



s1(k)

s2(k)

s3(k)

s4(k)
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s1(k + 1)

s2(k + 1)

s3(k + 1)

s4(k + 1)

 =


1
4 0 0 1

2
1
4

2
3

1
4

1
4

1
2 0 5

12 0

0 1
3

1
3

1
4



s1(k)

s2(k)

s3(k)

s4(k)

+


∇f1(x1(k + 1))−∇f1(x1(k))

∇f2(x2(k + 1))−∇f2(x2(k))

∇f3(x3(k + 1))−∇f3(x3(k))

∇f4(x4(k + 1))−∇f4(x4(k))

 .

Fig. 3.3 displays the case in which all states converge to the optimal solution ξ∗ = 0.1819

when the parameter ε = 0.1; while Fig. 3.4 shows that when ε = 0.2, convergence does not
occur. Hence similar to SAA for the averaging problem, the parameter ε needs to be carefully
chosen (to be small enough) so as to ensure convergence.
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Figure 3.3: Convergence to optimal solution when ε = 0.1

3.3 Convergence Result
The following is the main result of this section.

Theorem 3.1 Suppose that Assumptions 3.1 and 3.2 hold. If the parameter ε > 0 is
sufficiently small, then SOA solves the optimization problem.

Consider the two matrices I − L and I − Lo. Under Assumption 3.2 and by Lemma 2.1, the
spectral radius ρ(I − L) = 1 is a simple eigenvalue with a positive left-eigenvector πl such that
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Figure 3.4: Failure to converge when ε = 0.2

π⊤
l 1 = 1; and ρ(I − Lo) = 1 is also a simple eigenvalue with a positive eigenvector πr such that

π⊤
r 1 = 1. Write Πl := 1π⊤

l and Πr := πr1
⊤. The proof of Theorem 3.1 is structured into the

following three steps. First, we construct two special vector norms ∥ · ∥Πl
, ∥ · ∥Πr

with which I − L

and I−Lo have a special contraction property. Second, when the parameter ε > 0 satisfies a certain
bound, we bound several relevant norms to derive the following inequality:∥x(k + 1)−Πlx(k + 1)∥Πl

∥Πlx(k + 1)− ξ∗1∥2
∥s(k + 1)−Πrs(k + 1)∥Πr

 ≤ C

∥x(k)−Πlx(k)∥Πl

∥Πlx(k)− ξ∗1∥2
∥s(k)−Πrs(k)∥Πr

 (3.9)

where C is a nonnegative matrix. Finally, we prove for small ε > 0 that the spectral radius of C
satisfies ρ(C) < 1. Hence all three eigenvalues of C lie within the unit circle; thereby∥x(k)−Πlx(k)∥Πl

∥Πlx(k)− ξ∗1∥2
∥s(k)−Πrs(k)∥Πr

→ 0.

In particular x(k) → ξ∗1, meaning that all the states converge to the optimal solution ξ∗ of the
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global cost function.
In the sequel, we will introduce several lemmas corresponding to the three steps outlined above.

The following lemma is for step 1.

Lemma 3.1 Suppose that Assumption 3.2 holds. Then there exist vector norms ∥ · ∥Πl
and

∥ · ∥Πr
such that

(∃σl ∈ (0, 1))(∀v ∈ Rn)∥(I − L)v −Πlv∥Πl
≤ σl∥v −Πlv∥Πl

(3.10)

(∃σr ∈ (0, 1))(∀v ∈ Rn)∥(I − Lo)v −Πrv∥Πl
≤ σr∥v −Πrv∥Πr

. (3.11)

Proof. The proof is by construction of such vector norms. We will do so for (3.10), and (3.11)
follows similarly. Under Assumption 3.2 and by Lemma 2.1, we have ρ((I − L) − Πl) < 1. Let
δ ∈ (0, 1− ρ((I −L)−Πl)); we are going to construct a matrix norm such that ∥(I −L)−Πl∥Πl

≤
ρ((I − L)−Πl) + δ < 1.

By Schur triangularization, write (I − L)−Πl = U∆UH , where U is a unitary matrix, UH the
conjugate transpose of U , and ∆ an upper triangular matrix:

U =



λ1 d12 d13 · · · d1n

0 λ2 d23 · · · d2n

0 0 λ3 · · · d3n
...

...
... . . . ...

0 0 0 · · · λn


where λ1, . . . , λn are the eigenvalues of (I − L) − Πl. Let T := diag(t, t2, . . . , tn), where t > 0,
and define ∥(I − L) − Πl∥Πl

:= ∥(TUH)((I − L) − Πl)(TU
H)−1∥1. First, it is verified that ∥ · ∥Πl

is indeed a matrix norm (i.e. satisfying homogeneity, positive definiteness, triangle inequality,
submultiplicativity). Moreover since

∥(TUH)((I − L)−Πl)(TU
H)−1∥1 = ∥TUHU∆UHUT−1∥1

= ∥T∆T−1∥1

=

∥∥∥∥∥∥∥∥∥∥∥∥∥



λ1 t−1d12 t−2d13 · · · t−n+1d1n

0 λ2 t−1d23 · · · t−n+2d2n

0 0 λ3 · · · t−n+3d3n
...

...
... . . . ...

0 0 0 · · · λn



∥∥∥∥∥∥∥∥∥∥∥∥∥
1

if t is large enough then the sum of all absolute values of off-diagonal entries is smaller than δ.
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Specifically, let t be such that

|t−1d12|+ |t−2d13|+ · · ·+ |t−n+1d1n| ≤ δ

|t−1d23|+ · · ·+ |t−n+1d2n| ≤ δ

...

|t−1d(n−1)n| ≤ δ.

Then it follows from the definition of 1-norm that ∥(I −L)−Πl∥Πl
≤ ρ((I −L)−Πl) + δ < 1. Let

σl := ∥(I − L)−Πl∥Πl
; thus σl ∈ (0, 1).

Next, for the defined matrix norm ∥ · ∥Πl
we can always find a compatible vector norm. Note

that for an arbitrary vector v ∈ Rn, there holds

((I − L)−Πl)(v −Πlv) = (I − L)v −Πlv − (I − L)Πlv +ΠlΠlv

= (I − L)v −Πlv − (I − L)1π⊤
l v + 1π⊤

l 1π
⊤
l v

= (I − L)v −Πlv − 1π⊤
l v + 1π⊤

l v

= (I − L)v −Πlv.

Therefore

∥(I − L)v −Πlv∥Πl
= ∥((I − L)−Πl)(v −Πlv)∥Πl

≤ ∥(I − L)−Πl∥Πl
∥v −Πlv∥Πl

= σl∥v −Πlv∥Πl
.

This establishes (3.10). □

The next five lemmas are for step 2. The first two are preliminaries for the latter three; and the
latter three each derive a bound for a relevant norm in (3.9).

The first preliminary lemma below states that a gradient descent step (ξ − ε∇F (ξ)) yields a
reduced distance to the optimal solution (ξ∗) by at least a fixed ratio.

Lemma 3.2 Suppose that Assumption 3.1 holds. Then

(∀ξ ∈ R)(∀ε ∈ (0,
1

l
])∥ξ − ε∇F (ξ)− ξ∗∥2 ≤ (1−mε)∥ξ − ξ∗∥2.

Proof. Let ξ ∈ R and ε ∈ (0, 1
l ]. Since l ≥ m (Assumption 3.1), ε ≤ 2

l+m and thus l ≤ 2
ε −m.

Writing l′ := 2
ε − m, we have from Assumption 3.1 that F is l′-smooth and m-strongly convex.
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Then

∥ξ − ε∇F (ξ)− ξ∗∥22 = ∥ξ − ξ∗∥22 − 2ε∇F (ξ)(ξ − ξ∗) + ε2∥∇F (ξ)∥22

≤ (1− 2εml′

m+ l′
)∥ξ − ξ∗∥22 + ε(ε− 2

m+ l′
)∥∇F (ξ)∥22

where the inequality is due to the properties of smoothness and strong convexity (see Lemma 3.10
in Appendix) as well as ∇F (ξ∗) = 0. Substituting l′ := 2

ε − m into the above inequality yields
∥ξ − ε∇F (ξ) − ξ∗∥22 = (1 − εm)2∥ξ − ξ∗∥22. Since 1 − εm ≥ 1 − m

l ≥ 0, we finally derive ∥ξ −
ε∇F (ξ)− ξ∗∥2 ≤ (1− εm)∥ξ − ξ∗∥2. □

The second preliminary lemma provides a bound for ∥s(k)∥2 in terms of the three relevant norms
in (3.9). Here three different types of vector norms are involved: 2-norm, Πl-norm, and Πr-norm.
By norm-equivalence we have

(∃c1, c2, c3, c4, c5, c6 > 0)∥ · ∥2 ≤ c1∥ · ∥Πl
, ∥ · ∥2 ≤ c2∥ · ∥Πr

, ∥ · ∥Πl
≤ c3∥ · ∥Πr

∥ · ∥Πl
≤ c4∥ · ∥2, ∥ · ∥Πr

≤ c5∥ · ∥2, ∥ · ∥Πr
≤ c6∥ · ∥Πl

.

Let c := max{c1, c2, c3, c4, c5, c6}. Then for any two of the above three types of vector norms (say)
∥ · ∥type1 and ∥ · ∥type2, we have

∥ · ∥type1 ≤ c∥ · ∥type2 (3.12)

Lemma 3.3 Suppose that Assumption 3.1 holds. Then for all k ≥ 0,

∥s(k)∥2 ≤ cl̄∥Πr∥2∥x(k)−Πlx(k)∥Πl
+ l̄∥Πr∥2∥Πlx(k)− ξ∗1∥2 + c∥s(k)−Πrs(k)∥Πr

where c is in (3.12) and l̄ in (3.4).

Proof. Writing s(k) = s(k)−Πrs(k) + Πrs(k), where Πr = πr1
⊤, we have

∥s(k)∥2 ≤ ∥s(k)−Πrs(k)∥2 + ∥Πrs(k)∥2
≤ c∥s(k)−Πrs(k)∥Πr

+ ∥πr1
⊤s(k)∥2. (3.13)

It follows from Remark 3.1 that 1⊤s(k) = 1⊤∇f(x(k)). Thus we next bound ∥πr1
⊤∇f(x(k))∥2 as
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follows:

∥πr1
⊤∇f(x(k))∥2 ≤ ∥πr∥2∥

∑
i

∇fi(xi(k))−
∑
i

∇fi(ξ
∗)∥2

fi are li-smooth
≤ ∥πr∥2

∑
i

li∥xi(k)− ξ∗∥2

Jensen’s inequality
≤ l̄∥πr∥2

√
n∥x(k)− ξ∗1∥2

∥Πr∥2=∥πr∥2
√
n

≤ l̄∥Πr∥2∥x(k)− ξ∗1−Πlx(k) + Πlx(k)∥2
≤ cl̄∥Πr∥2∥x(k)−Πlx(k)∥Πl

+ l̄∥Πr∥2∥Πlx(k)− ξ∗1∥2. (3.14)

The lemma is proved by substituting (3.14) into (3.13). □

The next three lemmas each provide a bound for a relevant norm in (3.9).

Lemma 3.4 Suppose that Assumptions 3.1 and 3.2 hold. Then for all k ≥ 0,

∥x(k + 1)−Πlx(k + 1)∥Πl
≤c11∥x(k)−Πlx(k)∥Πl

+ c12∥Πlx(k)− ξ∗1∥2+

c13∥s(k)−Πrs(k)∥Πr

where the constants are (c in (3.12), σl in (3.10), and l̄ in (3.4))

c11 = σl + c2εl̄∥Πr −Πl∥Πl
∥Πr∥2

c12 = cεl̄∥Πr −Πl∥Πl
∥Πr∥2

c13 = cε+ c2ε∥Πr −Πl∥Πl
.

Proof. Since x(k + 1) = (I − L)x(k)− εs(k) in (3.8), we have

∥x(k + 1)−Πlx(k + 1)∥Πl
= ∥((I − L)x(k) + εs(k))−Πl((I − L)x(k) + εs(k))∥Πl

Πl(I−L)=Πl

≤ ∥(I − L)x(k)−Πlx(k)∥Πl
+ ε∥s(k)−Πls(k)∥Πl

Lemma 3.1
≤ σl∥x(k)−Πlx(k)∥Πl

+ ε∥s(k)−Πls(k)−Πrs(k) + Πrs(k)∥Πl

≤ σl∥x(k)−Πlx(k)∥Πl
+ cε∥s(k)−Πrs(k)∥Πr

+ cε∥Πr −Πl∥Πl
∥s(k)∥2.

(3.15)

The lemma is proved by substituting ∥s(k)∥2 from Lemma 3.3 into (3.15). (Note that Assump-
tion 3.1 is needed to apply Lemma 3.3, and Assumption 3.2 to apply Lemma 3.1.) □
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Lemma 3.5 Suppose that Assumption 3.1 holds. If ε < 1
lπ⊤

r πl
(l in (3.4)) then for all k ≥ 0,

∥Πlx(k + 1)− ξ∗1∥2 ≤ c21∥x(k)−Πlx(k)∥Πl
+ c22∥Πlx(k)− ξ∗1∥2 + c23∥s(k)−Πrs(k)∥Πr

where the constants are (c in (3.12), l̄ and m in (3.4))

c21 = cεl̄nπ⊤
l πr

c22 = (1− εmπ⊤
l πr)

c23 = cε∥Πl∥2.

Proof. Since x(k + 1) = (I − L)x(k)− εs(k) in (3.8), we have

∥Πlx(k + 1)− ξ∗1∥2 = ∥Πl((I − L)x(k) + εs(k) + Πrs(k)(−ε+ ε))− ξ∗1∥2
Πl(I−L)=Πl=1π⊤

l

≤ ∥1π⊤
l x(k)− ξ∗1− εΠlΠrs(k)∥2 + cε∥Πl∥2∥s(k)−Πrs(k)∥Πr

.

(3.16)

Noting that Πr = πr1
⊤, we bound ∥1π⊤

l x(k)− ξ∗1− εΠlΠrs(k)∥2 as follows:

∥1π⊤
l x(k)− ξ∗1− εΠlΠrs(k)∥2

= ∥π⊤
l x(k)1− ξ∗1− επ⊤

l πr∇F (π⊤
l x(k))1+ επ⊤

l πr∇F (π⊤
l x(k))1− ε1π⊤

l πr1
⊤s(k)∥2

≤ ∥(π⊤
l x(k)− επ⊤

l πr∇F (π⊤
l x(k))− ξ∗)1∥2 + επ⊤

l πr∥(∇F (π⊤
l x(k))− 1⊤s(k))1∥2. (3.17)

Since Assumption 3.1 holds and ε < 1
lπ⊤

r πl
, it follows from Lemma 3.2 that the first term in (3.17)

∥(π⊤
l x(k)− επ⊤

l πr∇F (π⊤
l x(k))− ξ∗)1∥2 ≤ (1− εmπ⊤

l πr)∥(π⊤
l x(k)− ξ∗)1∥2

Πl=1π⊤
l= (1− εmπ⊤

l πr)∥Πlx(k)− ξ∗1∥2. (3.18)

It is left to bound the second term in (3.17):

επ⊤
l πr∥(∇F (π⊤

l x(k))− 1⊤s(k))1∥2
1⊤s(k)=1⊤∇f(x(k))

= επ⊤
l πr∥(1⊤∇f(π⊤

l x(k)1)− 1⊤∇f(k))1∥2
≤ επ⊤

l πr∥1⊤∥2∥f(π⊤
l x(k)1)−∇f(x(k))∥2∥1∥2

fi are li-smooth
≤ εl̄nπ⊤

l πr∥π⊤
l x(k)1− x(k)∥2

≤ cεl̄nπ⊤
l πr∥x(k)−Πlx(k)∥Πl

. (3.19)

Finally substituting (3.18) and (3.19) into (3.16) establishes the lemma. □
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Lemma 3.6 Suppose that Assumptions 3.1 and 3.2 hold. Then for all k ≥ 0,

∥s(k + 1)−Πrs(k + 1)∥Πr
≤c31∥x(k)−Πlx(k)∥Πl

+ c32∥Πlx(k)− ξ∗1∥2+

c33∥s(k)−Πrs(k)∥Πr

where the constants are (c in (3.12), σr in (3.11), and l̄ in (3.4))

c31 = c2 l̄∥I −Πr∥2∥L∥2 + c2εl̄2∥I −Πr∥2∥Πr∥2
c32 = cεl̄2∥I −Πr∥2∥Πr∥2
c33 = σr + c2εl̄∥I −Πr∥2.

Proof. Since s(k + 1) = (I − Lo)s(k) +∇f(x(k + 1))−∇f(x(k)) in (3.8), we have

∥s(k + 1)−Πrs(k + 1)∥Πr

≤ ∥(I − Lo)s(k) +∇f(x(k + 1))−∇f(x(k))−Πr((I − Lo)s(k) +∇f(x(k + 1))−∇f(x(k)))∥Πr

≤ ∥(I − Lo)s(k)−Πrs(k)∥Πr + c∥(I −Πr)(∇f(x(k + 1))−∇f(x(k)))∥2
Lemma 3.1

≤ σr∥s(k)−Πrs(k)∥Πr
+ c∥I −Πr∥2∥∇f(x(k + 1))−∇f(x(k))∥2

fi are li-smooth
≤ σr∥s(k)−Πrs(k)∥Πr

+ cl̄∥I −Πr∥2∥x(k + 1)− x(k)∥2. (3.20)

Since x(k + 1) = (I − L)x(k)− εs(k) in (3.8), we next bound ∥x(k + 1)− x(k)∥2 as follows:

cl̄∥I −Πr∥2∥x(k + 1)− x(k)∥2
(I−L)Πl=Πl

= cl̄∥I −Πr∥2∥ − Lx(k)− εs(k)− (I − L)Πlx(k) + Πlx(k)∥2
≤ cl̄∥I −Πr∥2∥ − L(x(k)−Πlx(k))∥2 + cεl̄∥I −Πr∥2∥s(k)∥2
≤ c2 l̄∥I −Πr∥2∥L∥2∥x(k)−Πlx(k)∥Πl

+ cεl̄∥I −Πr∥2∥s(k)∥2. (3.21)

The lemma is proved by substituting ∥s(k)∥2 from Lemma 3.3 into (3.21) and then into (3.20). (Note
that Assumption 3.1 is needed to apply Lemma 3.3, and Assumption 3.2 to apply Lemma 3.1.) □

The last lemma below is for step 3.

Lemma 3.7 Let C ≥ 0 be a nonnegative matrix, v > 0 a positive vector, and λ > 0 a
positive real number. If Cv < λv, then ρ(C) < λ.

Proof. Write v := [v1 · · · vn]⊤ and let D := diag(v1, . . . , vn). Since v > 0, D−1 exists and define
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the similarity transformation C̃ = D−1CD. Then

C̃1 = D−1CD1 = D−1Cv < D−1λv = λD−1v = λ1.

This means that every row sum of C̃ is smaller than λ, i.e. ∥C̃∥∞ < λ. Since the spectral radius of
every nonnegative matrix is upper bounded by its infinite norm (cf. proof of Lemma 1.5), we have
ρ(C̃) ≤ ∥C̃∥∞ < λ. Therefore we conclude that ρ(C) = ρ(C̃) < λ. □

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Suppose that Assumptions 3.1 and 3.2 hold. First, we construct by
Lemma 3.1 two special norms ∥ · ∥Πl

and ∥ · ∥Πr
with constants σl, σr ∈ (0, 1), respectively.

Second, according to Lemmas 3.4–3.6, if ε < 1
lπ⊤

r πl
(l in (3.4)) then for all k ≥ 0,

∥x(k + 1)−Πlx(k + 1)∥Πl

∥Πlx(k + 1)− ξ∗1∥2
∥s(k + 1)−Πrs(k + 1)∥Πr

 ≤ C

∥x(k)−Πlx(k)∥Πl

∥Πlx(k)− ξ∗1∥2
∥s(k)−Πrs(k)∥Πr


where the nonnegative matrix C is as follows (c in (3.12), σl in (3.10), σr in (3.11), m and l̄ in
(3.4)):

C =

 σl + c2εl̄∥Πr −Πl∥Πl
∥Πr∥2 cεl̄∥Πr −Πl∥Πl

∥Πr∥2 cε+ c2ε∥Πr −Πl∥Πl

cεl̄nπ⊤
l πr (1− εmπ⊤

l πr) cε∥Πl∥2
c2 l̄∥I −Πr∥2∥L∥2 + c2εl̄2∥I −Πr∥2∥Πr∥2 cεl̄2∥I −Πr∥2∥Πr∥2 σr + c2εl̄∥I −Πr∥2

 .

It is left to find a bound on ε such that ρ(C) < 1. According to Lemma 3.7, it suffices to find a
positive vector v = [v1 v2 v3]

⊤ such that Cv < v. This inequality yields

ε <
(1− σl)v1

c2 l̄∥Πr −Πl∥Πl
∥Πr∥2v1 + cl̄∥Πr −Πl∥Πl

∥Πr∥2v2 + c(1 + c)∥Πr −Πl∥Πl
v3

(3.22)

v2 >
cl̄nπ⊤

l πrv1 + c∥Πl∥2v3
mπ⊤

l πr
(3.23)

ε <
(1− σr)v3 − c2 l̄∥I −Πr∥2∥L∥2v1

c2 l̄2∥I −Πr∥2∥Πr∥2v1 + cl̄2∥I −Πr∥2∥Πr∥2v2 + c2 l̄∥I −Πr∥2v3
. (3.24)

Since ε > 0, the numerator on the right of (3.24) must be positive, which yields

v1 <
(1− σr)v3

c2 l̄∥I −Πr∥2∥L∥2
.
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This inequality may be satisfied by setting

v3 = c2 l̄∥I −Πr∥2∥L∥2 > 0 (3.25)

v1 =
1− σr

2
> 0. (3.26)

Substituting v1, v3 into (3.23) yields

v2 >
cl̄nπ⊤

l πr(1− σr) + 2c3 l̄∥Πl∥2∥I −Πr∥2∥L∥2
2mπ⊤

l πr

which may be satisfied by setting

v2 =
cl̄nπ⊤

l πr(1− σr) + 2c3 l̄∥Πl∥2∥I −Πr∥2∥L∥2
mπ⊤

l πr
> 0. (3.27)

Thus we have found v = [v1 v2 v3]
⊤ > 0 such that if ε satisfies (3.22) and (3.24), where v1, v2, v3

are in (3.26), (3.27), (3.25), then Cv < v, i.e. ρ(C) < 1.

Therefore, if ε > 0 is sufficiently small, specifically

ε < ε̄ := min{ 1

lπ⊤
r πl

, γ1, γ2} (3.28)

where γ1, γ2 are the right-hand sides of (3.22), (3.24) respectively, then∥x(k)−Πlx(k)∥Πl

∥Πlx(k)− ξ∗1∥2
∥s(k)−Πrs(k)∥Πr

→ 0 as k → ∞.

This implies that limk→∞ x(k) = ξ∗1, i.e. SOA solves the optimization problem. □

Remark 3.4 (Convergence Speed) In the above proof of Theorem 3.1, if the parameter ε ∈ (0, ε̄)

with ε̄ in (3.28), then SOA converges to the optimal solution ξ∗ of the global cost function. The
speed of convergence is governed by the spectrum radius of the 3× 3 matrix C, i.e. ρ(C). We refer
to ρ(C) as the convergence factor of SOA; that is, SOA converges linearly at the rate of O(ρ(C)k).
Note that ρ(C) < 1 is equivalent to achieving optimization. The value of ρ(C) depends on a number
of factors related to certain norms, parameter ε, graph topology, and condition number of cost
functions. We will demonstrate this latter point in Section 3.5 using simulation examples.
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3.4 Distributed Resource Allocation

In this section we introduce a widely studied distributed constrained optimization problem, and
show that it is dual with the optimization problem we have formulated and solved. Hence the
distributed algorithm SOA may be adapted as a solution here as well.

Consider a network of n (> 1) agents that cooperatively allocate their local resources to meet
a global demand. Each agent i (∈ [1, n]) has a state variable xi ∈ R, representing the amount of
resource agent i needs to allocate, and has a local cost function gi : R → R. Since it is typical in
practice that resource is bounded, each xi satisfies xi ∈ [xi, x̄i]. Let Di be the resource demand
received by agent i; then D :=

∑n
i=1 Di is the total demand of resource that the network must

allocate. The goal of distributed resource allocation is that the agents cooperatively solve the
following problem:

min
x1,...,xn∈R

n∑
i=1

gi(xi) (3.29)

subject to (∀i ∈ [1, n])xi ∈ [xi, x̄i] &

n∑
i=1

xi = D.

Let G(ξ) :=
∑n

i=1 gi(ξi) be the global cost function, where ξ := [ξ1 · · · ξn]⊤ ∈ Rn. We shall restrict
our attention to the case where G has a unique optimal solution ξ∗ = [ξ∗1 · · · ξ∗n]⊤. To ensure this,
we again need Assumption 3.1 (on gi); and in addition, due to boundedness of states xi, we also
need the following assumption.

Assumption 3.3 The total amount D of resource satisfies D ∈ [
∑n

i=1 xi,
∑n

i=1 x̄i].

Denote the optimal value of the global cost function G by G∗ = G(ξ∗).

Resource Allocation Problem:
Consider a network of n agents interconnected through a digraph G. Suppose that Assump-

tions 3.1 (on gi), 3.2, and 3.3 hold and ξ∗ = [ξ∗1 · · · ξ∗n]⊤ is the (unique) optimal solution to the
constrained optimization problem in (3.29). Design a distributed algorithm such that

(∀i ∈ [1, n])(∀xi(0) ∈ R) lim
k→∞

xi(k) = ξ∗i .

In the following, we consider the dual problem of (3.29) and transform it to the form of the
optimization problem (3.1). Then the distributed algorithm SOA that solves the optimization
problem can be adapted to solve the resource allocation problem.
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Define the Lagrange function of (3.29) as

L(x, λ) =

n∑
i=1

gi(xi) + λ(

n∑
i=1

xi −D) (3.30)

where x := [x1 · · ·xn]
⊤ ∈ [x1, x̄1]× · · · × [xn, x̄n] =: X and λ ∈ R is the Lagrange multiplier. Then

the dual problem of (3.29) is

max
λ∈R

inf
x∈X

L(x, λ). (3.31)

Note that

inf
x∈X

L(x, λ) = inf
x∈X

n∑
i=1

(gi(xi) + λxi)− λD

=

n∑
i=1

inf
xi∈[xi,x̄i]

(gi(xi) + λxi)− λD

=

n∑
i=1

− sup
xi∈[xi,x̄i]

−(gi(xi) + λxi)− λD

=

n∑
i=1

−g∗i (−λ)− λD

where g∗i (λ) = supxi∈[xi,x̄i](λxi − gi(xi)) is the conjugate function of gi(xi). Since gi is strongly
convex and has a Lipschitz-continuous gradient (Assumption 3.1), g∗i (λ) exists (i.e. the supremum
is attainable) and also enjoys strong convexity and Lipschitz-continuous gradient. Now let

fi(λ) := g∗i (−λ) + λDi. (3.32)

This fi satisfies Assumption 3.1. Then the dual problem (3.31) is transformed into:

max
λ∈R

n∑
i=1

(−fi(λ)) = −min
λ∈R

n∑
i=1

(fi(λ)).

The latter without the minus sign is in the same form as (3.1):

min
λ1,...,λn∈R

n∑
i=1

fi(λi) (3.33)

subject to λ1 = · · · = λn.

Remark 3.5 Owing to Assumptions 3.1 (on gi) and 3.3, strong duality holds between (3.33) and
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(3.29). This means that the optimal solutions [λ∗ · · ·λ∗]⊤ of (3.33) and [ξ∗1 · · · ξ∗n]⊤ of (3.29) are
related by

(∀i ∈ [1, n])gi(ξ
∗
i ) + g∗i (−λ∗) = −ξ∗i λ

∗

and the optimal values F ∗ of (3.33) and G∗ of (3.29) are related by F ∗ = −G∗. Hence an optimal
solution to (3.33) provides an optimal solution to (3.29).

To solve (3.33) by SOA, we need to compute the gradient of fi. From (3.32) we derive

∇fi(λ) = −∇g∗i (−λ) +Di.

Since the gradient of the conjugate function g∗i is given by ∇g∗i (λ) = argmaxxi∈[xi,x̄i]{λxi−gi(xi)},
we derive

∇fi(λ) = −argminxi∈[xi,x̄i]{λxi + gi(xi)}+Di

=


∇−1gi(λ) +Di, if xi ≤ ∇−1gi(λ) ≤ x̄i

xi +Di, if ∇−1gi(λ) < xi

x̄i +Di, if ∇−1gi(λ) > x̄i

Substituting ∇fi(λ) into (3.7), we obtain from SOA the following (specialized) algorithm to solve
(3.33):

λi(k + 1) = λi(k) +
∑
j∈Ni

aij(λj(k)− λi(k))− εsi(k) (3.34)

xi(k + 1) = argminxi∈[xi,x̄i]{λi(k + 1)xi + gi(xi)} (3.35)

si(k + 1) = (1−
∑
j∈No

i

aji)si(k) +
∑
j∈Ni

aijsj(k) +
(
xi(k)− xi(k + 1)

)
. (3.36)

The parameter ε is a positive real number. We call this algorithm Surplus-based Resource Allocation
Algorithm (SRAA).

Following the initialization of SOA, λi(0) can be arbitrary real numbers, whereas

xi(0) = argminxi∈[xi,x̄i]{λi(0)xi + gi(xi)}

si(0) = Di − argminxi∈[xi,x̄i]{λi(0)xi + gi(xi)}.

In fact, the initialization of SRAA can be simpler: namely xi(0) = 0 and si(0) = Di. The updates
with or without computing argminxi∈[xi,x̄i]{λi(0)xi+gi(xi)} become the same after the first iteration
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due to the special form of ∇fi(λ). In any case, note from (3.36) that 1⊤(x(k)+ s(k)) is a constant.
Hence if s(k) → 0 then 1⊤x(k) → 1⊤(x(0) + s(0)) = D. That is, xi(k) jointly satisfy the total
demanded resource in an asymptotic fashion.

The main result of this section is the following.

Theorem 3.2 Suppose that Assumptions 3.1 (on gi), 3.2, and 3.3 hold. If the parameter
ε > 0 is sufficiently small, then SRAA solves the resource allocation problem.

Proof. Let Assumptions 3.1 (on gi), 3.2, 3.3 hold, and assume that ε > 0 is sufficiently small.
Then it follows from strong duality and Theorem 3.1 that ∥Πlλ(k) − λ∗1∥2 → 0. This implies
π⊤
l λ(k) → λ∗, and hence F (π⊤

l λ(k)) → F ∗. Note again by strong duality that F ∗ = −G∗ =

−L(ξ∗, λ) for every λ ∈ R, where L(·, ·) is the Lagrangian function given in (3.30). Consequently

F (π⊤
l λ(k))− F ∗ = L(ξ∗, π⊤

l λ(k))− inf
x∈X

L(x, π⊤
l λ(k))

= L(ξ∗, π⊤
l λ(k))− L(x(k), π⊤

l λ(k))

≥ ∇L(x(k), π⊤
l λ(k))(ξ

∗ − x(k)) +
m

2
∥ξ∗ − x(k)∥22

≥ m

2
∥x(k)− ξ∗∥22.

The first inequality above is due to m-strong convexity of G following Assumption 3.1 (on gi);
and the second inequality uses the first-order necessary condition for constrained minimization
problems. By the above inequality and the fact that F (π⊤

l λ(k)) → F ∗, we derive x(k) → ξ∗. This
proves that the resource allocation problem is solved. □

3.5 Simulation Examples

In this section we illustrate by simulation the convergence properties of SOA for the optimization
problem, as well as SRAA for the resource allocation problem.

Example 3.4 We demonstrate the influences of graph topologies and condition numbers
of cost functions on the convergence speed of SOA. First, we investigate the influence of
graph topologies, especially for different densities of edges. Consider a digraph of n = 100

nodes; we choose uniformly at random 10%, 30%, and 50% of directed edges from all possible
n(n − 1) edges. We take only those digraphs that are strongly connected, and set uniform
weights 1

100 . For cost functions we consider

fi(ξ) = aiξ
2 + biξ + ci + di log(1 + e−ξ)
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Figure 3.5: Convergence speed with respect to 10% (blue ◦), 30% (red ×), and 50% (black ∗) of
directed edges

where ai, bi, ci, di are chosen uniformly at random from the open interval (0, 1). Such fi is
(2ai + δ)-strongly convex (δ > 0 is a small number) and (2ai + 0.25di)-smooth. Then the
global cost function F (ξ) =

∑n
i=1 fi(ξ) is also strongly convex and smooth, and let ξ∗ be the

(unique) optimal solution.
Fig. 3.5 displays the curves of the error 1

n∥x(k) − ξ∗1∥2 with respect to the above chosen
three different densities of edges; each plotted point is the mean value of the error over 100

random digraphs of the respective densities, and each component of the initial state vector
x(0) is chosen uniformly at random from the closed interval [−10, 10]. It is observed that
the denser the digraph, the faster SOA converges to the optimal solution ξ∗.
Next, we investigate the influence of the condition numbers of cost functions on the conver-
gence speed of SOA. For this, we consider cost functions

fi(ξ) = aξ2 + biξ + ci + d log(1 + e−ξ)

where bi, ci are again chosen uniformly at random from the open interval (0, 1), but a, d are
the same for all fi. Thus fi, as well as the global cost function F , all have the condition
number Q = 2a+0.25d

2a+δ (δ > 0 is a small number). Fix δ = a = 0.01 and choose three values
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Figure 3.6: Convergence speed with respect to condition numbers of cost functions: 10 (black), 100
(red), and 1000 (blue). Vertical axis is in logarithmic scale for clear comparison.

0.72, 7.92, 79.92 for d; then the condition numbers Q are 10, 100, 1000.
To reduce the influence of digraph topology, we apply SOA for different cost functions on
the same digraphs of 100 nodes and 10% of directed edges chosen uniformly at random.
Fig. 3.6 displays the curves of the error 1

n∥x(k) − ξ∗1∥2 with respect to three different
condition numbers of the cost functions; each plotted point is the mean value of the error
over 100 random digraphs. It is observed that the smaller the condition number (i.e. better
conditioned), the faster SOA converges to the optimal solution ξ∗.

Table 3.1: Generator parameters of IEEE 14-bus test system

Generator αi ($/MW 2h) βi ($/MWh) γi ($/h) [xi, x̄i] (MW)
1 (bus 1) 0.04 2.0 12 [0, 80]
2 (bus 2) 0.03 3.0 20 [0, 90]
3 (bus 3) 0.035 4.0 15 [0, 70]
4 (bus 6) 0.03 4.0 23 [0, 70]
5 (bus 8) 0.04 2.5 16 [0, 80]
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Figure 3.7: IEEE 14-bus test system with 5 generators (denoted by circles) and 14 demands (im-
posed at Buses)

Example 3.5 In this example, we apply SRAA to solve a distributed resource allocation
problem in power networks. Specifically, consider the IEEE 14-bus test system as displayed
in Fig. 3.7; the power demands at individual buses are (unit: MW)

0, 21.7, 66.2, 47.8, 7.6, 11.2, 0, 0, 29.5, 9, 3.5, 6.1, 13.5, 14.9.

Thus the total demand is D = 231. To satisfy the demand, there are 5 generators at buses
1,2,3,6,8; the associated cost functions are quadratic: gi(xi) = αix

2
i + βixi + γi, where xi is

the power (MW) generated by generator i. These quadratic functions satisfy Assumption 3.1.
The parameters αi, βi, γi and the ranges [xi, x̄i] of xi are given in Table 3.1.
Since the total demand D ∈ [

∑5
i=1 xi,

∑5
i=1 x̄i] = [0, 390], Assumption 3.3 holds. The

communication digraph among the 5 generators is displayed in Fig. 3.7; this digraph is
strongly connected, and hence Assumption 3.2 holds. Thus the resource allocation problem
(aka. economic dispatching problem in this context) is to solve minx1,...,x5∈R

∑5
i=1 gi(xi)

such that each xi is in the respective range and the total generated power
∑5

i=1 xi meets the
total demand 231MW.
We apply SRAA to solve this problem. Let the weights aij =

1
|Ni|+1 , the parameter ε = 0.01,
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Figure 3.8: IEEE 14-bus test system: convergence of λi and si

the initial λi(0) drawn uniformly at random from [−10, 10], and the inital xi(0) = 0. Finally
to initialize si(0), suppose that each generator is in charge of a certain area (areas are
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Figure 3.9: IEEE 14-bus test system: convergence of xi (i = 1, . . . , 5) without range violation and
the total generated power meeting the total demand

displayed as dotted boxes in Fig. 3.7); thereby naturally:

s1(0) = D1 = 0

s2(0) = D2 = 21.7

s3(0) = D3 = 66.2

s4(0) = D4 = 7.6 + 11.2 + 3.5 + 6.1 + 13.5 = 41.9

s5(0) = D5 = 47.8 + 0 + 0 + 29.5 + 9 + 14.9 = 101.2.
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The simulation results are displayed in Figs. 3.8 and 3.9. Observe that surplus variables
si(k) diminish from the initialized values (demands) to zero, while states xi(k) converge from
zero initial values to the optimal solution of the resource allocation problem. Moreover, all
xi(k) stay in their respective ranges, and the sum of xi(k) (i.e. the total generated power)
converges (rapidly and smoothly) to the required total demand 231MW.

3.6 Notes and References
The surplus-based optimization algorithm (SOA) is originated in

• R. Xin and U. Khan, A linear algorithm for optimization over directed graphs with geometric
convergence, IEEE Control Systems Letters, vol.2, pp.315–320, 2018
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in networks, IEEE Transactions on Automatic Control, vol.66, pp.1–16, 2021

Extension to time-varying digraphs is reported in

• F. Saadatniaki, R. Xin, and U. Khan, Decentralized optimization over time-varying directed
graphs with row and column stochastic matrices, IEEE Transactions on Automatic Control,
vol.65, pp.4769–4780, 2020

The Surplus-based Resource Allocation Algorithm (SRAA) is from

• J. Zhang, K. You, and K. Cai, Distributed conjugate gradient tracking for resource allocation
in unbalanced networks, IEEE Transactions on Signal Processing, vol.68, pp.2186–2198, 2020

A variant that addresses time-varying networks is in

• Y. Xu, T. Han, K. Cai, Z. Lin, G. Yan, and M. Fu, A distributed algorithm for resource
allocation over dynamic digraphs, IEEE Transactions on Signal Processing, vol.65, pp.2600–
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3.7 Appendix: Convex Optimization

In this appendix we present a brief introduction of basic convexity definitions, as well as a useful
result (Lemma 3.10) that was used in proving the convergence of SOA in Section 3.3.

Throughout this appendix we consider a continuously differentiable function F : R → R. We
say that F is convex if

(∀ξ1, ξ2 ∈ R)F (ξ2) ≥ F (ξ1) +∇F (ξ1)(ξ2 − ξ1); (3.37)

F is strictly convex if

(∀ξ1, ξ2 ∈ R)ξ1 ̸= ξ2 ⇒ F (ξ2) > F (ξ1) +∇F (ξ1)(ξ2 − ξ1); (3.38)

and (recall that) F is m-strongly convex for some m > 0 if

(∀ξ1, ξ2 ∈ R)F (ξ2) ≥ F (ξ1) +∇F (ξ1)(ξ2 − ξ1) +
m

2
∥ξ2 − ξ1∥2.

In this appendix, ∥ · ∥ denotes an arbitrary vector norm. By definition the relation among these
three convexity concepts is: strong convexity ⇒ strict convexity ⇒ convexity.

Lemma 3.8 Consider an optimization problem

min
ξ∈R

F (ξ). (3.39)

(i) If F is convex and ∇F (ξ∗) = 0, then ξ∗ is a global optimal solution.

(ii) If F is strictly convex and ∇F (ξ∗) = 0, then ξ∗ is the unique global optimal solution.

(iii) If F is strongly convex, then the global optimal solution ξ∗ exists and is unique.

Proof. For (i), it follows from the definition of convexity (3.37) that for an arbitrary ξ ∈ R we
have

F (ξ) ≥ F (ξ∗) +∇F (ξ∗)(ξ − ξ∗) = F (ξ∗).

This proves that ξ∗ is a global optimal solution of (3.39).

For (ii), since strict convexity implies convexity, we know from (i) that ξ∗ is a global optimal
solution. Suppose that ξ̃( ̸= ξ∗) is another global optimal solution, i.e. F (ξ̃) = F (ξ∗). By the
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definition of strict convexity (3.38), however

F (ξ̃) > F (ξ∗) +∇F (ξ∗)(ξ̃ − ξ∗) = F (ξ∗).

Hence ξ̃ cannot be a global solution, and the uniqueness of ξ∗ ensues.
For (iii), let ξ̄ ∈ R and consider the set S := {ξ ∈ R | f(ξ) ≤ f(ξ̄)}. Note that the optimization

problem (3.39) is equivalent to the following:

min
ξ∈S

F (ξ). (3.40)

Since F is strongly convex with a parameter m > 0, for an arbitrary ξ ∈ S we have

F (ξ̄) ≥ F (ξ) ≥ F (ξ̄) +∇F (ξ̄)(ξ − ξ̄) +
m

2
∥ξ − ξ̄∥2

⇒m

2
∥ξ − ξ̄∥2 ≤ ∇F (ξ̄)(ξ̄ − ξ)

⇒∥ξ − ξ̄∥ ≤ 2

m
∥∇F (ξ̄)∥.

Thus the set S is a closed and bounded interval, i.e. a compact set. Moreover since F is continuously
differentiable (thus continuous), it follows from the Weierstrass extreme value theorem that an
optimal solution ξ∗ of (3.40) (and of (3.39)) exists.

Being an optimal solution of (3.39), ξ∗ satisfies ∇F (ξ∗) = 0. Since strong convexity implies
strict convexity, we derive from (ii) that ξ∗ is the unique global optimal solution. □

Recall that a convex function F : R → R is l-smooth for some l > 0 if

(∀ξ1, ξ2 ∈ R)∥∇F (ξ1)−∇F (ξ2)∥ ≤ l∥ξ1 − ξ2∥.

Lemma 3.9 The following are equivalent:

• F is l-smooth.

• For all ξ1, ξ2 ∈ R,

0 ≤ F (ξ2)− F (ξ1)−∇F (ξ1)(ξ2 − ξ1) ≤
l

2
∥ξ1 − ξ2∥2. (3.41)

• For all ξ1, ξ2 ∈ R,

(∇F (ξ1)−∇F (ξ2))(ξ1 − ξ2) ≥
1

l
∥∇F (ξ1)−∇F (ξ2)∥2. (3.42)
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Proof. Let ξ1, ξ2 ∈ R. We will prove: l-smoothness ⇒ (3.41) ⇒ (3.42) ⇒ l-smoothness.
First assume that F is l-smooth. To prove (3.41), note that the left inequality is directly from

the definition of convexity (3.37). To see the inequality on the right, note that

F (ξ2)− F (ξ1)−∇F (ξ1)(ξ2 − ξ1) =

∫ 1

0

(∇F (ξ1 + τ(ξ2 − ξ1))−∇F (ξ1))(ξ2 − ξ1)dτ.

By Cauchy-Schwarz inequality and the definition of l-smoothness,

F (ξ2)− F (ξ1)−∇F (ξ1)(ξ2 − ξ1) ≤
∫ 1

0

lτ∥ξ2 − ξ1∥2dτ =
l

2
∥ξ2 − ξ1∥2.

Next assume that (3.41) holds. To prove (3.42), let ξ0 ∈ R and define ϕ(ξ) := F (ξ)−∇F (ξ0)ξ.
Thus ϕ(·) is also l-smooth and its optimal solution is ξ∗ = ξ0. Hence

ϕ(ξ∗) = min
ξ1∈R

ϕ(ξ1)
(3.41)

≤ min
ξ1∈R

(
ϕ(ξ2) +∇ϕ(ξ2)(ξ1 − ξ2) +

l

2
∥ξ1 − ξ2∥2

)
.

Again by Cauchy-Schwarz inequality we obtain

ϕ(ξ∗) ≤ min
r≥0

(
ϕ(ξ2)− r∥∇ϕ(ξ2)∥+

l

2
r2
)

= ϕ(ξ2)−
1

2l
∥∇ϕ(ξ2)∥2.

Substituting ϕ(ξ2) = F (ξ2)−∇F (ξ2)ξ0 and ∇ϕ(ξ2) = ∇F (ξ2)−∇F (ξ0) into the above inequality
yields

F (ξ1) +∇F (ξ1)(ξ2 − ξ1) +
1

2l
∥∇F (ξ1)−∇F (ξ2)∥2 ≤ F (ξ2).

Adding two copies of the above inequality and exchanging ξ1, ξ2 lead to (3.42).
Finally assume that (3.42) holds. Applying Cauchy-Schwarz inequality yields ∥∇F (ξ1)−∇F (ξ2)∥ ≤

l∥ξ1 − ξ2∥, namely F is l-smooth. □
When F is both m-strongly convex and l-smooth (thus necessarily m ≤ l), the following result

holds (which was used in the proof of Lemma 3.2, in part to show the convergence of SOA in
Section 3.3).

Lemma 3.10 If F is m-strongly convex and l-smooth, then

(∀ξ1, ξ2 ∈ R)(∇F (ξ1)−∇F (ξ2))(ξ1 − ξ2) ≤
ml

m+ l
∥ξ1 − ξ2∥2 +

1

m+ l
∥∇F (ξ1)−∇F (ξ2)∥2

(3.43)

Proof. Suppose that F is m-strongly convex and l-smooth. Let ϕ(x) := F (x)− 1
2m∥x∥2. Then
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∇ϕ(x) = ∇F (x) − mx and it is verified that ϕ(x) is convex. Moreover, for arbitrary ξ1, ξ2 ∈ R,
since

ϕ(ξ2) = F (ξ2)−
1

2
m∥ξ2∥2

(3.41)

≤ F (ξ1) +∇F (ξ1)(ξ2 − ξ1) +
l

2
∥ξ1 − ξ2∥2 −

1

2
m∥ξ2∥2

= ϕ(ξ1) +∇ϕ(ξ1)(ξ2 − ξ1) +
l −m

2
∥ξ1 − ξ2∥2

it follows again from (3.41) that ϕ(x) is (l −m)-smooth. Note that m ≤ l holds always. If m = l

then (3.43) holds. If m < l, then by (3.42) we derive

(∇ϕ(ξ1)−∇ϕ(ξ2))(ξ1 − ξ2) ≥
1

l −m
∥∇ϕ(ξ1)−∇ϕ(ξ2)∥2.

Substituting ∇ϕ(·) into the above inequality yields (3.43). □



Part III
Spanning Tree Digraphs:

Consensus and Synchronization

This part introduces distributed consensus and distributed synchronization over digraphs. The
necessary graphical condition for solving these two problems is that digraphs contain a spanning
tree. The type of Laplacian matrices involved in these two problems is again the standard Laplacian
matrices. For agent dynamics, continuous-time linear time-invariant systems are considered.
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Chapter 4

Consensus

In this chapter we introduce the problem of distributed consensus. This problem can be viewed as
a generalized version of averaging in Chapter 2, in that as long as the networked agents reach an
agreement, the agreed value can be arbitrary and need not be the initial average.

Consensus has been studied in a variety of disciplines, including social behaviors, political sci-
ence, biology, computer animation, and robotics. For example, reaching consensus among a group
of people is one of the central investigation in social/political opinion dynamics. In natural/ani-
mated group behaviors such as bird flocking and fish schooling, consensus on heading angles and
velocities among group members is key. As a final example, rendezvous of a team of mobile robots
means that these robots reach consensus on their meeting locations.

Modeling the interacting agents by digraphs, we show that a necessary graphical condition to
achieve consensus is that the digraph contains a spanning tree, namely there exists (at least) one
agent that can reach all the other agents. This is intuitively evident, as for all agents to reach
consensus, at least some agent’s information need to be spread across the whole network. Under
this graphical condition, we present a distributed algorithm that achieves consensus.

4.1 Problem Statement
Consider a network of n (> 1) agents. Each agent i (∈ [1, n]) has a state variable xi(t) ∈ R, where
t ≥ 0 is a nonnegative real number and denotes the continuous time. Each agent i is modeled as a
single integrator:

ẋi(t) :=
dxi(t)

dt
= ui(t) (4.1)

where ui(t) ∈ R is a real-valued control input. For simplicity we often write (4.1) as ẋi = ui

(omitting the time).
For agents modeled by (4.1), we say that an algorithm is distributed if every agent i’s control

input ui(t) is based only on the information received from its neighbors in Ni.

Consensus Problem:

109
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Consider a network of n agents (4.1) interconnected through a digraph G. Design a distributed
algorithm such that

(∀i ∈ [1, n])(∀xi(0) ∈ R)(∃c ∈ R) lim
t→∞

xi(t) = c.

We say that c is the consensus value. As we shall see, this c depends on the initial states xi(0) as
well as the graph topology.

1

2 3

4

5

Figure 4.1: Illustrating example of consensus problem with five agents

Example 4.1 We provide an example to illustrate the consensus problem. As displayed in
Fig. 4.1, five agents are interconnected through a digraph. The neighbor sets of the agents
are N1 = {2}, N2 = {1}, N3 = {1, 2, 5}, N4 = {1, 3, 5}, and N5 = {2, 4}.
Suppose that the initial states of the agents are x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4,
x5(0) = 5. The consensus problem is to design a distributed algorithm such that each agent’s
state asymptotically converges to the same value. This consensus value by no means needs to
be the initial average (which is 3); hence consensus problem includes averaging as a special
case.

A necessary graphical condition for solving the consensus problem is given below.

Proposition 4.1 Suppose that there exists a distributed algorithm that solves the consensus
problem. Then the digraph contains a spanning tree.

Proof. The proof is by contradiction. Suppose that the digraph G does not contain a spanning
tree. Then it follows from Theorem 1.1 that G has at least two (distinct) closed strong components
(say) G1,G2. In this case, consider an initial condition such that the agents in G1 have initial state
c1 ∈ R, those in G2 have c2 ∈ R, and c1 ̸= c2. Since G1 and G2 are closed, information cannot be
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communicated from one to the other. Consequently, there exists no distributed algorithm that can
solve the consensus problem. □

Owing to Proposition 4.1, we shall henceforth assume that the digraph contains a spanning tree.

Assumption 4.1 The digraph G modeling the interconnection structure of the networked agents
contains a spanning tree.

4.2 Distributed Algorithm

Example 4.2 Consider again Example 4.1. To achieve consensus, a natural idea is that
each agent ‘pursuits’ the state values received from neighbors. Namely, for i ∈ [1, 5]

ẋi =
∑
j∈Ni

(xj − xi).

Concretely, based on the neighbor sets of the agents (see Fig. 4.1):

ẋ1 = (x2 − x1)

ẋ2 = (x1 − x2)

ẋ3 = (x1 − x3) + (x2 − x3) + (x5 − x3)

ẋ4 = (x1 − x4) + (x3 − x4) + (x5 − x4)

ẋ5 = (x2 − x5) + (x4 − x5).

Write the above in vector form:
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

 =


−1 1 0 0 0

1 −1 0 0 0

1 1 −3 0 1

1 0 1 −3 1

0 1 0 1 −2




x1

x2

x3

x4

x5

 .

Observe that the matrix above has zero row sums, and is indeed the minus of the standard
Laplacian matrix (i.e. −L) with weights aij = 1 for all existing edges (vj , vi).
With the initial condition in Example 4.1 (i.e. xi(0) = i for i = 1, . . . , 5), Fig. 5.3 displays
that all states converge to the same value, namely consensus. Note that the consensus value
1.5 is different from the initial average 3.
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Figure 4.2: Success of achieving consensus

Given the effectiveness of ‘pursuing neighbors’ states’, we describe the following distributed
algorithm that updates the state xi(t) such that the agents achieve consensus.

Consensus Algorithm (CA):
Every agent i has a state variable xi(t) whose initial value is an arbitrary real number. At time

t ≥ 0, every agent i updates its state xi(t) as follows:

ẋi =
∑
j∈Ni

aij(xj − xi). (4.2)

Here the updating weights aij > 0 are the weights of the edges (j, i) (i.e. the entries of the adjacency
matrix). For this update, agent i needs to receive the state xj(t) or relative state xj(t)−xi(t) from
each neighbor j ∈ Ni.

In words, (4.2) updates each state xi(t) towards the direction of pursuing a weighted average
of the relative state differences with the neighbors. Regarding the updating weights aij , there are
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different choices. A simple valid choice is aij = 1 whenever j ∈ Ni (as in Example 4.2). Let
x := [x1 · · ·xn]

⊤ ∈ Rn be the aggregated state of the networked agents. Then the n equations (4.2)
become

ẋ = −Lx. (4.3)

4.3 Convergence Result

The following is the main result of this section.

Theorem 4.1 Suppose that Assumption 4.1 holds. Then CA solves the consensus problem.

To prove Theorem 4.1, we will analyze the locations of eigenvalues of the matrix −L in (4.3).
For this, the following tool is convenient.

Theorem 4.2 (Gershgorin Discs Theorem) Consider an arbitrary real square matrix
M = (mij) ∈ Rn×n, and for every i ∈ [1, n] let

Di :=
{
z ∈ C

∣∣∣ |z −mii| ≤
∑
j ̸=i

|mij |
}

(4.4)

be the disc centered at the diagonal entry mii with radius equal to the sum of absolute values
of ith row’s off-diagonal entries. Then the spectrum σ(M), i.e. the set of n eigenvalues of
M , satisfies

σ(M) ⊆
∪
i

Di.

Theorem 4.2 provides an easy estimation of the locations of eigenvalues; namely every eigenvalue
lies in the union of the Gershgorin discs in (4.4). This estimation is particularly useful for the
spectrum of standard Laplacian matrices owing to the way they are defined (i.e. degree matrix
minus adjacency matrix).

In addition to the Gershgorin Discs Theorem, we also need the following facts on solution and
stability of linear ordinary differential equations. Let A ∈ Rn×n. Then the matrix exponential eA

is as follows:

eA := I +A+
1

2!
A2 +

1

3!
A3 + · · · =

∞∑
k=0

1

k!
Ak.
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Lemma 4.1 Consider an ordinary differential equation ẋ = Ax with an initial condition
x(0) ∈ Rn and A ∈ Rn×n.

• The solution to ẋ = Ax is x(t) = eAtx(0).

• If all the eigenvalues of A have negative real parts, then limt→∞ eAt = 0.

Proof. First, it is a basic fact from the theory of differential equations that ẋ = Ax with an initial
condition x(0) has a unique solution. Thus we only need to verify that x(t) = eAtx(0) satisfies
ẋ = Ax with x(0). Substituting x(t) = eAtx(0) into ẋ = Ax yields:

ẋ =
d

dt
eAtx(0)

=
d

dt
(I +At+

1

2!
(At)2 +

1

3!
(At)3 + · · · )x(0)

= (A+A2t+
1

2!
A3t2 + · · · )x(0)

= A(I +At+
1

2!
(At)2 + · · · )x(0)

= AeAtx(0)

= Ax.

This verifies that x(t) = eAtx(0) is the unique solution of ẋ = Ax with the initial condition x(0).

Second, let J be the Jordan canonical form of the matrix A, i.e.

A = V JV −1

=
[
y1 · · · yn

]
J1 · · · 0
... . . . ...
0 · · · Jl



z⊤1
...
z⊤n


where yi, zi (i ∈ [1, n]) are respectively the (generalized) right and left eigenvectors of A, and Ji

(i ∈ [1, l]) are the Jordan blocks of the l distinct eigenvalues λ1, . . . , λl of A. These Jordan blocks
Ji have the following special form:

Ji =


λi ∗ · · · 0
... . . . . . . ...

0 0
. . . ∗

0 0 · · · λi
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where ∗ ∈ {0, 1}. Owing to the above special form, Ji may be written as

Ji = λiI +Ni

where Ni is a nilpotent matrix whose eigenvalues are all zero. As a result, there exists a positive
integer ki such that Nki

i = 0. Now let us consider x(t):

x(t) = eAtx(0)

= eV JV −1tx(0)

= (I + V JV −1t+
1

2!
(V JV −1t)2 +

1

3!
(V JV −1t)3 + · · · )x(0)

= (V V −1 + V JV −1t+
1

2!
V J2V −1t2 +

1

3!
V J3V −1t3 + · · · )x(0)

= V (I + Jt+
1

2!
J2t2 +

1

3!
J3t3 + · · · )V −1x(0)

= V eJtV −1x(0).

Hence the asymptotic behavior of x(t) depends on that of eJt. According to the special structure
of the Jordan canonical form J and the component Jordan blocks Ji, we derive

eJt =


eJ1t · · · 0

... . . . ...
0 · · · eJlt



=


e(λ1I+N1)t · · · 0

... . . . ...
0 · · · e(λlI+Nl)t



=


eλ1teN1t · · · 0

... . . . ...
0 · · · eλlteNlt



=


eλ1t(I +N1t+

1
2!N

2
1 t

2 + · · · ) · · · 0
... . . . ...
0 · · · eλlt(I +Nlt+

1
2!N

2
l t

2 + · · · )



=


eλ1t(I +N1t+

1
2!N

2
1 t

2 + · · ·+ 1
k1!

Nk1
1 tk1) · · · 0

... . . . ...
0 · · · eλlt(I +Nlt+

1
2!N

2
l t

2 + · · ·+ 1
kl!

Nkl

k tkl)

 .
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Since all the eigenvalues λ1, . . . , λl have negative real parts, we have

(∀i ∈ [1, l])eλit → 0

exponentially fast as t → ∞. Hence

(∀i ∈ [1, l])eλit(I +Nit+
1

2!
N2

i t
2 + · · ·+ 1

ki!
Nki

i tki) → 0

exponentially fast as t → ∞. This means that

lim
t→∞

eJt = 0.

Therefore

lim
t→∞

x(t) = lim
t→∞

eAtx(0) = lim
t→∞

V eJtV −1x(0) = 0.

□

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1: Suppose that Assumption 4.1 holds. Since L in (4.3) is a standard
Laplacian matrix, by definition L has an eigenvalue 0 with an associated eigenvector 1 (the vector
of all ones). Moreover, it follows from Theorem 1.7 and Assumption 4.1 that the eigenvalue 0 is
simple. For later use let w be a left eigenvector of L associated with the eigenvalue 0 (i.e. w⊤L = 0),
which is normalized such that w⊤1 = 1.

Now we invoke the Gershgorin Discs Theorem (Theorem 4.2) to estimate the locations of the
rest n−1 nonzero eigenvalues of L. Since L = D−A, A ≥ 0, and D = diag(A1), by Theorem 4.2 all
the eigenvalues of L lie on the right-hand side of the complex plane including the origin. We have
shown that the eigenvalue 0 of L is simple; hence the rest n− 1 nonzero eigenvalues have positive
real parts. It follows that −L has a simple eigenvalue 0 and all the other eigenvalues have negative
real parts.

Write −L in Jordan canonical form as

−L = V JV −1 =
[
1 y2 · · · yn

] [0 0

0 J ′

]
w⊤

z⊤2
...
z⊤n


where yi, zi ∈ Cn (i ∈ [2, n]) are respectively the (generalized) right and left eigenvectors of −L;
and J ′ ∈ C(n−1)×(n−1) is a block diagonal matrix consisting of the Jordan blocks corresponding
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to those nonzero eigenvalues with negative real parts. It follows from Lemma 4.1 that the matrix
exponential e−Lt is

e−Lt = eV JV −1t = V eJtV −1

= V

[
1 0

0 eJ
′t

]
V −1

→ 1w⊤, as t → ∞.

Therefore based on the CA in (4.3):

x(t) = e−Ltx(0)

→ 1w⊤x(0), as t → ∞.

That is,

(∀i ∈ [1, n]) lim
t→∞

xi(t) = w⊤x(0)

i.e. CA solves the consensus problem. □

Remark 4.1 (Convergence Speed) Theorem 4.1 asserts that as long as the digraph contains a
spanning tree, CA described as ẋ = −Lx in (4.3) converges to the one-dimensional kernel spanned
by the vector 1 (aka. consensus vector). The speed of convergence is governed by the nonzero
eigenvalue with the largest real part (or the smallest absolute value of real part since all nonzero
eigenvalues have negative real parts) of the standard Laplacian matrix L. Denote the largest real
part by Re(λ2(L)), and refer to Re(λ2(L)) as the convergence factor of CA; that is, CA converges
exponentially with the exponent −Re(λ2(L)). The value of Re(λ2(L)) depends on the topology of
digraph G, which we will illustrate in Section 4.4 using simulation examples.

As stated in the proof of Theorem 4.1, the consensus value is w⊤x(0), where w is the normalized
left eigenvector of L associated with the eigenvalue 0 and x(0) the initial condition. Thus the
consensus value is a weighted average of the agents’ initial states. The weight distribution across
the network is determined by the digraph topology, and reflects different roles of individual nodes.
The following proposition provides a precise relation between the weight vector w and the graph
topology.

Proposition 4.2 Suppose that Assumption 4.1 holds, and let w be the normalized left eigen-
vector of L associated with the eigenvalue 0 satisfying w⊤1 = 1. Then the following state-
ments hold.
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(i) w ≥ 0, and wi > 0 if and only if node i is a root (i.e. only roots are positively weighted).

(ii) If digraph G is strongly connected, then w > 0.

(iii) If digraph G is strongly connected and weight-balanced, then w = 1
n1 (namely averaging

is achieved).

Proof. We prove these statements in the order (iii), (ii), and (i). First for (iii), since G is strongly
connected and weight-balanced, every column of L also sums up to zero. Namely 1⊤L = 0, which
means that 1 is (also) a left eigenvector of L associated with eigenvalue 0. Hence the normalized
left eigenvector is w = 1

n1.
Next for (ii), we follow the proof of Lemma 1.6. Since G is strongly connected, by Theorem 1.3

the nonnegative adjacency matrix A of G is irreducible and the degree matrix D is invertible. As
a result, the Laplacian matrix L = D − A can be written as L = D(I −D−1A). Let Ã := D−1A

and L̃ := D−1L = I − Ã. Then Ã is row-stochastic and has zero entries at the same locations as A

does; the latter means that Ã is irreducible too. By the Perron-Frobenius Theorem for Stochastic
Matrices (Theorem 1.6), the spectral radius ρ(Ã) = 1 is a simple eigenvalue of Ã and has a positive
left eigenvector w, i.e. w⊤Ã = w⊤ and w > 0. Normalize w if necessary to satisfy w⊤1 = 1, which
does not change its positivity. Since

w⊤L = w⊤D(I − Ã)

= Dw⊤ −Dw⊤Ã

= 0

we conclude that w > 0 is a left eigenvector of L associated with eigenvalue 0.
Finally for (i), we follow the proof of Theorem 1.7. Since G contains a spanning tree, by

Theorem 1.1 the set of roots Vr induces a subdigraph Gr which is the unique closed strong component
of G. Consider without loss of generality the case that the nodes are ordered according to the
partition Vr ∪ (V \ Vr). Then the nonnegative adjacency matrix A and degree matrix D have the
following forms:

A =

[
A1 0

A2 A3

]
, D =

[
D1 0

0 D3

]
.

Define an invertible D̃ such that D̃ := D if Vr contains more than one node, and

D̃ :=

[
1 0

0 D3

]
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if Vr contains exactly one node. Thus D̃ is invertible. Use D̃−1 to define

Ã := D̃−1A =

[
Ã1 0

Ã2 Ã3

]
, L̃ := D̃−1L = I − Ã.

Then Ã is row-stochastic. Consider an artificial discrete-time system x̃(k+1) = Ãx̃(k), and partition
the vector x̃(k) according to the sizes of Ã1 and Ã3, respectively. Thus we derive

x̃1(k + 1) = Ã1x̃1(k) (4.5)

x̃2(k + 1) = Ã2x̃1(k) + Ã3x̃2(k). (4.6)

For (4.5), since Ã1 corresponds to Gr which is strongly connected, similar to (ii) above Ã1 has a
simple eigenvalue 1 with a positive normalized left eigenvector w1 > 0 and limk→∞ Ãk

1 = 1w⊤
1 . For

(4.6), since ρ(Ã3) < 1 (as in the proof of Theorem 1.7), taking the limit as k → ∞ yields

lim
k→∞

x̃2(k) = (I − Ã3)
−1Ã2 lim

k→∞
x̃1(k)

= (I − Ã3)
−1Ã21w

⊤
1 x̃1(0).

Note that (I− Ã3)
−1Ã21 = 1 because Ã21+ Ã31 = 1 implied by the row-stochasticity of Ã. Hence

lim
k→∞

x̃(k) = lim
k→∞

[
x̃1(k)

x̃2(k)

]
=

[
1w⊤

1 x̃1(0)

1w⊤
1 x̃1(0)

]
.

On the other hand

lim
k→∞

x̃(k) = lim
k→∞

Ãkx̃(0) = lim
k→∞

[
Ãk

1 0

X Ãk
3

][
x̃1(0)

x̃2(0)

]
=

[
1w⊤

1 0

X 0

][
x̃1(0)

x̃2(0)

]
.

From the above we have X = 1w⊤
1 and

lim
k→∞

Ãk =

[
1w⊤

1 0

1w⊤
1 0

]
= 1

[
w⊤

1

0

]
=: 1w⊤.

Note that w ≥ 0 is a nonnegative normalized left eigenvector of Ã associated with eigenvalue 1, and
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wi > 0 if and only if node i is a root. Since

w⊤L = w⊤D̃(I − Ã)

= D̃w⊤ − D̃w⊤Ã

= 0

we conclude that w ≥ 0 is a left eigenvector of L associated with eigenvalue 0. □

4.4 Simulation Examples
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Figure 4.3: Six digraph topologies of 6 agents

Example 4.3 We consider 6 agents interconnected through digraphs of six different topolo-
gies (Fig. 4.3). Every digraph contains a spanning tree; hence by Theorem 4.1, CA achieves
consensus on all the six digraphs. For simplicity consider uniform, unit weight for all edges.
Then the standard Laplacian matrices, (normalized) left eigenvectors of eigenvalue 0, and
convergence factors are as follows.
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Digraph in Fig. 4.3(a): one root (agent 1)

L1 =



0 0 0 0 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


, w1 =



1

0

0

0

0

0


, Re(λ2(L1)) = 1.

Digraph in Fig. 4.3(b): two roots (agents 1, 2)

L2 =



1 −1 0 0 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


, w2 =



1
2
1
2

0

0

0

0


, Re(λ2(L2)) = 2.

Digraph in Fig. 4.3(c): three roots (agents 1, 2, 3)

L3 =



1 0 −1 0 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


, w3 =



1
3
1
3
1
3

0

0

0


, Re(λ2(L3)) = 1.5.

Digraph in Fig. 4.3(d): four roots (agents 1, 2, 3, 4)

L4 =



1 0 0 −1 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


, w4 =



1
4
1
4
1
4
1
4

0

0


, Re(λ2(L4)) = 2.
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Digraph in Fig. 4.3(e): five roots (agents 1, 2, 3, 4, 5)

L5 =



1 0 0 0 −1 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


, w5 =



1
5
1
5
1
5
1
5
1
5

0


, Re(λ2(L5)) = 1.8.

Digraph in Fig. 4.3(f): six roots (agents 1, 2, 3, 4, 5, 6)

L6 =



1 −1 0 0 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


, w6 =



1
6
1
6
1
6
1
6
1
6
1
6


, Re(λ2(L6)) = 2.

From the above it is observed:

• All the normalized eigenvectors wi (i ∈ [1, 6]) are nonnegative; only roots are positively
and uniformly weighted; in the particular case of Fig. 4.3(f), whose topology is strongly
connected and weight-balanced, average consensus is achieved. Therefore the statements
of Proposition 4.2 are demonstrated.

• Convergence factor is topology dependent; however, it is not the case that the more
roots the larger the convergence factor. In these examples, even numbers of roots tend
to yield larger convergence factor than odd number of roots.

Finally as an illustration, CA is run on the six digraphs with the same initial condition
x(0) = [1 2 3 4 5 6]⊤; the results are displayed in Fig. 4.4. Observe that the consensus value
changes as the number of roots increases: when only agent 1 is the root, the consensus value
is agent 1’s initial state 1; whereas when all the agents are roots, the consensus value is the
average of all agents’ initial states, namely 3.5. Also observe that the more roots, the more
oscillatory trajectories exist; this is intuitively due to more ‘negotiation’ taking place when
more roots participate in determining the final consensus value.
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Figure 4.4: Convergence patterns (consensus values and convergence factors) of six agents. Colors
of agents 1, . . . , 6 are sequentially blue, red, black, green, pink, and yellow.
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6
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41

Figure 4.5: Six networked agents whose interconnection digraph does not contain a spanning tree

Example 4.4 We consider again 6 agents interconnected through the digraph in Fig. 4.5.
This digraph is Fig. 4.3(c) with one edge flipped direction: (4, 5) becomes (5, 4). As a result,
this digraph no longer contains a spanning tree. Hence by Theorem 4.1, CA fails to achieve
consensus. Indeed, consider uniform, unit weight for all edges and run CA with the initial
condition x(0) = [1 2 3 4 5 6]⊤; the result is displayed in Fig. 4.6. Evidently consensus is not
achieved. More specifically, while agents 1, 2, 3 and agents 5, 6 reach consensus respectively
on different values, these two groups have no path for mutual communication. Consequently
no global consensus can be reached in general. Observe also that agent 4 is equally influenced
by the above-mentioned two groups, and therefore agent 4 converges to the average of the
two distinct consensus values of the two groups.

Example 4.5 We demonstrate the influence of graph topologies on the convergence speed of
CA. Specially, we investigate the influence in terms of different densities of edges. Consider
a digraph of n = 100 nodes; we choose uniformly at random 10%, 50%, and 90% of directed
edges from all possible n(n − 1) edges. We take only those digraphs that contain spanning
trees, and set uniform weights 1.
Fig. 4.7 displays the curves of the error

∑n
i=1 ∥xi(k)−x∗1∥2, where x∗ is the consensus value,

with respect to the above chosen three different densities of edges. Here x∗ is computed based
on x∗ = w⊤x(0), where w is the normalized left eigenvector associated with the eigenvalue 0 of
each generated digraph and x(0) the initial condition with each component chosen uniformly
at random from the closed interval [−10, 10]. In Fig. 4.7, each plotted point is the mean
value of the error over 100 random digraphs of the respective densities. It is observed that
the denser the digraph, the faster CA converges to the consensus value x∗.
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Figure 4.6: CA fails to achieve consensus for digraph in Fig. 4.5 that does not contain a spanning
tree
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Figure 4.7: Convergence speed with respect to 10% (blue ◦), 50% (red ×), and 90% (black ∗) of
directed edges
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Chapter 5

Synchronization

The problem of consensus in the preceding chapter requires all the agents to converge to the same
value, which is static in steady state. A generalized notion is the requirement that all the agents
converge to the same but dynamic values. This is the problem of synchronization.

A familiar example is a network of harmonic oscillators that synchronize their phases and angular
velocities. Another example is a group of autonomous vehicles that flock with the same velocities.
A physiology example is a network of neurons that fire with the same frequencies. Indeed the
synchronization problem typically involves higher-order dynamic models of the agents.

In this chapter we study the synchronization problem of (homogeneous) linear time-invariant
dynamic agents. We show that a necessary graphical condition to achieve synchronization is that
the digraph contains a spanning tree (the same as that to achieve consensus). Under this condition,
we present a distributed algorithm that achieves synchronization.

5.1 Problem Statement

Consider a network of n (> 1) agents. Each agent i (∈ [1, n]) is modeled by a general linear
time-invariant (LTI) dynamic system:

ẋi = Axi +Bui (5.1)

yi = Cxi +Dui

where xi ∈ Rp is the state vector, ui ∈ Rq the (control) input vector, and yi ∈ Rr the (observation)
output vector. A compact graphical notation of LTI is displayed in Fig. 5.1.

The matrices A,B,C,D in (5.1) are of the following sizes:

A ∈ Rp×p, B ∈ Rp×q, C ∈ Rr×p, D ∈ Rr×q.

These matrices are the same for all agents; thus the multi-agent system is called homogeneous.
Several assumptions are made concerning these matrices.

127
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A B

C D

xi

ui yi
xi

ui yi
or

Figure 5.1: Linear time-invariant system

Assumption 5.1 The matrices A,B,C satisfy the following conditions.

• (A,B) is stabilizable, i.e. there exists a matrix F ∈ Rq×p such that all the eigenvalues of
A+BF have negative real parts.

• (C,A) is detectable, i.e. there exists a matrix G ∈ Rp×r such that all the eigenvalues of
A+GC have negative real parts.

• All the eigenvalues of matrix A have nonpositive real parts.

The first two assumptions are standard for the feasibility of feedback control design (see Ap-
pendix). The third condition means that the uncontrolled agent dynamics does not contain expo-
nentially unstable modes. The reason why this last condition is needed is because we need to ensure
that the rate of convergence to synchronization (determined by graph Laplacian) can dominate the
possibly divergence of uncontrolled agent dynamics.

Synchronization Problem:
Consider a network of agents modeled by (5.1) interconnected through a digraph G. Suppose

that Assumption 5.1 holds. Design a distributed algorithm such that

(∀x1(0), . . . , xn(0) ∈ Rp)(∀i, j ∈ [1, n]) lim
t→∞

(xi(t)− xj(t)) = 0.

Example 5.1 We provide an example to illustrate the synchronization problem. Consider
a network of five harmonic oscillators:

ẋi1 = xi2

ẋi2 = −xi1 + ui

yi = xi1, i ∈ [1, 5].
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1

2 3

4

5

Figure 5.2: Illustrating example of synchronization problem with five agents

This corresponds to (5.1) with

A =

[
0 1

−1 0

]
, B =

[
0

1

]
, C =

[
1 0

]
, D = 0.

Here xi1, xi2 are respectively the phase angle and angular velocity of oscillator i. Since

rank([B AB]) = 2

rank(

[
C

CA

]
) = 2

the pair (A,B) is controllable and thus stabilizable, and the pair (C,A) is observable and
thus detectable.a Moreover, the eigenvalues of A are ±j whose real parts are zero. Hence
Assumption 5.1 holds.
The interconnection of the five oscillators is modeled by the digraph in Fig. 5.2. The neighbor
sets of the agents are N1 = {2}, N2 = {1}, N3 = {1, 2, 5}, N4 = {1, 3, 5}, and N5 = {2, 4}.
Given arbitrary initial conditions x1(0), . . . , x5(0) ∈ R2, the synchronization problem is to
design a distributed algorithm such that each oscillator’s phase angle (resp. angular velocity)
asymptotically converges to the same dynamic phases (resp. dynamic velocities).

aA review of these basic concepts of LTI systems is provided in Appendix.

A necessary graphical condition for solving the synchronization problem is given below.
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Proposition 5.1 Suppose that there exists a distributed algorithm that solves the synchro-
nization problem. Then the digraph contains a spanning tree.

Proof. The proof is by contradiction. Suppose that the digraph G does not contain a spanning
tree. Then it follows from Theorem 1.1 that G has at least two (distinct) closed strong components
(say) G1,G2. In this case, consider an initial condition such that the agents in G1 have initial state
c1 ∈ Rp, those in G2 have c2 ∈ Rp, and c1 ̸= c2. Since G1 and G2 are closed, information cannot be
communicated from one to the other. Consequently, there exists no distributed algorithm that can
solve the synchronization problem. □

Owing to Proposition 5.1, we shall henceforth assume that the digraph contains a spanning tree.

Assumption 5.2 The digraph G modeling the interconnection structure of the networked agents
contains a spanning tree.

5.2 Distributed Algorithm

Example 5.2 Consider again Example 5.1. To achieve synchronization, a natural idea is
to use the consensus algorithm in Chapter 4 on the output yi (i ∈ [1, 5]):

ui =
∑
j∈Ni

aij(yj(k)− yi(k)).

For simplicity consider unit weight for all edges (i.e. aij = 1). Then substitute the input ui

into (5.1) and write in vector form:
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

 =


A−BC BC 0 0 0

BC A−BC 0 0 0

BC BC A− 3BC 0 BC

BC 0 BC A− 3BC BC

0 BC 0 BC A− 2BC




x1

x2

x3

x4

x5

 .

More compactly

ẋ = (I ⊗A− L⊗BC)x

where x = [x⊤
1 · · · x⊤

5 ]
⊤ is the aggregated state, L is the standard Laplacian matrix, and ⊗

denotes Kronecker product. With a random initial condition x(0) ∈ R10, a simulation result
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of the above system is displayed in Fig. 5.3. Evidently, synchronization did not occur. Thus
the simple idea of achieving consensus on the output fails to work for synchronization.
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Figure 5.3: Failure to achieve synchronization using consensus algorithm

In the following, we describe a distributed algorithm that employs an observer that estimates
the state xi based on the output yi, as well as a generator that applies the consensus algorithm
based on stable dynamics.

Synchronization Algorithm (SA):
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Every agent i has a dynamic model in (5.1) with an arbitrary initial state xi(0) ∈ Rp. Let F,G

be matrices such that all the eigenvalues of A+BF and A+GC have negative real parts (such F,G

exist under Assumption 5.1). At each time t ≥ 0, every agent i performs the following updates:

˙̂xi = Ax̂i +Bui +G(Cx̂i +Dui − yi) (5.2)

ξ̇i = (A+BF )ξ +
∑
j∈Ni

aij(ξj − ξi)−
∑
j∈Ni

aij(x̂j − x̂i) (5.3)

ui = Fξi. (5.4)

Here the updating weights aij > 0 are the weights of the edges (j, i) (i.e. the entries of the adjacency
matrix); the initial conditions x̂i(0) ∈ Rp and ξi(0) ∈ Rp are arbitrary.

xi
ui yi

x̂i, ξi

network

x̂j, ξj

(j ∈ Ni)

Figure 5.4: Dynamic distributed controller

Remark 5.1 In words, (5.2) is a local observer that estimates the state xi based on output yi

and input ui. The observer has stable dynamics (since A + GC is stable), so that the estimate
x̂i (exponentially) converges to the true state xi. Next, (5.3) is a local generator also with stable
dynamics (since A + BF is stable). This generator executes two consensus algorithms on the
generators’ states and on the observers’ states, for which agent i needs to receive information
ξj(t), x̂j(t) or relative information ξj(t) − ξi(t), x̂j(t) − x̂i(t) from each neighbor j ∈ Ni. The
purpose of this generator is to achieve consensus on the generator states on one hand, and on the
other hand drive the difference in generator states ξj(t)− ξi(t) to the difference in estimated states
x̂j(t) − x̂i(t). Since the estimated states converge to the true states, the difference in any pair of
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Figure 5.5: Synchronization of true states

true states will diminish, and desired synchronization occurs. Finally, (5.4) computes the control
input ui. Overall, this is a dynamic distributed controller for agent i, whose inputs are yi (from
itself) and x̂j , ξj (from its neighbors) while the output is ui. A graphical illustration of this dynamic
distributed controller is provided in Fig. 5.4.

Remark 5.2 If C = I, i.e. yi = xi, then the observer in (5.2) is not needed. Namely in this
special case, SA becomes

ξ̇i = (A+BF )ξ +
∑
j∈Ni

aij(ξj − ξi)−
∑
j∈Ni

aij(xj − xi)

ui = Fξi.
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Let

x :=


x1

...
xn

 ∈ Rnp, x̂ :=


x̂1

...
x̂n

 ∈ Rnp, ξ :=


ξ1
...
ξn

 ∈ Rnp

be the aggregated true state, estimated state, and generator state of the networked agents. Then
the equations (5.1), (5.2), and (5.3) become

ẋ = (In ⊗A)x+ (In ⊗BF )ξ

˙̂x = (In ⊗ (A+GC))x̂+ (In ⊗BF )ξ − (In ⊗GC)x (5.5)

ξ̇ = (In ⊗ (A+BF )− L⊗ Ip)ξ + (L⊗ Ip)x̂.

Note that the Laplacian matrix L appears only in the last equation of the generator dynamics.

Example 5.3 Let us revisit Example 5.2. First, we assign desired eigenvalues for A+BF

and A + GC. Say for both matrices, let the desired eigenvalues be −1,−2. Then by pole
assignment (see Appendix), we obtain

F =
[
−1 −3

]
, G =

[
−3

−1

]
.

Substituting A,B,C, F,G,L into (5.5) and performing simulation with a set of random initial
conditions x(0), x̂(0), ξ(0), we obtain the synchronized states of the oscillators as displayed
in Fig. 5.5. Observe that both phase angles and angular velocities of the five oscillators
converge to the same dynamic values. The estimated states also synchronize (Fig. 5.6), as
they converge to the true states that are synchronized. Finally, the generator states converge
to 0 (Fig. 5.7), for these generators are so designed that the difference in pairwise generator
states converge to the difference in pairwise estimated states (the latter converges to 0).

5.3 Convergence Result

The following is the main result of this section.

Theorem 5.1 Suppose that Assumptions 5.1 and 5.2 hold. Then SA solves the synchro-
nization problem.
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Figure 5.6: Synchronization of estimated states

To proceed, let us first consider the third equation in (5.5):

ξ̇ = (In ⊗ (A+BF )− L⊗ Ip)ξ + (L⊗ Ip)x̂

= (In ⊗ (A+BF ))ξ + (L⊗ Ip)(x̂− ξ).

Since the eigenvalues of A+BF have negative real parts, the convergence of ξ(t) depends on that
of (x̂(t)− ξ(t)). Let

ϵ := x̂− ξ.

Then ϵ̇ = ˙̂x − ξ̇. Substituting ˙̂x, ξ̇ by the second and third equations in (5.5) and arranging the
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Figure 5.7: Convergence of generator states

terms yield

ϵ̇ = (In ⊗A− L⊗ Ip)ϵ− (In ⊗GC)(x− x̂).

Ignoring for now the second term (i.e. the state estimation error which exponentially vanishes):

ϵ̇ = (In ⊗A− L⊗ Ip)ϵ; (5.6)

thus corresponding to each ϵi (i ∈ [1, n]) is a consensus-like algorithm:

ϵ̇i = Aϵi +
∑
j∈Ni

aij(ϵj − ϵi). (5.7)

The following lemma states that for every i ∈ [1, n], ϵi(t) converges to ϵ0(t) which is a solution of
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ϵ̇0 = Aϵ0. This means that ϵ1(t), . . . , ϵn(t) synchronize as t → ∞.

Lemma 5.1 Consider (5.7) and suppose that Assumptions 5.1 and 5.2 hold. Then

(∀i ∈ [1, n])(∀ϵi(0) ∈ Rp)(∃c ∈ Rp) lim
t→∞

∥ϵi(t)− ceAt∥ = 0. (5.8)

To prove Lemma 5.1, we need the following property of matrix exponential:

(∀A ∈ Rn×n)AeA = eAA. (5.9)

That is, a matrix and its exponential commute. To see this, employ the definition of matrix
exponential to derive

AeA = A(I +A+
1

2!
A2 +

1

3!
A3 + · · · )

= (I +A+
1

2!
A2 +

1

3!
A3 + · · · )A

= eAA.

Proof of Lemma 5.1. Let i ∈ [1, n] and δi := e−Atϵi. Then

δ̇i = −Ae−Atϵi + e−Atϵ̇i

(5.6)
= −Ae−Atϵi + e−At(Aϵi +

∑
j∈Ni

aij(ϵj − ϵi))

(5.9)
= e−At

∑
j∈Ni

aij(δj − δi)

=
∑
j∈Ni

aij(δj − δi).

Let δ := [δ⊤1 · · · δ⊤n ]⊤. Hence in compact form we have

δ̇ = −(L⊗ Ip)δ.

This is the consensus algorithm (CA) in p dimensions. Since Assumption 5.2 holds, it follows from
Theorem 4.1 that

(∀i ∈ [1, n])(∀δi(0) ∈ Rp)(∃c ∈ Rp) lim
t→∞

δi(t) = c.

In fact the above convergence is of exponential rate. Namely there exist constants c1, c2 ∈ R such
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that

∥δi(t)− c∥ ≤ c1e
−c2t∥δi(0)− c∥.

The constant c2 = Re(λ2(L)), the convergence factor of CA (see Remark 4.1). It then follows that

∥ϵi(t)− ceAt∥ = ∥eAtδi(t)− ceAt∥

≤ ∥eAt∥∥δi(t)− c∥

≤ ∥eAt∥c1e−c2t∥δi(0)− c∥

= c1e
−c2t∥eAt∥∥ϵi(0)− c∥. (5.10)

Since Assumption 5.1 holds (in particular the eigenvalues of A have nonpositive real parts), there
exist a constant c3 ∈ R such that

∥ϵi(t)− ceAt∥ ≤ c1e
−c3t∥ϵi(0)− c∥.

This implies that limt→∞ ∥ϵi(t)− ceAt∥ = 0. Therefore (5.8) holds and the proof is complete. □

Remark 5.3 In the proof above, Assumption 5.1 on nonpositive real parts of A’s eigenvalues
is used to ensure exponential convergence of (5.10). It is worth pointing out that even when
A has eigenvalues with positive real parts (so ∥eAt∥ exponentially diverges), if c2 = Re(λ2(L))

(the convergence factor of CA) can dominate the divergence rate of ∥eAt∥, then the exponential
convergence of (5.10) can still be achieved. An illustration of this point is provided in Section 5.4
below via simulation.

Remark 5.4 An essential implication of Lemma 5.1 is that the spectrum (i.e. set of eigenvalues)
of (In⊗A−L⊗ Ip) in (5.6) consists of A’s eigenvalues and the stable ones with negative real parts.
To see this, consider the Jordan canonical form of the standard Laplacian matrix L:

V −1LV =

[
0 0

0 J

]
.

Here V is a nonsingular matrix whose columns are (generalized) eigenvectors of L, and J ∈
C(n−1)×(n−1) consists of Jordan blocks corresponding to the n − 1 nonzero eigenvalues of L with
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positive real parts (under Assumption 5.2). Then

V −1(In ⊗A− L⊗ Ip)V = (V −1In)⊗ (AV )− (V −1L)⊗ (IpV )⊗ Ip

= In ⊗A− (V −1LV )⊗ Ip

=

[
A 0

0 J ′

]
.

Hence the spectrum of (In⊗A−L⊗ Ip) in (5.6) is the union of the spectrum of A and the spectrum
of J ′. Since Lemma 5.1 implies that ϵ(t) → eAt1, the eigenvalues of J ′ must all be stable.

With Lemma 5.1 we are ready to prove Theorem 5.1.
Proof of Theorem 5.1: Suppose that Assumptions 5.1 and 5.2 hold. Define the state estimation
error e := x− x̂. Then from the first and second equations in (5.5) we obtain

ė = ˙̂x− ẋ

= (In ⊗ (A+GC))e. (5.11)

Since G is such that the eigenvalues of A+GC have negative real parts, e(t) → 0 as t → ∞.
Next define ϵ := x̂− ξ and derive from the second and third equations in (5.5) as well as (5.11)

the following:

ϵ̇ = ˙̂x− ξ̇

= (In ⊗A− L⊗ Ip)ϵ− (In ⊗GC)e. (5.12)

Since Assumptions 5.1 and 5.2 hold, by Lemma 5.1 we know that if e was constantly zero (i.e. the
second term in (5.12) constantly zero), then for every i ∈ [1, n], ϵi(t) converges to ϵ0(t) which is a
solution of ϵ̇0 = Aϵ0. Now from (5.11) and (5.12) we have[

ė

ϵ̇

]
=

[
In ⊗ (A+GC) 0

−In ⊗GC In ⊗A− L⊗ Ip

][
e

ϵ

]

=: M

[
e

ϵ

]
.

The spectrum of the above matrix M is the union of the spectrum of A+GC and the spectrum of
In ⊗A−L⊗ Ip. For A+GC, all of its eigenvalues are stable. For In ⊗A−L⊗ Ip, it follows from
Lemma 5.1 and Remark 5.4 that its spectrum includes the eigenvalues of A and stable ones. Hence
overall, the spectrum of M consists of the eigenvalues of A and stable ones. Since limt→∞ e(t) = 0

and A’s eigenvalues all having nonpositive real parts (Assumption 5.1), there exists c ∈ Rp such
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that ϵi(t) → ceAt as t → ∞ for all i ∈ [1, n]. That is, ϵ1(t), . . . , ϵn(t) synchronize as t → ∞.
With the above convergence result of ϵ(t), we analyze the generator state ξ(t) based on the third

equation in (5.5):

ξ̇ = (In ⊗ (A+BF )− L⊗ Ip)ξ + (L⊗ Ip)x̂

= (In ⊗ (A+BF ))ξ + (L⊗ Ip)ϵ.

Since ϵ1(t), . . . , ϵn(t) synchronize as t → ∞, we have

(L⊗ Ip)ϵ(t) → 0 as t → ∞.

In addition, since F is such that the eigenvalues of A+BF have negative real parts, we derive that

ξ(t) → 0 as t → ∞.

Finally, since

x = x̂+ e

= ϵ+ ξ + e

and ϵi(t) → ceAt, ξ(t) → 0, e(t) → 0 as t → ∞, we conclude that x1(t), . . . , xn(t) synchronize as
t → ∞. Namely for every i ∈ [1, n] and every xi(0) ∈ Rp, xi(t) converges to x0(t) which is a solution
of ẋ0 = Ax0. □

5.4 Simulation Examples

1

2 3

4

5
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Example 5.4 Consider again the network in Fig. 5.2 (redisplayed here for convenience)
and five double integrators:

ẋi1 = xi2

ẋi2 = ui

yi = xi1 + xi2, i ∈ [1, 5].

This corresponds to (5.1) with

A =

[
0 1

0 0

]
, B =

[
0

1

]
, C =

[
1 1

]
, D = 0.

Here xi1, xi2 are respectively the position and velocity of agent i. Since

rank([B AB]) = 2

rank(

[
C

CA

]
) = 2

the pair (A,B) is controllable and thus stabilizable, and the pair (C,A) is observable and
thus detectable. Moreover, the two eigenvalues of A are both 0. Hence Assumption 5.1 holds.
First, we assign desired eigenvalues for A+BF and A+GC. Say for both matrices, let the
desired eigenvalues be −1,−2. Then by pole assignment, we obtain

F =
[
−2 −3

]
, G =

[
−1

−2

]
.

Substituting A,B,C, F,G,L into (5.5) and performing simulation with a set of random initial
conditions x(0), x̂(0), ξ(0), we obtain the synchronized states of the agents as displayed in
Fig. 5.8. Observe that all the agents converge to the same dynamic positions, as well as
move with by the same (nonzero) velocity. The estimated states also synchronize (Fig. 5.9),
and the generator states converge to 0 (Fig. 5.10).

Example 5.5 While Assumption 5.2 allows A to have eigenvalues on the imaginary axis
(possibly repeated ones which can cause polynomially unstable dynamics), it rules out expo-
nentially unstable dynamics of individual agents (when A has eigenvalues with positive real
parts). However, synchronization may still be possible for exponentially unstable dynamics
if the network connectivity is ‘strong’ enough to counterbalance the unstable modes (refer to
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Figure 5.8: Synchronization of true states

Remark 5.3).
For an illustration, consider a network of six inverted pendula:

ẋi = Axi +Bui

yi = Cxi +Dui xi ∈ R4, ui ∈ R, yi ∈ R, i ∈ [1, 6]
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Figure 5.9: Synchronization of estimated states

where

A =


0 1 0 0

0 0 −0.098 0

0 0 0 1

0 0 0.196 0

 , B =


0

1

0

−1

 , C =
[
1 0 1 0

]
, D = 0.

Note that the four eigenvalues of A are 0, 0, 0.4427,−0.4427. The existence of the positive
eigenvalue 0.4427 is not permitted by Assumption 5.2, which causes exponential divergence.
On the other hand, it is verified that the pair (A,B) is controllable thus stabilizable, and the
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Figure 5.10: Convergence of generator states

pair (C,A) is observable thus detectable. Hence we design the following two matrices F,G

to assign the desired eigenvalues

−1,−2,−1 + j,−1− j
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for both A+BF and A+GC:

F =
[
40.8163 102.0408 51.0123 107.0408

]
, G =


107.0408

51.0123

−112.0408

−61.2083

 .

Consider the following interconnections of these six inverted pendula (starting from cyclic
digraph, and adding one edge at a time), and perform the corresponding simulation of SA
in (5.5). Observe from Figs. 5.12–5.17 that with the increasing number of edges, state
trajectories are from divergence to convergence (indeed, synchronization of each of the 4

state components among the six pendula). This illustrates a phase transition at which
exponentially unstable dynamics are counterbalanced by tight interconnection.
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Figure 5.11: Six digraph topologies of 6 inverted pendula

5.5 Notes and References

The synchronization algorithm (SA) is first reported in
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Figure 5.12: Trajectories of state components for Fig. 5.11(a)

• L. Scardovi, R. Sepulchre, Synchronization in networks of identical linear systems, Automat-
ica, vol.45, pp.2557–2562, 2009

Extensions of SA to address time-varying networks, heterogeneous and nonlinear agent dynamics
are investigated in

• P. Wieland, R. Sepulchre, F. Allgower, An internal model principle is necessary and sufficient
for linear output synchronization, Automatica, vol.47, pp.1068–1074, 2011

• W. Liu, J. Huang, Adaptive leader-following consensus for a class of higher-order nonlinear
multi-agent systems with directed switching networks. Automatica, vol.79, pp.84–92, 2017

• S. Kawamura, K. Cai, M. Kishida, Distributed output regulation of heterogeneous uncertain
linear agents, Automatica, vol.119, 109094, 2020

Pole Assignment Theorem (Lemma 5.2 in Appendix) is from
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Figure 5.13: Trajectories of state components for Fig. 5.11(b)

• W.M. Wonham, On pole assignment in multi-input controllable linear systems, IEEE Trans-
actions on Automatic Control, vol.12, pp.660–665, 1967



148 Chapter 5. Synchronization

0 500 1000 1500 2000

Time t

-40

-20

0

20

40

S
ta
te

x
i1
(t
),

i
=

1
,
2
,
3,
4
,
5,
6

0 500 1000 1500 2000

Time t

-60

-40

-20

0

20

40

S
ta
te

x
i2
(t
),

i
=

1
,
2
,
3,
4
,
5,
6

0 500 1000 1500 2000

Time t

-40

-20

0

20

40

S
ta
te

x
i3
(t
),

i
=

1
,
2,
3,
4
,
5
,
6

0 500 1000 1500 2000

Time t

-40

-20

0

20

40

60

S
ta
te

x
i4
(t
),

i
=

1
,
2,
3,
4
,
5
,
6

Figure 5.14: Trajectories of state components for Fig. 5.11(c)

5.6 Appendix: Linear Systems and Feedback Control

In this appendix we present fundamental concepts of linear systems and basic designs of feedback
control.

Consider a linear time-invariant (LTI) dynamic system:

ẋ = Ax+Bu (5.13)

y = Cx+Du

where x ∈ Rp is the state vector, u ∈ Rq the control input vector, and y ∈ Rr the observation
output vector. The matrices A,B,C,D are of appropriate sizes.

We say that the pair (A,B) is
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Figure 5.15: Trajectories of state components for Fig. 5.11(d)

• controllable if

rank([B AB · · · Ap−1B]) = p;

• stabilizable if there exists a control input u = Fx such that

all the eigenvalues of A+BF have negative real parts.

The control u = Fx is called a state feedback control, because u is a linear function of the state
vector x. State feedback control assumes that all the state components are available (i.e. can be
measured/observed) for control, which is equivalent to assuming C = I, D = 0, and y = x (see
Fig. 5.18).
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Figure 5.16: Trajectories of state components for Fig. 5.11(e)

Substituting u = Fx into the first equation in (5.13) yields

ẋ = (A+BF )x. (5.14)

This is called the closed-loop system (under state feedback control). We say that the closed-loop
system is stable if its state x(t) → 0 as t → ∞. According to (5.14), the closed-loop system is stable
if and only if all the eigenvalues of A + BF have negative real parts, i.e. (A,B) is stabilizable.
Hence stabilizability of the pair (A,B) is a necessary and sufficient condition for the stability of the
closed-loop system under state feedback control.

It is also important to point out that if (A,B) is controllable, then (A,B) is stabilizable (the
reverse need not hold). Thus the stabilizability of (A,B) may be verified by the rank condition
of controllability. One explanation of this relation between controllability and stabilizability is the
following.
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Figure 5.17: Trajectories of state components for Fig. 5.11(f)
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Figure 5.18: State feedback control

Lemma 5.2 (Pole Assignment Theorem) Consider an LTI system in (5.13). The pair
(A,B) is controllable if and only if for an arbitrary set of complex numbers {λ1, . . . , λp}
which are symmetric with respect to the real axis, there exists F such that the eigenvalues of
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A+BF are λ1, . . . , λp.

If the entire state vector x is not available, then feedback control design has to be based on the
observation output y. We say that the pair (C,A) is

• observable if

rank




C

CA
...

CAp−1


 = p;

• detectable if there exists G such that

all the eigenvalues of A+GC have negative real parts.

It is observed that observability and detectability are dual respectively with controllability and
stabilizability:

• (C,A) is observable if and only if (A⊤, C⊤) is controllable;

• (C,A) is detectable if and only if (A⊤, C⊤) is stabilizable.

As a result, if (C,A) is observable then (C,A) is detectable, while the reverse is false in general.
If the pair (C,A) is detectable, an observer may be constructed to estimate the true state x:

˙̂x = Ax̂+Bu+G(Cx̂+Du− y) (5.15)

where x̂ is the estimated state vector. To see this, consider the error between the estimated state
x̂ and the true state x, i.e. e := x̂− x. Take the time derivative of e to obtain

ė = ˙̂x− ẋ

= (Ax̂+Bu+G(Cx̂+Du− y))− (Ax+Bu)

= (A+GC)(x̂− x)

= (A+GC)e.

Since (C,A) is detectable, there exists G such that all the eigenvalues of A+GC have negative real
parts. This means that the error e(t) → 0 as t → ∞, namely the estimated state x̂ converges to
the true state x.
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Now that an observer can be designed to estimate the true state, we may consider feeding back
the estimate as was done in state feedback control (namely pretending that the estimated state was
the true state). This leads to the following output feedback control:

˙̂x = Ax̂+Bu+G(Cx̂+Du− y) (5.16)

u = Fx̂.

A B

C D

x

u y

A B

C D

x̂

GF

Figure 5.19: Output feedback control

Under the above output feedback control, the closed-loop system is displayed in Fig. 5.19. The
overall state of the closed-loop system is [

x

x̂

]
.

Combining (5.13) and (5.16) yields the dynamics of the closed-loop system as follows:[
ẋ
˙̂x

]
=

[
A BF

−GC A+BF +GC

][
x

x̂

]
.

We say that the closed-loop system under output feedback control is stable if its state[
x(t)

x̂(t)

]
→ 0 as t → ∞.
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According to (5.14), the closed-loop system is stable if and only if all the eigenvalues of the matrix[
A BF

−GC A+BF +GC

]
=: M

have negative real parts. For this to hold, a necessary and sufficient condition is that (C,A) is
detectable and (A,B) is stabilizable. To see this, consider the following similarity transformation
of M :

T−1MT =

[
I 0

−I I

][
A BF

−GC A+BF +GC

][
I 0

I I

]

=

[
A+BF BF

0 A+GC

]
.

Hence the spectrum (set of eigenvalues) of M is the union of the spectra of A+BF and A+GC.
Therefore all the eigenvalues of M have negative real parts if and only if (A,B) is stabilizable and
(C,A) is detectable.

We close this appendix by recapitulating the following facts:

• Under state feedback control (5.14), the closed-loop system is stable if and only if (A,B) is
stabilizable.

• Under output feedback control (5.16), the closed-loop system is stable if and only if (A,B) is
stabilizable and (C,A) is detectable.



Part IV
Spanning Two-Tree Digraphs:

Similar Formation and
Localization

This part introduces distributed similar formation control and distributed localization in two-
dimensional space. The necessary graphical condition for solving these two problems is that di-
graphs contain a spanning 2-tree. The type of Laplacian matrices involved in these two problems is
the complex Laplacian matrices. For agent dynamics, linear time-invariant first-order systems are
considered, with continuous-time for similar formation control while discrete-time for localization.
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Chapter 6

Similar Formation in
Two-Dimensional Space

In this chapter, we introduce a formation control problem of multi-agent systems in two-dimensional
(2D) space. The consensus problem studied in Chapter 4 can be viewed as to achieve a special ‘point
formation’, i.e. all the agents reach consensus on their positions in both dimensions respectively.
In this sense, the formation control problem in this chapter includes consensus and generalize it to
a set of geometric shapes in 2D.

Formation control is an interesting and fundamental topic in teams of autonomous robots, mobile
sensors, unmanned aerial vehicles, and autonomous underwater vehicles. Important applications of
formation control include source seeking and exploration, map construction, formation flying, and
ocean data retrieval. This chapter focuses on formation control in 2D, while 3D formation control
will be covered in Chapter 8.

Specifically, the problem studied in this chapter is called similar formation control: a network of
agents is required to form a geometric shape, which can be obtained from a prescribed desired shape
via planar translation, rotation, and scaling. To solve this 2D similar formation control problem,
we introduce the second type of graph Laplacian: complex Laplacian. Modeling the interacting
agents by digraphs, we show that a necessary graphical condition to achieve similar formation is
that the digraph contains a spanning 2-tree, namely there exists (at least) two agents that can reach
all the other agents through independent paths. These two root agents play the role of leaders,
which determine the translation, rotation, and scaling offsets from the prescribed shape. Under this
graphical condition, we present a distributed algorithm for the agents to achieve similar formations.

6.1 Problem Statement

Consider a network of n (> 1) agents in a plane (2D space). Each agent i (∈ [1, n]) has a state
variable xi(t) ∈ C, which is complex and denotes the position of agent i in the plane at time t. Thus
Re(xi(·)) and Im(xi(·)) are the positions of agents i on the real and imaginary axes, respectively.
The time t ≥ 0 is a (nonnegative) real number and denotes the continuous time. The motion of
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each agent is governed by the following ordinary differential equation:

ẋi = ui, i ∈ [1, n] (6.1)

where ui(t) ∈ C is the (complex) control input at time t. Thus Re(ui(·)) (resp. Im(ui(·))) is the
control input along the real axis (resp. imaginary axis).

Let digraph G = (V, E) model the interconnection structure of the n agents. Each node in
V = {1, ..., n} stands for an agent, and each directed edge (j, i) in E ⊆ V × V denotes that agent
i can measure the relative position of agent j (namely xj − xi in agent i’s coordinate frame). The
neighbor set of agent i is Ni := {j ∈ V | (j, i) ∈ E}.

Moreover, consider that digraph G is weighted: each edge (j, i) ∈ V is associated with a complex
weight aij ∈ C. Hence the adjacency matrix A = (aij), degree matrix D = diag(A1), and Laplacian
matrix L = D −A are all complex.

Define a target configuration ξ = [ξ1 · · · ξn]⊤ ∈ Cn to be the assignment of the n agents to points
in the plane, which specifies the formation shape that the agents are required to achieve. Given a
target configuration ξ, we say that another configuration ξ′ is similar to ξ if

(∃ω1, ω2 ∈ C)ξ′ = ω11+ ω2ξ.

Write ω2 = ρeθ, ρ ≥ 0 and θ ∈ [0, 2π). Then the above means that ξ′ is obtained from ξ via
(two-dimensional) translation ω1, rotation θ, and scaling ρ.

For example, Fig. 6.1 displays a target configuration

ξ = [1 e
π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]⊤

which is a regular hexagon. Also displayed is another configuration ξ′ similar to ξ, as it can
be obtained from ξ via translation ω1, rotation θ, and scaling ρ.

For a given target configuration ξ, let

S(ξ) := {ξ′ ∈ Cn | (∃ω1, ω2 ∈ C)ξ′ = ω11+ ω2ξ} (6.2)

be the family of all configurations similar to ξ. Thus S(ξ) is the (complex) span of the two vectors
1 and ξ. If ξ = c1 for some c ∈ C, then S(ξ) is degenerated and we are back to consensus in the
plane. To consider more general planar formations, we henceforth assume in this chapter that ξ is
linearly independent from 1. Towards the end of this section, we will see that another condition
(called ‘generic’) needs to be imposed on ξ. We say that the n agents with the aggregated state
vector x = [x1 · · ·xn]

⊤ ∈ Cn form a similar formation with respect to ξ if x ∈ S(ξ).
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Figure 6.1: Illustration of target configuration and similar configuration

To achieve a similar formation, consider the distributed control

ui =
∑
j∈Ni

wij(xj − xi) (6.3)

where the control gain wij ∈ C satisfies

(i)
∑
j∈Ni

wij(ξj − ξi) = 0 (6.4)

(ii) wij = ϵiaij , ϵi ∈ C \ {0}. (6.5)

This control (6.3) is in the same form as that for consensus, but the gains wij are not simply the
edge weights aij . Indeed, wij is a complex (nonzero) multiple of aij (6.5), and moreover satisfies a
linear constraint with respect to the target configuration ξ (6.4).

Substituting (6.5) into (6.4) and removing the common multiple ϵi yield∑
j∈Ni

aij(ξj − ξi) = 0. (6.6)

This in matrix form is Lξ = 0; namely the target configuration lies in the kernel of the complex
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Laplacian matrix of the (complex-)weighted digraph. Since we also have L1 = 0, it follows that

kerL ⊇ S(ξ). (6.7)

Thus if the control in (6.3) satisfying (6.4) and (6.5) can be found, the kernel of the complex
Laplacian matrix at least contains the family of all configurations similar to the target ξ.

Similar Formation Control Problem:
Consider a network of agents modeled by (6.1) interconnected through a digraph, and let ξ ∈ Cn

be a target configuration (linearly independently from 1). Design a distributed control ui in (6.3)
such that

(i) kerL = S(ξ)

(ii) (∀x(0) ∈ Cn)(∃ξ′ ∈ S(ξ)) lim
t→∞

x(t) = ξ′.

The first requirement (i) strengthens (6.7) to equality; namely the kernel of the complex Lapla-
cian matrix is exactly the family of all configurations similar to ξ. The second requirement (ii)
means that every trajectory of the networked agents converges to a similar formation in S(ξ).

1

2 3

4

5 6

Figure 6.2: Illustrating example of six agents

Example 6.1 We provide an example to illustrate the similar formation control problem.
As displayed in Fig. 6.2, six agents are interconnected through a digraph. The neighbor sets
of the agents are N1 = N2 = ∅, N3 = {2, 5}, N4 = {1, 3}, N5 = {4, 6}, and N6 = {1, 2}.
Let the target configuration be ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]⊤, i.e. the desired formation
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shape is a regular hexagon (see Fig. 6.1). Thus the family S(ξ) contains all hexagons that
can be obtained from ξ by translation, rotation, and scaling.
The similar formation control problem is to design a distributed control ui(t) in (6.3) such
that the kernel of the complex Laplacian matrix coincides with S(ξ), and moreover the agents’
aggregated state vector asymptotically converges to a similar formation in S(ξ).

A necessary graphical condition for solving the similar formation control problem is given below.

Proposition 6.1 Suppose that there exists a distributed control ui in (6.3) that solves the
similar formation control problem. Then the digraph contains a spanning 2-tree.

Proof. Let ξ be a target configuration. Suppose that there exists a distributed control in (6.3) that
solves the similar formation control problem with respect to ξ, but that the digraph G = (V, E) does
not contain a spanning 2-tree. We will derive a contradiction that kerL ⫌ S(ξ), thereby proving
that G must contain a spanning 2-tree.

First, by definition G containing no spanning 2-tree means the following. Let R = {vi, vj} be a
set of arbitrary two nodes. Then after removing a node vk ∈ V and all its incoming and outgoing
edges, a subset Vk ⫋ V \ {vk} is unreachable from R in the new subdigraph G′. We write this as
R ̸→ Vk in G′.

Now let V̄k := V \ (Vk ∪{vk}). This set V̄k is nonempty because R ⊆ V̄k (trivially). In addition,
even after removing vk, the nodes in V̄k can still be reached from R, i.e. R → V̄k in G′; but V̄k ̸→ Vk

in G′.
Let m := |Vk| (≥ 1), and relabel

• nodes Vk from v1 to vm;

• node vk as vm+1;

• nodes in V̄k from vm+2 to vn.

Then the complex Laplacian matrix L of G′ after relabeling (denoted by L′) has the following
structure:

L′ =

[
L′
11 L′

12 0

L′
21 L′

22 L′
23

]
.

The 0 matrix in the (1, 3)-block is due to V̄k ̸→ Vk in G′.
Also reorder the components of the target configuration ξ according to the above relabeling,
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and denote the result by

ξ′ =

ξ
′
1

ξ′2

ξ′3

 .

By the assumption that there exists a distributed control in (6.3), we have Lξ = 0 and L1 = 0.
Substituting the relabeled L′ and ξ′ into the two equations yields

[
L′
11 L′

12

] [ξ′1
ξ′2

]
= 0,

[
L′
11 L′

12

] [1
1

]
= 0.

Since ξ′ and 1 are linearly independent (linear independence of ξ and 1 is assumed in the problem
statement), so are [

ξ′1

ξ′2

]
and

[
1

1

]
.

Hence the rows of [L′
11 L′

12] are linearly dependent.
Now remove from L′ the two rows corresponding to R = {vi, vj} and two arbitrary columns.

We still use indices i, j after the above relabeling, but since R ⊆ V̄k, it holds that i, j ∈ [m+ 2, n].
Then the resulting matrix L′

R ∈ C(n−2)×(n−2) is

L′
R =

[
L′
R,11 L′

R,12 0

L′
R,21 L′

R,22 L′
R,23

]
.

It follows from i, j ∈ [m+ 2, n] that [L′
R,11 L′

R,12] have m rows. Since the m rows of [L′
11 L′

12] are
linearly dependent, so are the m rows of [L′

R,11 L′
R,12]. Thus L′

R has fewer than n − 2 linearly
independent rows, and det(L′

R) = 0.
Finally since the set R of two nodes is arbitrary, the original complex Laplacian matrix L

of G′ does not have any minor with size n − 2 that has nonzero determinant. This means that
rank(L) ≤ n−3, and therefore kerL ⫌ S(ξ). This is a contradiction to the solvability of the similar
formation control problem. The proof is now complete. □

Owing to Proposition 6.1, we shall henceforth assume that the digraph contains a spanning
2-tree.

Assumption 6.1 The digraph G modeling the interconnection structure of the networked agents
contains a spanning 2-tree.

Even if Assumption 6.1 holds, not every configuration ξ (linearly independent from 1) whose
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similar configurations may be achieved by a distributed control ui in (6.3). The following is such
an example.

Example 6.2 Consider again the six-agent digraph in Fig. 6.2. This digraph G contains
a spanning 2-tree, with the 2-root subset R = {1, 2}. Now consider the following target
configuration:

ξ =



0

−3− 3j

−1− j

−0.8− 1.6j

1 + j

−6j


.

While ξ is linearly independent from 1, for every complex Laplacian matrix L of G with
Lξ = 0, it is verified that rank(L) ≤ 3. To see this, write Lξ explicitly as

0 0 0 0 0 0

0 0 0 0 0 0

0 l32 l33 0 l35 0

l41 0 l43 l44 0 0

0 0 0 l54 l55 l56

l61 l62 0 0 0 l66





ξ1

ξ2

ξ3

ξ4

ξ5

ξ6


.

For the third row (other rows are similar), it follows from L1 = 0 and Lξ = 0 that

l32 + l33 + l35 = 0

l32ξ2 + l33ξ3 + l35ξ5 = 0.

To satisfy these two equations, the entries l32, l33, l35 are such thatl32l33
l35

 = c3

ξ5 − ξ3

ξ2 − ξ5

ξ3 − ξ2

 = c3

 2 + 2j

−4− 4j

2 + 2j


for some nonzero complex number c3. Similarly, the (three) entries of rows 4,5,6 may be
determined up to nonzero complex multiples c4, c5, c6 (respectively). For simplicity, letting



164 Chapter 6. Similar Formation in Two-Dimensional Space

c3 = c4 = c5 = c6 = 1 we have one instance of L as follows:

L =



0 0 0 0 0 0

0 0 0 0 0 0

0 2 + 2j −4− 4j 0 2 + 2j 0

0.2− 0.6j 0 0.8 + 1.6j −1− j 0 0

0 0 0 −1− 7j −0.8 + 4.4j 1.8 + 2.6j

3− 3j 6j 0 0 0 −3− 3j


.

This L has rank 3, meaning that the last four rows are linearly dependent. Then for arbitrary
values of c3, c4, c5, c6, these four rows cannot become linearly independent. Hence rank(L) ≤ 3

for every L with Lξ = 0. This means that kerL ⫌ S(ξ), and consequently there does not
exist a distributed control in (6.3) that solves the similar formation control problem with the
chosen target configuration ξ.

The target configuration ξ in the above example satisfies a linear algebraic equation with integer
coefficients:

[
1 1 1 0 4 0

]


0

−3− 3j

−1− j

−0.8− 1.6j

1 + j

−6j


= 0.

Such a configuration ξ is called non-generic. Geometrically, in the plane there are four components
of ξ (1st, 2nd, 3rd, and 5th) on the same line.

Since Example 6.2 shows a case where similar formations of a non-generic configuration cannot
be achievable on a digraph containing a spanning 2-tree, we henceforth require that the target
configuration be generic. A configuration ξ = [ξ1 · · · ξn]⊤ ∈ Cn is said to be generic if ξi’s do not
satisfy any nontrivial algebraic equation with integer coefficients. Intuitively speaking, a generic
configuration has no degeneracy: in 2D, no three points on the same line and no three lines through
the same point. As a consequence, any generic configuration ξ is linearly independent from 1.

It is noted, however, that not all non-generic configurations whose similar configurations cannot
be achieved. In fact, if the digraph considered in Example 6.2 had one more edge (1, 3), the non-
generic configuration ξ’s similar configurations could be achievable. Indeed, following the same
procedure described in Example 6.2, with a new edge (1, 3) we derive an instance of the new
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Laplacian matrix below:

L′ =



0 0 0 0 0 0

0 0 0 0 0 0

1 2 + 2j −4− 4j 0 2 + 2j 0

0.2− 0.6j 0 0.8 + 1.6j −1− j 0 0

0 0 0 −1− 7j −0.8 + 4.4j 1.8 + 2.6j

3− 3j 6j 0 0 0 −3− 3j


.

The only change is the (3, 1)-entry from 0 to 1, owing to the added edge (1, 3). This L′ has rank 4;
therefore kerL′ = S(ξ). Thus one may consider imposing further digraph connectivity to deal with
non-generic configurations.

On the other hand, the set of all non-generic configurations has Lebesgue measure zero, because
random perturbations destroy integer-coefficient algebraic equations. This means that for a given
non-generic configuration ξ (e.g. the one in Example 6.2), randomly perturbing its components
generates a generic configuration. For this reason, we assume that the target configuration ξ is
generic.

Assumption 6.2 The target configuration ξ = [ξ1 · · · ξn]⊤ ∈ Cn is generic.

Remark 6.1 (Global versus local coordinate frames) We end this section with a discussion
on the local coordinate frames of the agents with respect to the global coordinate frame. So far the
state xi and control ui of agent i that we have discussed are in the global coordinate frame Σ. In
formation control, the agents are usually robots with onboard sensors, thus having their own local
coordinate frames that are not necessarily aligned with the global Σ and time-varying. For distributed
control, knowledge of Σ is often not available and thus should not be assumed. Let the local frame
of agent i at time t be Σi(t), whose orientation is θi(t) counterclockwise from the orientation of Σ.
Also let xi,loc(t) and ui,loc(t) be (respectively) the state and control at time t of agent i in Σi(t).
Then

xi(t) = xi,loc(t)e
−jθi(t)

ui(t) = ui,loc(t)e
−jθi(t).

Recall from (6.3) that

ui(t) =
∑
j∈Ni

wij(xj(t)− xi(t)).
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Substituting the above equation of xi(t) into the right-hand side yields

ui(t) =
∑
j∈Ni

wij(xj,loc(t)e
−jθi(t) − xi,loc(t)e

−jθi(t))

=
∑
j∈Ni

wij(xj,loc(t)− xi,loc(t))e
−jθi(t).

Now equating the right-hand sides of the above two ui(t)-equations, we derive

ui,loc(t) =
∑
j∈Ni

wij(xj,loc(t)− xi,loc(t)).

This shows that the control ui,loc(t) in the local Σi(t) is unaffected by the time-varying orientation
difference from the global Σ. Hence the control ui in (6.3), though with respect to the global frame Σ,
may be implemented in agent i’s local frame Σi(t) (as ui,loc) based on the state difference xj,loc−xi,loc

in Σi(t) as well. With this justification and for simplicity, we will write ui, xi (instead of ui,loc,
xi,loc).

6.2 Distributed Algorithm

Example 6.3 Consider again Example 6.1, where the target configuration is the regular
hexagon ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]⊤. This ξ is generic.

To achieve a similar formation of ξ, we consider using the simplest form of the distributed
control (6.3) by setting all ϵi = 1:

ẋi =
∑
j∈Ni

aij(xj(k)− xi(k)), i ∈ [1, 6] (6.8)

where aij ∈ C are complex weights of edges (j, i) to be designed to satisfy (6.6):∑
j∈Ni

aij(ξj − ξi) = 0, i ∈ [1, 6].

In Fig. 6.3, we illustrate how such complex weights may be designed. For agent 3, it has two
neighbors 2, 5. Thus we need to find weights a32, a52 such that

a32(ξ2 − ξ3) + a35(ξ5 − ξ3) = 0.

Writing a32, a52 in polar coordinates, the above equation may be satisfied through making
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proper rotations and scalings (dashed arrows in Fig. 6.3), i.e.

ρ32e
θ32j(ξ2 − ξ3) + ρ35e

θ35j(ξ5 − ξ3) = 0.

There are infinitely many choices; a simple one is ρ32 =
√
3, θ32 = 0 and ρ35 = 1, θ35 = −π

2 .
Hence w32 =

√
3, w35 = −j. Note that this weight design can be done locally by individual

agents if relative information ξj − ξi (j ∈ Ni) is available.
Similarly we design other complex weights to satisfy (6.6), and write (6.8) in vector form:

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



0 0 0 0 0 0

0 0 0 0 0 0

0
√
3 −

√
3 + j 0 −j 0

1
2 0 − 1

2 +
√
3
2 j −

√
3
2 j 0 0

0 0 0 1
2 +

√
3
2 j − 3

2 −
√
3
2 j 1

− 3
2 −

√
3
2 j 1 0 0 0 1

2 +
√
3
2 j





x1

x2

x3

x4

x5

x6


.

Inspect that the matrix above has zero row sums, and is indeed the minus of the complex
Laplacian matrix L of the (complex) weighted digraph. It is also checked that Lξ = 0, namely
the target configuration lies in the kernel of L. Moreover, there are exactly two eigenvalues 0

of L, and hence kerL = S(ξ) (the first requirement of the similar formation control problem
is satisfied).
However, the nonzero eigenvalues of matrix −L are

−1.917 + 0.8963j,−1.1283− 1.042j,−0.1867− 0.5863j, 0.5 + 0.866j

and hence −L is not stable (the last eigenvalue has positive real part). Therefore to stabilize
x(t) to the kernel of L (to satisfy the second requirement of the similar formation control
problem), the unstable eigenvalues of −L must be moved to the open left-half plane. This
shows that simply setting all ϵi = 1 in (6.3) does not work in general. In fact, ϵi need to be
properly chosen in order to stabilize −L.

In the following we redescribe the distributed control (6.3) in vector form, and will analyze its
stability in relation to the values of ϵi in the next section.

Similar Formation Control Algorithm (SFCA):
Every agent i has a state variable xi(t) ∈ C representing its position in 2D at time t ≥ 0;

the initial state xi(0) is an arbitrary complex number. Offline, each agent i computes weights
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ξ1

ξ2ξ3

ξ4

ξ5 ξ6

a32(ξ2 − ξ3)

a35(ξ5 − ξ3)

Figure 6.3: Illustration of design of complex weights

aij = ρije
θij by solving ∑

j∈Ni

ρije
θij (ξj − ξi) = 0 (6.9)

such that (6.6) holds. Then online, at each time t ≥ 0, every agent i updates its state xi(t) using
the following distributed control:

ui = ϵi
∑
j∈Ni

aij(xj − xi) (6.10)

where ϵi ∈ C \ {0} is a (nonzero) complex control gain.
Let x := [x1 · · ·xn]

⊤ ∈ Cn be the aggregated state vector of the networked agents, and E =

diag(ϵ1, . . . , ϵn) ∈ Cn×n the (diagonal and invertible) control gain matrix. Then the n equations
(6.10) become

ẋ = (−EL)x. (6.11)

Remark 6.2 The above SFCA requires that the following information be available for each indi-
vidual agent i:

• ξj − ξi for all j ∈ Ni (offline computation of weights)

• xj − xi for all j ∈ Ni (online computation of control inputs).
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6.3 Convergence Result

The following is the main result of this section.

Theorem 6.1 Suppose that Assumptions 6.1 and 6.2 hold. There exists a (diagonal and
invertible) control gain matrix E = diag(ϵ1, . . . , ϵn) such that SFCA solves the similar
formation control problem.

To prove Theorem 6.1, we analyze the eigenvalues of the matrix −EL in (6.11). For this, the
following fact is useful.

Lemma 6.1 Consider an arbitrary square complex matrix M ∈ Cn×n. If all the prin-
cipal minors of M are nonzero, then there exists an invertible diagonal matrix E =

diag(ϵ1, . . . , ϵn) ∈ Cn×n such that all the eigenvalues of EM have positive real parts.

Proof: The proof is based on induction on n. For the base case n = 1, M = m11 is a nonzero scalar
(as the principal minor of M is nonzero). Write m11 = ρ1e

jθ1 , and let ϵ1 := γ1e
jϕ1 where γ1 ̸= 0

and ϕ1 is such that (ϕ1 + θ1)(mod 2π) ∈ (−π
2 ,

π
2 ). Then EM = ϵ1m11 = ρ1γ1e

j(ϕ1+θ1), which has
positive real part.

For the induction step, suppose that the conclusion holds for M ∈ C(n−1)×(n−1). Now consider
M ∈ Cn×n, with all of its principal minors nonzero. Let M1 be the submatrix of M with the last row
and last column removed. Then all the principal minors of M1 are nonzero, and by the hypothesis
there exists an invertible diagonal matrix E1 = diag(ϵ1, . . . , ϵn−1) such that all the eigenvalues
λ1, . . . , λn−1 of E1M1 have positive real parts. Now write

M =

[
M1 M2

M3 mnn

]

where mnn is a nonzero scalar (since all the principal minors of M are nonzero). Also let

E =

[
E1 0

0 ϵn

]

for some complex ϵn. Thus

EM =

[
E1 0

0 ϵn

][
M1 M2

M3 mnn

]
=

[
E1M1 E1M2

ϵnM3 ϵnmnn

]
.
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If ϵn = 0, then

EM =

[
E1M1 E1M2

0 0

]

which means that EM has a (simple) eigenvalue λn = 0 and all the rest n − 1 eigenvalues
λ1, . . . , λn−1 have positive real parts. Since eigenvalues are continuous functions of matrix en-
tries, for ϵn := γne

jϕn with sufficiently small γn > 0, EM still has n − 1 eigenvalues λ′
1, . . . , λ

′
n−1

with positive real parts. This in turn implies that the difference between the angles of λi and λ′
i is

small for all i ∈ [1, n− 1]. Let

δ = |∠
n−1∏
i=1

λi − ∠
n−1∏
i=1

λ′
i|. (6.12)

Then δ can be made arbitrarily small by choosing sufficiently small γn > 0.

Now we consider the last eigenvalue λ′
n. Since

det(E) ̸= 0, det(M) ̸= 0, det(EM) = λ′
1 · · ·λ′

n

we have λ′
n ̸= 0. It is thus left to show that the angle of λ′

n is in (−π
2 ,

π
2 ). Noting that

det(EM) = ϵndet(E1)det(M) = λ′
1 · · ·λ′

n−1λ
′
n

we derive

∠λ′
n = ∠ϵn + ∠det(E1) + ∠det(M)− ∠

n−1∏
i=1

λ′
i

= ϕn + ∠det(E1) + ∠det(M)− (∠
n−1∏
i=1

λi ± δ).

Choosing

ϕn ∈

(
∠

n−1∏
i=1

λi − ∠det(E1)− ∠det(M)− π

2
+ δ′,∠

n−1∏
i=1

λi − ∠det(E1)− ∠det(M) +
π

2
− δ′

)

for some positive δ′, we have

ϕn ∈
(
−π

2
+ δ′ ∓ δ,

π

2
− δ′ ∓ δ

)
.

Since δ can be made arbitrarily small (by choosing sufficiently small γn > 0), in particular δ can
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be made such that δ < δ′, thereby we derive ∠λ′
n ∈ (−π

2 ,
π
2 ). Hence λ′

n also has positive real part.
This establishes the induction step, and thereby completes the proof. □

The above proof suggests an algorithm (Algorithm 6.1 below) to compute an invertible diagonal
matrix E = diag(ϵ1, . . . , ϵn) such that all the eigenvalues of EM have positive real parts. In the
algorithm when computing ϵi (i ∈ [1, n]) in lines 2 and 7, a specific choice of angles is adopted
to make the resulting eigenvalues of EM be positive real numbers. By the proof of Lemma 6.1,
one can always choose appropriate (small) δ1, . . . , δn in line 1 so that Algorithm 6.1 outputs an
invertible diagonal matrix E that renders all the eigenvalues of EM with positive real parts. In the
algorithm, the notation M(1 : i, 1 : i) used in lines 7 and 9 denotes the submatrix of M with the
first i rows and columns (i.e. the ith leading principal submatrix of M).

Algorithm 6.1 Diagonal Stabilization Algorithm (case of complex matrix, right-half plane)
Input: square complex matrix M ∈ Cn×n with nonzero principal minors
Output: invertible diagonal matrix E ∈ Cn×n

1: set δ1, . . . , δn to be small positive real numbers
2: ϵ1 = δ1e

−j∠det(M(1,1))

3: E1 = diag(ϵ1)
4: {λ1} = spectrum of E1M(1, 1)
5: for i = 2, . . . , n do
6: Λ = λ1 · · ·λi−1

7: ϵi = δie
−j∠ det(Ei−1)det(M(1:i,1:i))

Λ

8: Ei = diag(ϵ1, . . . , ϵi)
9: {λ1, . . . , λi} = spectrum of EiM(1 : i, 1 : i)

10: end for
11: E = diag(ϵ1, . . . , ϵn)

Lemma 6.1 provides a sufficient condition under which the eigenvalues of a complex matrix may
be moved to the open right-half plane using an invertible diagonal complex matrix. The following
proposition asserts that this condition holds for the submatrix of complex Laplacian of a digraph
containing a spanning 2-tree, with the two rows and two columns corresponding to the two roots
removed. More formally, consider a digraph G = (V, E) and let L be a complex Laplacian matrix of
G (corresponding to a specific choice of edge weights). Let R ⊆ V, and denote by LR the submatrix
of L by removing the rows and columns corresponding to R.

Proposition 6.2 Consider a digraph G = (V, E) and a configuration ξ. Suppose that As-
sumptions 6.1 and 6.2 hold. Let R be a 2-root subset. Then for almost all complex Laplacian
L of G satisfying Lξ = 0, all principal minors of LR are nonzero.

To prove Proposition 6.2, we first establish two lemmas.
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Lemma 6.2 Consider a digraph G = (V, E).

(i) Suppose that G contains a spanning tree. Let v1 ∈ V be a root (renumbering if necessary)
and R := {v1}. Then for almost all complex Laplacian L of G, all principal minors of
LR are nonzero.

(ii) Suppose that G contains a spanning 2-tree (Assumption 6.1). Let v1, v2 ∈ V be two roots
(renumbering if necessary) and R := {v1, v2}. Then for almost all complex Laplacian
L of G, all principal minors of LR are nonzero.

Proof. (i) Suppose that G = (V, E) contains a spanning tree T = (V, ET ). Here ET ⊆ E . Without
loss of generality let v1 ∈ V be the root of T and R := {v1}. Then a standard Laplacian matrix T

of T has the following form:

T :=

[
0 0

∗ TR

]
.

Since T is a spanning tree, by Theorem 1.7 we have rank(T ) = n− 1, and hence det(TR) ̸= 0.

Next let V ′ ⊆ V\R be an arbitrary nonempty subset of m (∈ [1, n−2]) nodes, and renumber these
nodes as v2, . . . , vm+1. Also let R′ := R∪ V ′ = {v1, . . . , vm+1}, and remove all the incoming edges
from nodes vm+2, . . . , vn to R′. Denote the corresponding subgraph by T ′. Then a nonnegative
adjacency matrix A′ and degree matrix D′ of T ′ have the following forms:

A′ =

[
A′

1 0

A′
2 A′

3

]
, D′ =

[
D′

1 0

0 D′
2

]
.

Accordingly a standard Laplacian matrix T ′ of T ′ is

T ′ = D′ −A′ =

[
D′

1 0

0 D′
2

]
−

[
A′

1 0

A′
2 A′

3

]
=:

[
T ′
1 0

T ′
2 T ′

R′

]
.

It will be shown that det(T ′
R′) ̸= 0 by proving that T ′

R′ does not have an eigenvalue 0. To that end,
let D̃′ = diag(d̃′1, . . . , d̃

′
1) be such that

d̃′1 :=

d′i, if d′i ̸= 0;

1, if d′i = 0.
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Thus D̃′ is invertible and use (D̃′)−1 to define

Ã′ := (D̃′)−1A′ =

[
Ã′

1 0

Ã′
2 Ã′

3

]
, T̃ ′ := (D̃′)−1T = I − Ã′ =

[
T̃ ′
1 0

T̃ ′
2 T̃ ′

R′

]
.

Note that Ã′ is nonnegative and every row sums up to 1. Hence for every integer k ≥ 1, it holds
that (Ã′)k is nonnegative and every row sums up to 1. Let us focus on (Ã′)n (i.e. k = n), which
has the form

(Ã′)n :=

[
(Ã′

1)
n 0

X (Ã′
3)

n

]
.

Since every node in V \ R′ can be reached from some node in R′, it follows from Lemma 1.1 that
every row of the (2, 1)-block X contains positive entries. Hence

∥(Ã′
3)

n∥∞ < 1 ⇒ ρ((Ã′
3)

n) ≤ ∥(Ã′
3)

n∥∞ < 1

⇒ ρ(Ã′
3) < 1

⇒ T̃ ′
R′ = I − Ã′

3 has no eigenvalue 0.

It follows that T̃ ′
R′ has full rank, and so does T ′

R′ = D′
3T̃

′
R′ . The latter means that T ′

R′ has no
eigenvalue 0. Hence det(T ′

R′) ̸= 0. Compared with T ′, T has more nonzero entries. According to
the fact that a polynomial is either constantly zero or nonzero almost everywhere (i.e. nonzero for
almost all indeterminates of the polynomial), it follows from det(T ′

R′) ̸= 0 that det(TR′) ̸= 0 for
almost all T . Therefore for almost all standard Laplacian T , all principal minors of TR are nonzero.

Finally consider a complex Laplacian matrix L of the digraph G. Compared with T , L has more
nonzero complex entries. Again according to the fact that a polynomial is either constantly zero
or nonzero almost everywhere, we conclude that for almost all complex Laplacian L, all principal
minors of LR are nonzero.

(ii) Suppose that G contains a spanning 2-tree with a 2-root subset R := {v1, v2} (without loss
of generality). Remove either node, say v1, and all of its incoming and outgoing edges; denote
the resulting subgraph by G′. Then G′ contains a spanning tree (v2 being a root). It then follows
from (i) above that for almost all complex Laplacian L′ of G′, all the principal minors of L′

{v2} are
nonzero. Since the principal minors of L′

{v2} are identical with those of LR, where L is a complex
Laplacian matrix of G, the conclusion is established. □

For the second lemma, we introduce the following notation. Consider a digraph G = (V, E) and
let L be a complex Laplacian matrix of G. Let R ⊆ V, and denote by LR a submatrix of L by
removing the rows corresponding to R and arbitrary |R| columns.
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Lemma 6.3 Consider a digraph G = (V, E).

(i) Suppose that G contains a spanning tree. Let v1 ∈ V be a root (renumbering if necessary)
and R := {v1}. Then for almost all complex Laplacian L of G, det(LR) ̸= 0.

(ii) Suppose that G contains a spanning 2-tree (Assumption 6.1). Let v1, v2 ∈ V be two roots
(renumbering if necessary) and R := {v1, v2}. Then for almost all complex Laplacian
L of G, det(LR) ̸= 0.

Proof. (i) Suppose that G = (V, E) contains a spanning tree T = (V, ET ). Here ET ⊆ E . Without
loss of generality let v1 ∈ V be the root of T and R := {v1}. Also let T be a complex Laplacian
matrix of T , and TR be a submatrix of T with the row p1(= 0) corresponding to root v1 and an
arbitrary column qi removed. If i = 1, it follows from Lemma 6.2(i) that det(TR) = det(TR) ̸= 0

for almost all T . If i ̸= 1, let pi be the ith row of T and consider the following elementary row
transformation:

T =


p1
...
pi
...

 =⇒ T̃ :=


p1 + pi

...
pi
...

 =


pi
...
pi
...

 .

Denote by T̃ the digraph corresponding to T̃ . Compared with T , some incoming edges are added
to node v1 in T̃ . Hence v1 is still a root of T̃ . Moreover, since T̃ (1, i) = T (i, i) ̸= 0, there is an edge
from vi to v1 in T̃ , and thus vi is also a root. Let R̃ := {vi}. Then it follows from Lemma 6.2(i)
that det(T̃R̃) ̸= 0 for almost all T̃ . Since TR is T̃R̃ by reordering the 1st row to the ith position
(i.e. via elementary row transformations), we derive det(TR) = det(T̃R̃) ̸= 0 for almost all T .

Finally consider a complex Laplacian matrix L of the digraph G and a submatrix LR. Compared
with T and TR, L and LR (respectively) have more nonzero complex entries. According to the
fact that a polynomial is either constantly zero or nonzero almost everywhere, we conclude that for
almost all complex Laplacian L of G, det(LR) ̸= 0.

(ii) Suppose that G contains a spanning 2-tree with a 2-root subset R := {v1, v2} (without loss
of generality). Consider a complex Laplacian matrix L of G, and a submatrix LR obtained from L

by removing the two rows p1, p2 corresponding to the two roots v1, v2 and arbitrary two columns
qi, qj . If i = 1 (similarly for i = 2), remove v1 and all of its incoming and outgoing edges, and
denote the resulting subgraph by G′. Then G′ contains a spanning tree (v2 being a root), and
it follows from (i) above that for almost all complex Laplacian L′ of G′, det((L′){v2}) ̸= 0. This
implies det(LR) ̸= 0 for almost all complex Laplacian L of G.
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It remains to consider the case where i, j ̸= 1, 2. For this, let vi ∈ V \ R and pi (i ∈ [3, n]) be
the ith row of L. Consider the following elementary row transformations:

L =



p1

p2
...
pi
...


=⇒ L̃ :=



k1p1 + · · ·+ knpn

p2
...
pi
...


where k1, . . . , kn are proper coefficients such that the three entries L̃(1, 1), L̃(1, 2), L̃(1, i) on the
first row of L̃ are nonzero. Such coefficients always exist because each of the two roots has at least
one outgoing edge. Denote by T̃ the digraph corresponding to T̃ . We claim that T̃ contains a
spanning 2-tree with a 2-root subset R̃ := {v2, vi}. To see this, first note that v1 is 2-reachable
from R̃ because L̃(1, 2), L̃(1, i) are nonzero and there are two edges (v2, v1), (vi, v1). Now consider
a node vj (j ̸= 1, 2, i); there are three cases:

• Two disjoint paths from R to vj do not go through vi. Then vj is 2-reachable from R̃: v2 → vj

and vi → v1 → vj .

• The path from v1 to vj does not go through vi, but v2 → vi → vj . Then vj is 2-reachable
from R̃: v2 → v1 → vj and vi → vj .

• The path from v2 to vj does not go through vi, but v1 → vi → vj . Then vj is 2-reachable
from R̃: v2 → vj and vi → vj .

Note that it is not possible that both paths from R to vj go through vi in virtual of the definition
of spanning 2-tree. Hence our claim is established.

Now remove node vi and all of its incoming and outgoing edges; denote the resulting subgraph
by G̃′. Then G̃′ contains a spanning tree (v2 being a root), and it follows from (i) above that for
almost all complex Laplacian L̃′ of G̃′, det((L̃′){v2}) ̸= 0. Since LR may be obtained from (L̃′){v2}

via elementary row transformations (reordering the first row to the ith position and recovering pi),
we conclude that det(LR) = det((L̃′){v2}) ̸= 0 for almost all complex Laplacian L of G. The proof
is now complete. □

With the above two lemmas, we provide the proof of Proposition 6.2.
Proof of Proposition 6.2: By Assumption 6.1, G = (V, E) contains a spanning 2-tree T = (V, ET ),
where ET ⊆ E and the 2-root subset R = {v1, v2} (renumbering if necessary). Consider a complex
Laplacian T of T such that all principal minors of TR are nonzero (TR is the submatrix of T by
deleting the two rows and columns corresponding to v1, v2). Such T always exists by Lemma 6.2(ii).
For the rank of T , on one hand rank(T ) ≥ n−2 since det(TR) ̸= 0; on the other hand rank(T ) ≤ n−2
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since the first two rows of T are zero row vectors. Hence rank(T ) = n − 2, and the kernel of T is
two-dimensional. One basis of this kernel is 1 since T is a complex Laplacian matrix. Denote the
other basis by η which is linearly independent from 1.

We claim that all the entries of η are distinct. To see this, suppose on the contrary that there
exist two entries ηi, ηj (i, j ∈ [1, n]) which are equal. Scale η such that ηi = ηj = 1, and denote by
η̃ the n− 2 dimensional subvector of η with the entries other than ηi, ηj . Let TR be the submatrix
of T by removing the two rows corresponding to v1, v2 and the two columns corresponding to vi, vj ;
while T̃ be the submatrix of T by deleting the two rows corresponding to v1, v2 and the n − 2

columns corresponding to the nodes in V \ {vi, vj}. Then it follows from T1 = 0 and Tη = 0 that

TR1n−2 + T̃12 = 0

TRη̃ + T̃12 = 0.

Equating the left-hand sides of the above two equations yields

TR(η̃ − 1n−2) = 0.

Since TR is of full rank by Lemma 6.3(ii), we derive η̃ = 1n−2. Therefore η = 1, which contradicts
that η and 1 are linearly independent. Hence, all the entries of η are distinct after all.

Moreover, since each node vi ∈ V \ R has exactly two neighbors, each corresponding row of T
has at most three nonzero entries. Thus equations T1 = 0 and Tη = 0 yield

[
1 1 1

ηi ηi1 ηi2

] Tii

Tii1

Tii2

 = 0

where vi1 , vi2 are the two neighbors of vi. More explicitly

Tii + Tii1 + Tii2 = 0

ηiTii + ηi1Tii1 + ηi2Tii2 = 0.

Hence  Tii

Tii1

Tii2

 = ci

ηi2 − ηi1

ηi − ηi2

ηi1 − ηi


for some nonzero complex number ci. Since all the entries of η are distinct, each row of T corre-
sponding to a non-root node has exactly three nonzero entries.
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Now consider a generic configuration ξ and another complex Laplacian matrix T ′ of T such that
T ′ξ = 0. Since ξ is generic, all the entries of ξ are distinct. Hence T ′ has the same zero/nonzero
pattern as T . Since all principal minors of TR are nonzero, it follows from the fact that a polynomial
is either constantly zero or nonzero almost everywhere that all principal minors of T ′

R are also
nonzero.

Finally, return to the digraph G and let L be a complex Laplacian matrix of G satisfying
Lξ = 0. Compared with T ′, L has more nonzero complex entries. Again according to the fact that
a polynomial is either constantly zero or nonzero almost everywhere, we conclude that all principal
minors of LR are nonzero. The proof is now complete. □

Finally we are ready to prove Theorem 6.1.

Proof of Theorem 6.1: Let Assumptions 6.1 and 6.2 hold. On one hand, it follows from Propo-
sition 6.2 that for almost all complex Laplacian L of G satisfying Lξ = 0 (where ξ is generic),
rank(L) ≥ n−2, i.e. dim(kerL) ≤ 2. On the other hand, by using the distributed control in SFCA,
we derive kerL ⊇ S(ξ) as in (6.7), and thus dim(kerL) ≥ 2. Therefore for almost all complex
Laplacian L satisfying Lξ = 0, we have kerL = S(ξ), which establishes the first condition in the
similar formation control problem.

For the second condition, let R = {v1, v2} (renumbering if necessary) be a 2-root subset and
LR the submatrix of L with the first two rows and columns corresponding to R removed. Then
by Proposition 6.2, for almost all complex Laplacian L satisfying Lξ = 0, all principal minors of
LR are nonzero. It then follows from Lemma 6.1 that there exists an invertible diagonal matrix
ER = diag(ϵ3, . . . , ϵn) such that all the eigenvalues of −ERLR have negative real parts. Let

E′ :=

[
0 0

0 ER

]
, L =

[
L1 L2

L3 LR

]
.

Then

−E′L = −

[
0 0

ERL3 ERLR

]
.

Hence the spectrum (i.e. set of eigenvalues) of −E′L is the union of the spectrum of −ERLR

and {0, 0} (set of two zeros). Let ϵ1, ϵ2 have sufficiently small magnitudes (i.e. |ϵ1|, |ϵ2| sufficiently
small) and

E :=

ϵ1 0 0

0 ϵ2 0

0 0 ER

 .
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Then all the diagonal entries of E are nonzero, and E is invertible. Thus rank(EL) = rank(L) = 2

(i.e. kerEL = kerL), and there are two eigenvalues 0 of −EL. Moreover, since eigenvalues are
continuous functions of matrix entries and |ϵ1|, |ϵ2| are sufficiently small, the rest n− 2 eigenvalues
of −EL still have negative real parts.

Write −EL in Jordan canonical form as

−EL = V JV −1 =
[
1 ξ y3 · · · yn

]0 0 0

0 0 0

0 0 J ′




z⊤1

z⊤2

z⊤3
...
z⊤n


where yi, zi ∈ Cn are respectively the (generalized) right and left eigenvectors of −EL, and J ′ ∈
C(n−2)×(n−2) is a block diagonal matrix consisting of the Jordan blocks corresponding to those
eigenvalues with negative real parts. Hence the matrix exponential e−ELt is

e−ELt = eV JV −1t = V eJtV −1

= V

1 0 0

0 1 0

0 0 eJ
′t

V −1

→ 1z⊤1 + ξz⊤2 , as t → ∞.

Therefore based on the SFCA in (6.11):

x(t) = e−ELtx(0)

→ 1z⊤1 x(0) + ξz⊤2 x(0), as t → ∞.

Let ξ′ := 1z⊤1 x(0) + ξz⊤2 x(0). Then ξ′ ∈ S(ξ), and therefore

lim
t→∞

x(t) ∈ S(ξ)

i.e. the second condition in the similar formation control problem is established. This completes
the proof. □
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6.4 Simulation Examples

Example 6.4 Let us consider again Example 6.3, where the (generic) target configuration is
the regular hexagon ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]⊤. We have designed a complex Laplacian

matrix L of the digraph modeling the interconnection of the six agents (copied below for
convenience):

0 0 0 0 0 0

0 0 0 0 0 0

0
√
3 −

√
3 + j 0 −j 0

1
2 0 − 1

2 +
√
3
2 j −

√
3
2 j 0 0

0 0 0 1
2 +

√
3
2 j − 3

2 −
√
3
2 j 1

− 3
2 −

√
3
2 j 1 0 0 0 1

2 +
√
3
2 j


.

While it is satisfied that kerL = S(ξ), one of the nonzero eigenvalues of −L is unstable (i.e.
with positive real part). Thus we need to design an invertible diagonal matrix E such that
all the nonzero eigenvalues of −EL are stable.
Since the target configuration ξ is generic and the digraph G contains a spanning 2-tree with
the 2-root subset R = {1, 2}, all the principal minors of the submatrix LR (with the two
rows and columns corresponding to R removed) are nonzero. Therefore by Lemma 6.1, there
exists an invertible diagonal matrix ER such that all the eigenvalues of −ERLR are stable.
For computing such ER, we apply Algorithm 6.1 and obtain

ER = diag(0.433 + 0.25j,−0.1j, 0.0866− 0.05j,−0.05 + 0.0866j).

It is verified that all the eigenvalues of −ERLR are stable:

−0.0456,−0.1,−0.221,−0.9933.

Then an invertible diagonal matrix E such that all the nonzero eigenvalues of −EL are
stable is:

E = diag(1, 1, 0.433 + 0.25j,−0.1j, 0.0866− 0.05j,−0.05 + 0.0866j).

Indeed, the eigenvalues of −EL are:

0, 0,−0.0456,−0.1,−0.221,−0.9933.
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With a random initial condition x(0) ∈ C6 (whose entries represent six random positions of
the agents in a 2D space), a simulation of the SFCA (i.e. ẋ = (−EL)x) yields the trajectories
displayed in Fig. 6.4. It is observed that a similar formation of regular hexagon is formed. In
the figure, × denotes the initial positions of the agents, while ◦ the final positions. Observe
that the two root agents (left middle and left top) have stayed put as their initial and final
positions coincide; this is because they have no neighbors and thus have never updated their
positions.

0.2 0.4 0.6 0.8 1 1.2 1.4

Re(xi(t)), i = 1, . . . , 6, t ≥ 0

0

0.2

0.4

0.6

0.8

Im
(x

i(
t)
),
i
=

1,
.
.
.
,
6,

t
≥

0

Figure 6.4: Six agents converging to a similar formation of regular hexagon (×: initial position; ◦:
final position)

Example 6.5 Consider a network of 15 agents as displayed in Fig. 6.5. This digraph
contains a spanning 2-tree, and any two of the set {6, 7, 9, 10} of agents are two roots.
Different from the digraph in Fig. 6.2 where the two roots have no neighbors, in this digraph
every node including the roots has two or three neighbors.
First, we consider a regular polygon to be the target configuration:

ξ = [1 e
2π
15 j e

4π
15 j e

6π
15 j e

8π
15 j e

10π
15 j e

12π
15 j e

14π
15 j e

16π
15 j e

18π
15 j e

20π
15 j e

22π
15 j e

24π
15 j e

26π
15 j e

28π
15 j ]⊤.
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6

1 2

7

3

8

4 5

9 10

11 12 13 14 15

Figure 6.5: Fifteen networked agents

Thus ξ is generic. We then design a complex Laplacian matrix L of the digraph in Fig. 6.5
such that rank(L) = 13, and apply Algorithm 6.1 to compute an invertible diagonal matrix E

such that all the eigenvalues of −EL are stable. With a random initial condition x(0) ∈ C15,
a simulation of the SFCA (i.e. ẋ = (−EL)x) yields the trajectories displayed in Fig. 6.6.
Observe that a regular polygon similar to ξ is formed. Also observe that no agent stays put,
as everyone has neighbors and thus updates its state correspondingly.
Second, we consider a triangle shape to be the target configuration:

ξ = [4j − 1 + 3j 1 + 3j − 2 + 2j 2j 2 + 2j − 3 + j − 1 + j 1 + j 3 + j − 4 − 2 0 2 4]⊤.

Note that this ξ is not generic, because there are multiple cases of three points on the same
line: e.g. the last three entries 0, 2, 4 of ξ.
For this example, nevertheless, a complex Laplacian matrix L of the digraph in Fig. 6.5 may
still be designed such that rank(L) = 13, and an invertible diagonal matrix E is obtained by
Algorithm 6.1 such that all the nonzero eigenvalues of −EL are stable. With a random initial
condition x(0) ∈ C15, a simulation of the SFCA (i.e. ẋ = (−EL)x) yields the trajectories
displayed in Fig. 6.7. Observe that a triangle similar to ξ is formed, and all agents have
moved in the transient (before they converge to a similar formation of ξ in the steady state).
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Re(xi(t)), i = 1, . . . , 15, t ≥ 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Im
(x

i(
t)
),
i
=

1,
.
.
.
,
15
,
t
≥

0

Figure 6.6: Fifteen agents converging to a similar formation of regular polygon (×: initial position;
◦: final position)
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Figure 6.7: Fifteen agents converging to a similar formation of triangle (×: initial position; ◦: final
position)

Stabilization by diagonal matrices (Lemma 6.1) are studied in
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Chapter 7

Localization in Two-Dimensional
Space

In this chapter, we introduce a distributed localization problem of multi-agent systems in two-
dimensional (2D) space. This problem has found numerous important applications in (wireless)
sensor networks, including environmental information collection, wildlife monitoring, target track-
ing, and intrusion detection. In these applications, it is essential that the individual sensor nodes
know their positions in a common (global) coordinate frame. For example, it would be ideal to
have a GPS onboard each sensor. In practical sensor networks, however, there are typically a large
number of sensor nodes each with limited hardware/software capacities. Thus it is costly and im-
plementationally difficult to install a device like GPS on every sensor, not to mention that there
are situations where GPS is at best inaccurate and at worst denied.

Therefore it is desirable to have a distributed scheme to determine the global positions of
individual sensor nodes based on low-cost, easily implementable onboard devices. A typical such
scheme is to compose a sensor network with a minority of anchor nodes that do know their positions
in the global coordinate frame, and the rest majority of free nodes that need to determine their
global positions based on their local frames and locally sensed information (e.g. distances and
bearing angles with respect to neighboring nodes). Those anchor nodes play the role of leaders or
landmarks, while the free nodes are followers. We adopt this distributed scheme, and focus in this
chapter on solving a localization problem in 2D, while 3D localization will be covered in Chapter 9.

To solve the 2D distributed localization problem, we present an approach based on complex
Laplacian matrices. Modeling the interacting sensor nodes by digraphs, we show that a necessary
graphical condition to achieve 2D localization is that the digraph contains a spanning 2-tree whose
two roots are anchor nodes. This condition is similar to that for achieving 2D similar formations
in the preceding chapter. However, the two anchor nodes (i.e. two roots) who already know their
global positions should not, and will not, change their positions; hence they do not have, nor do they
need, any neighbors (i.e. incoming edges). In this way, the exact global positions of the free nodes
may be determined (without the flexibility of translation, rotation, and scaling as in the similar
formation problem). Under the above graphical condition, we present a distributed algorithm for
the free nodes to achieve localization in 2D.

185
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7.1 Problem Statement

Consider a network of n (> 1) agents that are stationary in a plane (i.e. their two-dimensional
positions are fixed), and a global coordinate frame Σ which is unknown to the agents. The agents
labeled 1, 2 (renumbering if necessary) are the anchor agents, whose positions ξ1, ξ2 ∈ C in Σ are
known. Here Re(ξi) and Im(ξi) are the positions of agents i ∈ [1, 2] on the real and imaginary axes,
respectively. The rest agents labeled 3, . . . , n are the free agents, whose positions ξ3, . . . , ξn ∈ C in
Σ are unknown and need to be determined by these individual free agents. Let

ξa :=

[
ξ1

ξ2

]
∈ C2, ξf :=


ξ3
...
ξn

 ∈ Cn−2

be the aggregated position vectors of the anchor and free agents, respectively. Write

ξ :=

[
ξa

ξf

]
∈ Cn

and call ξ the configuration of the agents.
To determine its own position, each free agent i (∈ [3, n]) is equipped with a state variable

xi(k) ∈ C, which denotes the estimate of agent i’s position ξi under the global frame Σ. The time
k ≥ 0 is a nonnegative integer and denotes the discrete time. Let

xf (k) :=


x3(k)

...
xn(k)

 ∈ Cn−2

be the aggregated state vector of the free agents at time k. It is desired that

xf (k) → ξf as k → ∞.

For convenience, also let xa(k) := [x1(k) x2(k)]
⊤ ∈ C2 be the aggregated state vector of the two

anchor agents, such that xa(k) = ξa for all k ≥ 0 (i.e. the anchor agents know their positions
in the global frame Σ from the initial time k = 0 and never update their estimates). Write
x(k) := [xa(k)

⊤ xf (k)
⊤]⊤ ∈ Cn. Hence the purpose of localization is to achieve

lim
k→∞

x(k) = ξ.

We model the interconnection structure of the networked agents by a digraph G = (V, E): Each
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node in V = {1, ..., n} stands for an agent, and each directed edge (j, i) in E ⊆ V × V denotes
that agent i can obtain the relative state information from agent j. The neighbor set of agent i is
Ni := {j ∈ V | (j, i) ∈ E}. For the two anchor nodes (numbered 1 and 2 without loss of generality),
since they do not update their states, even if they had neighbors, the corresponding incoming edges
would be associated with weight 0. This is equivalent to considering that the anchor nodes do not
have neighbors. For this reason, henceforth in this chapter we consider that Ni = ∅ (i = 1, 2).

Moreover, consider that digraph G is weighted: each edge (j, i) ∈ V is associated with a complex
weight aij ∈ C. Hence the adjacency matrix A = (aij), degree matrix D = diag(A1), and Laplacian
matrix L = D−A are all complex. Since Ni = ∅ for the anchor nodes i = 1, 2, the Laplacian matrix
L has the following structure:

L =

[
Laa Laf

Lfa Lff

]
=

[
0 0

Lfa Lff

]
. (7.1)

Here Lfa ∈ C(n−2)×2 and Lff ∈ C(n−2)×(n−2).

To achieve localization, consider the distributed control

ui(k) =
∑
j∈Ni

wij(xj(k)− xi(k)), i ∈ [1, n]. (7.2)

Here the control gain wij satisfies

(i)
∑
j∈Ni

wij(ξj − ξi) = 0 (7.3)

(ii) wij = ϵiaij , ϵi ∈ C \ {0}. (7.4)

This control ui in (7.2) is in the same form as that for similar formation control: the gains wij are
not simply the edge weights aij , but are complex (nonzero) multiples of aij (7.4) and satisfy linear
constraints with respect to the configuration ξ (7.3).

Substituting (7.4) into (7.3) and removing the common multiple ϵi yield∑
j∈Ni

aij(ξj − ξi) = 0. (7.5)

This in vector form is Lξ = 0. In view of (7.1) we have[
0 0

Lfa Lff

][
ξa

ξf

]
= 0.
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Hence the following equation ensues:

Lffξf = −Lfaξa (7.6)

which relates the configuration of the free agents to that of the anchor agents through appropriate
multiplications of submatrices of the complex Laplacian matrix.

Two-Dimensional Localization Problem:

Consider a network of agents (stationary in a 2D space) interconnected through a digraph and
a configuration ξ := [ξ⊤a ξ⊤f ]⊤ ∈ Cn, which represents the fixed positions of the agents under the
global coordinate frame Σ. Here ξa ∈ C2 is known but ξf ∈ Cn−2 is unknown. Design a distributed
algorithm using the control ui in (7.2) such that

(i) rank(L) = n− 2

(ii) (∀xf (0) ∈ Cn−2) lim
k→∞

xf (k) = ξf .

The first requirement (i) implies rank(Lff ) = n − 2; namely Lff is invertible. Then it follows
from (7.6) that ξf = −L−1

ff Lfaξa. Hence the second requirement (ii) becomes:

(∀xf (0) ∈ Cn−2) lim
k→∞

xf (k) = −L−1
ff Lfaξa.

1

2 3

4

5 6

Figure 7.1: Illustrating example of six agents
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Example 7.1 We provide an example to illustrate the localization problem in 2D. As dis-
played in Fig. 7.1, six agents are interconnected through a digraph; agents 1 and 2 are anchor
agents while the rest four are free agents. The neighbor sets of the agents are N1 = N2 = ∅,
N3 = {2, 5}, N4 = {1, 3}, N5 = {4, 6}, and N6 = {1, 2}.
Let the configuration of the agents be ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]⊤, i.e. a regular hexagon.

The position vector of the anchor agents ξa = [1 e
π
3 j]⊤ is known, and that of the free nodes

ξf = [e
2π
3 j eπj e

4π
3 j e

5π
3 j]⊤ is unknown and needs to be determined.

The localization problem is to design a distributed algorithm using the control ui in (7.2)
such that the rank of the complex Laplacian matrix L is n− 2, and moreover the free agents’
state vector asymptotically converges to ξf .

A necessary graphical condition for solving the two-dimensional localization problem is given
below.

Proposition 7.1 Suppose that there exists a distributed control ui in (7.2) that solves the
two-dimensional localization problem. Then the digraph contains a spanning 2-tree whose
two roots are the two anchor agents.

Proof. Suppose that there exists a distributed control in (7.2) that solves the two-dimensional
localization problem, but that the digraph G = (V, E) does not contain a spanning 2-tree whose
two roots are the two anchor agents. We will derive a contradiction that rank(L) < n− 2, thereby
proving that after all G must contain a spanning 2-tree whose two roots are the two anchor agents.

There are two cases that need to be considered separately. First, the digraph contains a spanning
2-tree but at least one of the two roots is a free agent. In this case, the subdigraph of free agents
contains either a spanning tree or a spanning 2-tree. Hence rank(Lff ) < n − 2. Since the anchor
agents do not have neighbors, rank(L) < n− 2.

The second case is that the digraph does not contain a spanning 2-tree. Then it follows similarly
to the proof of Proposition 6.1 that rank(L) < n− 2.

Therefore in both cases above, a contradiction is derived to the solvability of the two-dimensional
localization problem. The proof is now complete. □

Owing to Proposition 7.1, we shall henceforth assume the following graphical condition.

Assumption 7.1 The digraph G modeling the interconnection structure of the networked agents
contains a spanning 2-tree whose two roots are the two anchor agents.

Even if Assumption 7.1 holds, not every configuration ξ may be determined by a distributed
control ui in (7.2). Similar to Example 6.2, if ξ is not generic, it is possible that rank(L) < n − 2

for all complex Laplacian matrices L satisfying Lξ = 0. This means that the two-dimensional
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localization problem is not solvable. For this reason, and also the fact that the set of all non-generic
configurations has Lebesgue measure zero after all, we assume that the configuration ξ is generic.

Assumption 7.2 The configuration ξ := [ξ⊤a ξ⊤f ]⊤ ∈ Cn is generic.

7.2 Distributed Algorithm

ξ1

ξ2ξ3

ξ4

ξ5 ξ6

a32ρ32e
jθ32

a35ρ52e
jθ52

Im

Re
Σ

ρ32

ρ35

Im
Re

α3

θ32θ35

Σ3

Figure 7.2: Illustration of design of complex weights

Example 7.2 Consider again Example 7.1, where the configuration is the regular hexagon
ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]⊤. This ξ is generic.

The anchor agents’ configuration ξa = [1 e
π
3 j]⊤ is known, and the free agents’ configuration

ξf = [e
2π
3 j eπj e

4π
3 j e

5π
3 j]⊤ is to be determined. To this end, we consider using the simplest

form of distributed control (7.2) by setting all ϵi = 1:

xi(k + 1) = xi(k) +
∑
j∈Ni

aij(xj(k)− xi(k)), i ∈ [1, 6] (7.7)

where aij ∈ C are complex weights of edges (j, i) to be designed to satisfy (7.5):∑
j∈Ni

aij(ξj − ξi) = 0, i ∈ [1, 6].

In the following we illustrate how the complex weights may be designed locally to satisfy the
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above linear constraints. Each free agent i ∈ [3, 6] has a local coordinate frame Σi, whose
origin is the (stationary) position of agent i. The orientation of Σi is fixed, but the offset
angle θi with respect to the global coordinate frame Σ is unknown. For each neighbor (free
or anchor) j ∈ Ni, we assume that agent i can sense the relative position by measuring
the relative distance and relative bearing angle in Σi. That is, if agent j is a neighbor of
agent i, then the distance ρij between j and i, as well as the bearing angle θij of j in Σi are
measured by i. Thus the relative position in Σi is

yij := ρije
jθij . (7.8)

Note that yije
jθi = ξj − ξi; since θi is unknown, even though the relative position yij in Σi

is known, ξj − ξi in Σ is unknown. Substituting ξj − ξi = yije
jθi into (7.5) and removing the

common factor ejθi , we derive ∑
j∈Ni

aijyij = 0. (7.9)

Hence the weights aij may be designed based on the relative position yij in (7.8) under the
local coordinate frame Σi.
For example, Fig. 7.2 provides an illustrative example. For agent 3, it has two neighbors 2, 5.
Thus we must find weights a32, a52 such that a32y32 + a35y35 = 0. In the local coordinate
frame Σ3, y32 = ρ32e

jθ32 and y35 = ρ35e
jθ35 . Thus we want to find a32, a35 such that

a32ρ32e
jθ32 + a35ρ35e

jθ35 = 0.

There are infinitely many choices; a simple one is a32 = e−jθ32

ρ32
and a35 = − e−jθ35

ρ35
. Con-

cretely, ρ32 = 1, ρ35 =
√
3, and let θ32 = 7π

4 , θ35 = 5π
4 ; then a32 =

√
2
2 +

√
2
2 j, a35 =

√
6
6 −

√
6
6 j.

Similarly we design other complex weights to satisfy (7.9), and write (7.7) in vector form:
x(k + 1) = (I − L)x(k) where

L =



0 0 0 0 0 0

0 0 0 0 0 0

0 −
√
2
2 −

√
2
2 j 3

√
2+

√
6

6 + 3
√
2−

√
6

6 j 0 −
√
6
6 +

√
6
6 j 0

−
√
3
4 − 1

4 j 0
√
3
2 − 1

2 j −
√
3
4 + 3

4 j 0 0

0 0 0 − 1
2 +

√
3
2 j −

√
3j 1

2 +
√
3
2 j

−
√
3
2 + 1

2 j
√
3
6 − 1

2 j 0 0 0
√
3
3


.

It is verified that the complex Laplacian matrix L has zero row sums and satisfies Lξ = 0.
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Moreover, partition the matrix L according to anchor agents and free agents:

L =

[
Laa Laf

Lfa Lff

]
.

Thus Laa = Laf = 0; Lfa ∈ C4×2 and Lff ∈ C4×4. It is checked that rank(Lff ) = 4,
and thus Lff is invertible. Therefore the first condition of the two-dimensional localization
problem is satisfied.
It is left to verify the second condition that the state vector of the free agents xf (k) converges
to −L−1

ff Lfaξa (when xa(k) = ξa for all k ≥ 0). Fix ξa ∈ C2. First note that

x̄ =

[
x̄a

x̄f

]
=

[
ξa

−L−1
ff Lfaξa

]

is the unique fixed point of (7.7). To see this, substituting x̄ into (7.7) yields x̄, which means
that x̄ is a fixed point of (7.7). Moreover, let

x̄′ =

[
ξa

x̄′
f

]

be another fixed point of (7.7), namely[
ξa

x̄′
f

]
=

([
I 0

0 I

]
−

[
0 0

Lfa Lff

])[
ξa

x̄′
f

]
=

[
I 0

−Lfa I − Lff

][
ξa

x̄′
f

]
.

From the above we derive

x̄′
f = −L−1

ff Lfaξa = x̄f .

This shows that x̄ is the unique fixed point of (7.7), which in turn implies that starting from
an arbitrary initial condition x(0) = [ξ⊤a x⊤

f (0)]
⊤ ∈ Cn, xf (k) converges to −L−1

ff Lfaξa if
and only if all the eigenvalues of I − Lff lie inside the unit circle.
Unfortunately, the eigenvalues of matrix I − Lff are

−0.5774, 0.3041− 0.6475j,−0.9368− 0.3062j,−0.0497 + 1.637j.

The last eigenvalue lies outside the unit circle. Hence (7.7) is unstable and xf (k) diverges.
To stabilize xf (k) to the desired fixed point −L−1

ff Lfaξa (to satisfy the second requirement
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of the two-dimensional localization problem), the unstable eigenvalues of I − Lff must be
moved inside the unit circle. This shows that simply setting all ϵi = 1 in (7.2) does not work
in general. In fact, ϵi need to be properly chosen in order to stabilize I − Lff .

In the following we describe a distributed algorithm using (7.2) in vector form, and will analyze
its stability in relation to the values of ϵi in the next section.

Two-Dimensional Localization Algorithm (TDLA):
Each anchor agent i ∈ [1, 2] has a state variable xi(k) ∈ C whose initial value is set to be

xi(0) = ξi (which is known). Each free agent i ∈ [3, . . . , n] also has a state variable xi(k) ∈ C whose
initial value is an arbitrary complex number. Offline, each free agent i computes weights aij ∈ C
based on the measured relative positions yij = ρije

θij in (7.8) by solving∑
j∈Ni

aijyij = 0.

Then online, at each time k ≥ 0, while each anchor agent stays put, i.e.

xi(k + 1) = xi(k), i ∈ [1, 2]

each free agent i updates its xi(k) using the following local update protocol:

xi(k + 1) = xi(k) + ϵi
∑
j∈Ni

aij(xj(k)− xi(k)), i ∈ [3, n] (7.10)

where ϵi ∈ C \ {0} is a (nonzero) complex control gain.
Let x := [x1 · · ·xn]

⊤ ∈ Cn be the aggregated state vector of the networked agents, and

E = diag(ϵ1, . . . , ϵn) ∈ Cc×n

the (diagonal and invertible) control gain matrix. Then the n equations (7.10) become

x(k + 1) = x(k)− ELx(k) = (I − EL)x(k). (7.11)

Remark 7.1 The above TDLA requires that the following information be available for each free
agent i ∈ [3, n]:

• yij for all j ∈ Ni (offline computation of weights)

• xj − xi for all j ∈ Ni (online state update).
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7.3 Convergence Result

The following is the main result of this section.

Theorem 7.1 Suppose that Assumptions 7.1 and 7.2 hold. There exists a (diagonal and in-
vertible) control gain matrix E = diag(ϵ1, . . . , ϵn) such that TDLA solves the two-dimensional
localization problem.

To prove Theorem 7.1, we analyze the eigenvalues of the matrix I −EL in (7.11). For this, the
following fact is useful (which is the discrete counterpart of Lemma 6.1).

Lemma 7.1 Consider an arbitrary square complex matrix M ∈ Cn×n. If all the prin-
cipal minors of M are nonzero, then there exists an invertible diagonal matrix E =

diag(ϵ1, . . . , ϵn) ∈ Cn×n such that all the eigenvalues of I − EM lie inside the unit cir-
cle.

Proof: The proof is based on induction on n. For the base case n = 1, M = m11 is a nonzero
scalar (as the principal minor of M is nonzero). Write m11 = ρ1e

jθ1 , and let ϵ1 := γ1e
jϕ1 where

γ1 ∈ (0, 1
ρ1
) and ϕ1 = −θ1. Then EM = ϵ1m11 = ρ1γ1 ∈ (0, 1). Hence 1− EM ∈ (0, 1) which lies

inside the unit circle.
For the induction step, suppose that the conclusion holds for M ∈ C(n−1)×(n−1). Now consider

M ∈ Cn×n, with all of its principal minors nonzero. Let M1 be the submatrix of M with the last row
and last column removed. Then all the principal minors of M1 are nonzero, and by the hypothesis
there exists an invertible diagonal matrix E1 = diag(ϵ1, . . . , ϵn−1) such that all the eigenvalues
1− λ1, . . . , 1− λn−1 of I − E1M1 lie inside the unit circle. Now write

M =

[
M1 M2

M3 mnn

]

where mnn is a nonzero scalar (since all the principal minors of M are nonzero). Also let

E =

[
E1 0

0 ϵn

]

for some complex ϵn. Thus

I − EM =

[
I 0

0 1

]
−

[
E1 0

0 ϵn

][
M1 M2

M3 mnn

]
=

[
I − E1M1 −E1M2

−ϵnM3 1− ϵnmnn

]
.
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If ϵn = 0, then

I − EM =

[
I − E1M1 −E1M2

0 1

]

which means that all the eigenvalues of I − EM lie inside the unit circle except for a simple
eigenvalue 1. Since eigenvalues are continuous functions of matrix entries, for ϵn := γne

jϕn with
sufficiently small γn > 0, I − EM still has n− 1 eigenvalues 1− λ′

1, . . . , 1− λ′
n−1 which are inside

the unit circle.
Now we consider the last eigenvalue 1 − λ′

n. In Lemma 6.1 it is proved that ϵn may be chosen
such that the absolute value of λ′

n is sufficiently small and its angle lie in [−θ̄, θ̄] for an arbitrary
θ̄ ∈ [0, π

2 ). Hence for a small enough θ̄, the last eigenvalue 1 − λ′
n lies within the unit circle. This

proves the induction step, and thereby completes the proof. □
The above proof suggests an algorithm (Algorithm 7.1 below) to compute an invertible diagonal

matrix E = diag(ϵ1, . . . , ϵn) such that all the eigenvalues of I − EM lie inside the unit circle.
Compared with Algorithm 6.1, the only difference is adding scaling terms in lines 2 and 7 so as to
render the resulting eigenvalues inside the unit circle. This effect can also be achieved by choosing
small enough δi (i ∈ [1, n]) in line 1. By the proof of Lemma 7.1, one can always choose appropriate
(small) δ1, . . . , δn in line 1 so that Algorithm 7.1 outputs an invertible diagonal matrix E which
ensures that all the eigenvalues of I − EM are inside the unit circle.

Algorithm 7.1 Diagonal Stabilization Algorithm (case of complex matrix, inside unit circle)
Input: square complex matrix M ∈ Cn×n with nonzero principal minors
Output: invertible diagonal matrix E ∈ Cn×n

1: set δ1, . . . , δn to be small positive real numbers
2: ϵ1 = δ1

1
|det(M(1,1))|e

−j∠det(M(1,1))

3: E1 = diag(ϵ1)
4: {λ1} = spectrum of E1M(1, 1)
5: for i = 2, . . . , n do
6: Λ = λ1 · · ·λi−1

7: ϵi = δi
1∣∣∣ det(Ei−1)det(M(1:i,1:i))

Λ

∣∣∣e−j∠ det(Ei−1)det(M(1:i,1:i))

Λ

8: Ei = diag(ϵ1, . . . , ϵi)
9: {λ1, . . . , λi} = spectrum of EiM(1 : i, 1 : i)

10: end for
11: E = diag(ϵ1, . . . , ϵn)

Lemma 7.1 provides a sufficient condition under which the eigenvalues of a complex matrix may
be moved inside the unit circle using an invertible diagonal complex matrix. It then follows from
Proposition 6.2 (recalled below for convenience) that under Assumptions 7.1 and 7.2 (Assump-
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tion 7.1 implies Assumption 6.1 and Assumption 7.2 is the same as Assumption 6.1), the sufficient
condition holds for the submatrix Lff of the complex Laplacian matrix L. Hence there exists an
invertible diagonal matrix Ef = diag(ϵ3, . . . , ϵn) such that all the eigenvalues of I−EfLff lie inside
the unit circle.

Proposition 6.2 Suppose that Assumptions 7.1 and 7.2 hold. Let R be the 2-root subset
and LR the submatrix of complex Laplacian L by removing the two rows and two columns
corresponding to R. Then for almost all complex Laplacian L of G satisfying Lξ = 0, all
principal minors of LR are nonzero.

With the above preparation, we are ready to prove Theorem 7.1.
Proof of Theorem 7.1: Let Assumptions 7.1 and 7.2 hold. On one hand, it follows from Propo-
sition 6.2 that for almost all complex Laplacian L of G satisfying Lξ = 0 (where ξ is generic),
rank(L) ≥ n − 2. On the other hand, since the first two rows of L corresponding to the anchor
agents are zero, we have rank(L) ≤ n− 2. Therefore for almost all complex Laplacian L satisfying
Lξ = 0, we have rank(L) = n − 2, which establishes the first condition in the two-dimensional
localization problem.

For the second condition, first note again from Proposition 6.2 that for almost all complex
Laplacian L satisfying Lξ = 0, all principal minors of Lff are nonzero. It then follows from
Lemma 7.1 that there exists an invertible diagonal matrix Ef = diag(ϵ3, . . . , ϵn) such that all the
eigenvalues of I − EfLff lie inside the unit circle. Let

Ea :=

[
ϵ1 0

0 ϵ2

]
, E :=

[
Ea 0

0 Ef

]
, L =

[
0 0

Lfa Lff

]
.

Here ϵ1, ϵ2 ̸= 0. Thus E is invertible and

I − EL =

[
I 0

0 I

]
−

[
0 0

EfLfa EfLff

]
=

[
I 0

−EfLfa I − EfLff

]
.

Hence the spectrum (i.e. set of eigenvalues) of I − EL is the union of the spectrum of I − EfLff

(all inside the unit circle) and {1, 1} (set of two ones).
It is left to verify that for arbitrary initial states of the free agents xf (0) ∈ Cn−2, xf (k) converges

to −L−1
ff Lfaξa(= ξf ) when xa(k) = ξa for all k ≥ 0. Fix ξa ∈ C2. First note that

x̄ =

[
x̄a

x̄f

]
=

[
ξa

−L−1
ff Lfaξa

]

is the unique fixed point of (7.11). To see this, substituting x̄ into (7.11) yields x̄ (thanks to the
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fact that both Ef and Lff are invertible), which means that x̄ is a fixed point of (7.11). Moreover,
let

x̄′ =

[
ξa

x̄′
f

]

be another fixed point of (7.11), namely[
ξa

x̄′
f

]
=

[
I 0

−EfLfa I − EfLff

][
ξa

x̄′
f

]
.

From the above we derive

x̄′
f = −L−1

ff Lfaξa = x̄f .

This shows that x̄ is the unique fixed point of (7.11). Moreover, since all the eigenvalues of I−EfLff

lie inside the unit circle, we derive

(∀xf (0) ∈ Cn−2) lim
k→∞

xf (k) = −L−1
ff Lfaξa(= ξf ).

Namely, the second condition in the two-dimensional localization problem is established. This
completes the proof. □

7.4 Simulation Examples

Example 7.3 Let us consider again Example 7.2, where the (generic) configuration is the
regular hexagon ξ = [1 e

π
3 j e

2π
3 j eπj e

4π
3 j e

5π
3 j]⊤. We have designed a complex Laplacian

matrix L (copied below for convenience)

L =



0 0 0 0 0 0

0 0 0 0 0 0

0 −
√
2
2 −

√
2
2 j 3

√
2+

√
6

6 + 3
√
2−

√
6

6 j 0 −
√
6
6 +

√
6
6 j 0

−
√
3
4 − 1

4 j 0
√
3
2 − 1

2 j −
√
3
4 + 3

4 j 0 0

0 0 0 − 1
2 +

√
3
2 j −

√
3j 1

2 +
√
3
2 j

−
√
3
2 + 1

2 j
√
3
6 − 1

2 j 0 0 0
√
3
3


.

While it is satisfied that rank(L) = 4, one of the eigenvalues of I−L is unstable (i.e. outside
the unit circle). Thus we need to design an invertible diagonal matrix E such that, except
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Figure 7.3: Estimations of four free agents converge to their true positions (×: initial estimation;
◦: final estimation)

for the two eigenvalues 1, all the other four eigenvalues of I −EL are stable (i.e. inside the
unit circle).
Since the configuration ξ is generic and the digraph G contains a spanning 2-tree whose
two roots are the anchor agents 1 and 2, all the principal minors of the submatrix Lff are
nonzero. Therefore by Lemma 7.1, there exists an invertible diagonal matrix Ef such that
all the eigenvalues of I −EfLff lie inside the unit circle. For computing such Ef , we apply
Algorithm 7.1 and obtain

Ef = diag(−0.4183 + 0.1121j, 0.25 + 0.433j,−0.5j,−0.5).

Then an invertible diagonal matrix E such that, except for the two eigenvalues 1, all the
other eigenvalues of I − EL lying inside the unit circle is:

E = diag(1, 1,−0.4183 + 0.1121j, 0.25 + 0.433j,−0.5j,−0.5).
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Figure 7.4: Estimation error of six networked agents asymptotically converges to zero

Indeed, the eigenvalues of I − EL are:

1, 1, 0.8341, 0.7113, 0.1834 + 0.2947j, 0.1834− 0.2947j.

With the initial condition xa(0) = [1 e
π
3 j]⊤ of the two anchor agents and a random initial

condition xf (0) ∈ C4 of the 4 free agents, a simulation of the TDLA (i.e. x(k + 1) =

(I − EL)x(k)) yields the trajectories displayed in Fig. 7.3. In the figure, × denotes the
initial estimated positions, while ◦ the final estimated positions. First observe that the two
anchor agents never change their estimations of their positions (1 and e

π
3 j respectively),

because these global positions are already known and never need to be updated. For the four
free agents, they start from some random estimations of their positions, and it is observed
that these estimations converge to their true positions.
Let e(k) := ∥x(k)− ξ∥2 be the total estimation error of the networked agents. Then Fig. 7.4
shows that e(k) asymptotically converges to zero.
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Figure 7.5: Fifteen networked agents

Example 7.4 Consider a network of 15 agents as displayed in Fig. 7.5. Agents 1 and 2 are
anchor agents, and the rest are free agents. This digraph contains a spanning 2-tree whose
two roots are the two anchor agents.
First, we consider a regular polygon to be the configuration (fixed positions of the 15 agents
in a plane):

ξ = [1 e
2π
15 j e

4π
15 j e

6π
15 j e

8π
15 j e

10π
15 j e

12π
15 j e

14π
15 j e

16π
15 j e

18π
15 j e

20π
15 j e

22π
15 j e

24π
15 j e

26π
15 j e

28π
15 j ]⊤.

Thus ξ is generic. We then design a complex Laplacian matrix L such that rank(L) = 13,
and compute by Algorithm 7.1 an invertible diagonal matrix E such that all the eigenvalues
(except for two eigenvalues 1) of I −EL lie inside the unit circle. With the initial condition
xa(0) = [1 e

2π
15 j]⊤ of the two anchor agents and a random initial condition xf (0) ∈ C13

of the thirteen free agents, a simulation of the TDLA yields the trajectories displayed in
Fig. 7.6. Observe that the estimations of the free agents converge to their true positions.
The estimation error e(k) := ∥x(k) − ξ∥2 is displayed in Fig. 7.7, which asymptotically
converges to zero.
Second, we consider a triangle shape to be the configuration (fixed positions of the agents in
a plane):

ξ = [4j − 1 + 3j 1 + 3j − 2 + 2j 2j 2 + 2j − 3 + j − 1 + j 1 + j 3 + j − 4 − 2 0 2 4]⊤.

Note that this ξ is not generic, because there are multiple cases of three points on the same
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Figure 7.6: Generic configuration: estimations of thirteen free agents converge to their true positions
(×: initial estimation; ◦: final estimation)

line: e.g. the last three entries 0, 2, 4 of ξ. For this example, nevertheless, a complex
Laplacian matrix L may still be designed such that rank(L) = 13, and an invertible diagonal
matrix E is obtained by Algorithm 7.1 such that all the eigenvalues (except for two eigenvalues
1) of I − EL lie inside the unit circle. With the initial condition xa(0) = [4j − 1 + 3j]⊤

of the two anchor agents and a random initial condition xf (0) ∈ C13 of the thirteen free
agents, a simulation of the TDLA yields the trajectories displayed in Fig. 7.8. Observe that
the estimations of the free agents again converge to their true positions, and the estimation
error asymptotically vanishes as displayed in Fig. 7.9.
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Figure 7.7: Generic configuration: estimation error of fifteen networked agents asymptotically
converges to zero

7.5 Notes and References
The two-dimensional localization algorithm (TDLA) is adapted from
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2D space, IEEE Transactions on Signal Processing, vol.63, pp.3751–3761, 2015

Other variations of the distributed localization problem based on different assumptions on locally
sensed information are reported in:

• Y. Diao, Z. Lin, M. Fu, A barycentric coordinate based distributed localization algorithm for
sensor networks, IEEE Transactions on Signal Processing, vol.62, pp.4760–4771, 2014

• Z. Lin, T. Han, R. Zheng, M. Fu, Distributed localization for 2-D sensor networks with
bearing-only measurements under switching topologies, IEEE Transactions on Signal Pro-
cessing, vol.64, pp.6345–6359, 2016

• Z. Lin, T. Han, R. Zheng, C. Yu, Distributed localization with mixed measurements under
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Figure 7.8: Non-generic configuration: estimations of thirteen free agents converge to their true
positions (×: initial estimation; ◦: final estimation)
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Figure 7.9: Non-generic configuration: estimation error of fifteen networked agents asymptotically
converges to zero



Part V
Spanning Multi-Tree Digraphs:

Affine Formation and Localization

This part introduces distributed affine formation control and distributed localization in arbitrary-
dimensional space. The necessary graphical condition for solving these two problems in d-dimensions
(d ≥ 2) is that digraphs contain a spanning (d+1)-tree. The type of Laplacian matrices involved in
these two problems is the signed Laplacian matrices. For agent dynamics, linear time-invariant first-
order systems are considered, with continuous-time for affine formation control while discrete-time
for localization.
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Chapter 8

Affine Formation in Arbitrary
Dimensional Space

In this chapter, we study a formation control problem of multi-agent systems in arbitrary dimen-
sional space. In Chapter 6 we introduced a similar formation control problem in 2D, which is
applicable to teams of autonomous robots and mobile sensors moving on a plane. However, appli-
cations such as formation flying of unmanned aerial vehicles and ocean data retrieval of autonomous
underwater vehicles, 3D formation control methods are needed.

This chapter introduces a new formation control problem called affine formation control, which
includes Chapter 6’s 2D similar formation control as a special case. Specifically, in a d (≥ 2)
dimensional space, a network of agents is required to form a geometric shape, which can be ob-
tained from a prescribed desired shape via translation, rotation, and dimension-wise scaling. The
dimension-wise scaling means that scaling factors along each dimension are possibly different. Pre-
cisely when all dimensions have identical scaling factors, affine formation control coincides with
similar formation control.

The solution for similar formation control in Chapter 6 was based on complex Laplacian, which
is however restricted to 2D only. To solve affine formation control in arbitrary dimensions, we
introduce the third type of graph Laplacian: signed Laplacian. Modeling the interacting agents by
digraphs, we show that a necessary graphical condition to achieve affine formation in a d (≥ 2)
dimensional space is that the digraph contains a spanning (d + 1)-tree, namely there exists (at
least) d + 1 agents that can reach all the other agents through independent paths. These d + 1

root agents play the role of leaders, which determine the translation, rotation, and dimension-wise
scaling offsets from the prescribed shape. Under this graphical condition, we present a distributed
algorithm for the agents to achieve affine formations in arbitrary dimensions.

8.1 Problem Statement

Consider a network of n (> 1) agents in a d (≥ 2) dimensional space. Each agent i (∈ [1, n]) has a
state variable xi(t) ∈ Rd, which is a d-dimensional real vector and denotes the position of agent i

207
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in the d-dimensional space at time t. The time t ≥ 0 is a (nonnegative) real number and denotes
the continuous time. The motion of each agent is governed by the following ordinary differential
equation:

ẋi = ui, i ∈ [1, n] (8.1)

where ui(t) ∈ Rd is the d-dimensional control input.

Let digraph G = (V, E) model the interconnection structure of the n agents. Each node in
V = {1, ..., n} stands for an agent, and each directed edge (j, i) in E ⊆ V × V denotes that agent
i can measure the relative position of agent j (namely xj − xi in agent i’s coordinate frame). The
neighbor set of agent i is Ni := {j ∈ V | (j, i) ∈ E}.

Moreover, consider that digraph G is weighted: each edge (j, i) ∈ V is associated with a real-
valued weight aij ∈ R. Hence the adjacency matrix A = (aij), degree matrix D = diag(A1n), and
Laplacian matrix L = D − A are all real. Note that the adjacency matrix A is not a nonnegative
matrix in general; thus L is a signed Laplacian matrix.

Define a target configuration

ξ =


ξ1
...
ξn

 ∈ Rnd, where ξi ∈ Rd and i ∈ [1, n]

to be the assignment of the n agents to (d-dimensional) points in a global coordinate frame Σ. This
configuration ξ specifies the d-dimensional formation shape that the agents are required to achieve.
To consider not just the ‘consensus formation’, we henceforth assume that ξ is linearly independent
from 1nd (the vector of nd ones).

Given a target configuration ξ ∈ Rnd, we say that another configuration ξ′ ∈ Rnd is affine to ξ

if there exist a matrix A ∈ Rd×d and a vector a ∈ Rd such that

(∀i ∈ [1, n])ξ′i = Aξi + a.

Since an arbitrary real matrix A may be factorized by singular value decomposition as A = UΓV ,
where U, V are unitary matrices (i.e. UU⊤ = U⊤U = I, V V ⊤ = V ⊤V = I) and Γ is a d × d

diagonal matrix (diagonal entries being singular values), configuration ξ′ can be obtained from ξ

via a rotation by V , a scaling along every dimension by Γ, another rotation by U , and finally a
translation by a. This is an affine motion from ξ.
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ξ8
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x

z A = UΓV

Figure 8.1: Illustration of target configuration and affine configuration

For example, Fig. 8.1 displays a target configuration ξ = [ξ⊤1 · · · ξ⊤8 ]⊤ where

ξ1 =

cos
π
4

0

sin π
4

 , ξ2 =

− cos π
4

0

sin π
4

 , ξ3 =

 0

− cos π
4

− sin π
4

 , ξ4 =

 0

cos π
4

− sin π
4

 ,

ξ5 =

 0

− cos π
4

sin π
4

 , ξ6 =

 cos π
3

− sin π
3

0

 , ξ7 =

− cos π
3

sin π
3

0

 , ξ8 =

10
0

 .

This target configuration consists of eight points on a unit sphere in 3D. Also displayed
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is another configuration ξ′ affine to ξ, as it may be obtained from ξ via rotations and
(dimension-wise) scalings via A and a translation via a.

For a given target configuration ξ, let

A(ξ) : = {ξ′ ∈ Rnd | (∃A ∈ Rd×d,∃a ∈ Rd)(∀i ∈ [1, n])ξ′i = Aξi + a}

= {ξ′ ∈ Rnd | (∃A ∈ Rd×d,∃a ∈ Rd)ξ′ = (In ⊗A)ξ + 1n ⊗ a} (8.2)

be the family of all configurations affine to ξ. Here ⊗ is Kronecker product. We say that the n agents
with the aggregated state vector x = [x⊤

1 · · ·x⊤
n ]

⊤ ∈ Rnd form an affine formation with respect to
ξ if x ∈ A(ξ).

To achieve an affine formation, consider the distributed control

ui =
∑
j∈Ni

wij(xj − xi) (8.3)

where the control gain wij ∈ R satisfies

(i)
∑
j∈Ni

wij(ξj − ξi) = 0 (8.4)

(ii) wij = ϵiaij , ϵi ∈ R \ {0}. (8.5)

This control (8.3) is in the same form as that for similar formation in Chapter 6: the gains wij

are not simply the edge weights aij , but are real (nonzero) multiples of aij (8.5) and satisfy linear
constraints with respect to the target configuration ξ (8.4). Different from the control for similar
formations where edge weights and control gains are complex, here edge weights and control gains
are real.

Moreover, substituting (8.5) into (8.4) and removing the common multiple ϵi yield∑
j∈Ni

aij(ξj − ξi) = 0. (8.6)

This in matrix form is (L⊗Id)ξ = 0; that is, the target configuration lies in the kernel of L⊗Id, where
L is the signed Laplacian matrix of the (real-)weighted digraph. Since L1n = 0 (by definition), it
follows that

ker(L⊗ Id) ⊇ A(ξ). (8.7)

To see this, let ξ′ ∈ A(ξ). Then there exist a matrix A and a vector a such that ξ′ = (In⊗A)ξ+1n⊗a.
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Hence

(L⊗ Id)ξ
′ = (L⊗ Id)((In ⊗A)ξ + 1n ⊗ a)

= (L⊗ Id)(In ⊗A)ξ + (L⊗ Id)(1n ⊗ a)

= (L⊗A)ξ + (L1n)⊗ a

= (In ⊗A)(L⊗ Id)ξ

= 0.

The above derivation means ξ′ ∈ ker(L ⊗ Id). Therefore, if the control ui in (8.3) satisfying (8.4)
and (8.5) can be found, the kernel of L⊗ Id at least contains the family of all configurations affine
to the target ξ.

Affine Formation Control Problem:
Consider a network of agents modeled by (8.1) interconnected through a digraph, and let ξ ∈ Rnd

be a target configuration (linearly independently from 1nd). Design a distributed control ui in (8.3)
such that

(i) ker(L⊗ Id) = A(ξ)

(ii) (∀x(0) ∈ Rnd)(∃ξ′ ∈ A(ξ)) lim
t→∞

x(t) = ξ′.

The first requirement (i) strengthens (8.7) to equality; namely the kernel of L ⊗ Id is exactly
the family A(ξ) of all configurations affine to ξ. The second requirement (ii) means that every
trajectory of the networked agents converges to an affine formation in A(ξ).

Example 8.1 We provide an example to illustrate the affine formation control problem.
As displayed in Fig. 8.2, eight agents are interconnected through a digraph. The neighbor
sets of the agents are N1 = N2 = N3 = N4 = ∅, N5 = {1, 2, 6, 7}, N6 = {3, 4, 7, 8},
N7 = {1, 5, 6, 8}, and N8 = {4, 5, 6, 7}.
Let the target configuration ξ be eight (three-dimensional) points on a unit sphere (see
Fig. 8.1). Thus the family A(ξ) contains all affine formations that can be obtained from ξ

via affine motions.
The affine formation control problem is to design a distributed control ui in (8.3) such that
the kernel of L ⊗ Id coincides with A(ξ), and moreover the agents’ aggregated state vector
asymptotically converges to an affine formation in A(ξ).

A necessary graphical condition for solving the affine formation control problem is given below.
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Figure 8.2: Illustrating example of eight agents

Proposition 8.1 Suppose that there exists a distributed control ui in (8.3) that solves the
affine formation control problem in a d-dimensional space. Then the digraph contains a
spanning (d+ 1)-tree.

Proof. Let ξ ∈ Rnd be a target configuration. Suppose that there exists a distributed control in
(8.3) that solves the d-dimensional affine formation control problem with respect to ξ, but that the
digraph G = (V, E) does not contain a spanning (d + 1)-tree. We will derive a contradiction that
ker(L⊗ Id) ⫌ A(ξ), thereby proving that G must contain a spanning (d+ 1)-tree.

First, by definition G containing no spanning (d + 1)-tree means the following. Let R be an
arbitrary set of d+1 nodes. Then removing a set D of d nodes in V \R and all their incoming and
outgoing edges, a subset VD ⫋ V \ D is unreachable from R in the new digraph G′. We write this
as R ̸→ VD in G′.

Now let V̄D := V \ (VD ∪D). This set V̄D is nonempty because R ⊆ V̄D (trivially). In addition,
even after removing D, the nodes in V̄D can still be reached from R, i.e. R → V̄D; but V̄D ̸→ VD.

Let m := |VD| (≥ 1), and relabel

• nodes in VD from v1 to vm;
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• nodes in D from vm+1 to vm+d;

• nodes in V̄D from vm+d+1 to vn.

Then the signed Laplacian matrix L of G′ after relabeling (denoted by L′) has the following struc-
ture:

L′ =

[
L′
11 L′

12 0

L′
21 L′

22 L′
23

]
.

The 0 matrix in the (1, 3)-block is due to V̄D ̸→ VD in G′.
Also reorder the components ξi of the target formation ξ according to the above relabeling, and

denote the result by ξ′. By the assumption that there exists a distributed control in (6.3), we have
(L⊗ Id)ξ = 0 and L1n = 0. Substituting the relabeled L′ and ξ′ into the two equations yields([

L′
11 L′

12 0
]
⊗ Id

)
ξ′ = 0,

[
L′
11 L′

12 0
]
1n = 0.

Since ξ′ and 1nd are linearly independent (linear independence of ξ and 1nd is assumed in the
problem statement), the rows of [L′

11 L′
12 0] are linearly dependent.

Now remove from L′ the d + 1 rows corresponding to R and d + 1 arbitrary columns. Since
R ⊆ V̄D, it holds that the removed rows have labels in [m + d + 1, n]. Then the resulting matrix
L′
R ∈ R(n−d−1)×(n−d−1) is

L′
R =

[
L′
R,11 L′

R,12 0

L′
R,21 L′

R,22 L′
R,23

]
.

Thus [L′
R,11 L′

R,12 0] still has m rows. Since the m rows of [L′
11 L′

12 0] are linearly dependent, so
are the m rows of [L′

R,11 L′
R,12 0]. Hence L′

R has less than n − d − 1 linearly independent rows,
and consequently det(L′

R) = 0.
Finally since the set R of d + 1 nodes is arbitrary, the original signed Laplacian matrix L of

G′ does not have any minor with size n − d − 1 that has nonzero determinant. This means that
rank(L) ≤ n− d− 2, and therefore ker(L⊗ Id) ⫌ A(ξ). This is a contradiction to the solvability of
the affine formation control problem. The proof is now complete. □

Owing to Proposition 8.1, we shall henceforth assume that the digraph contains a spanning
(d+ 1)-tree.

Assumption 8.1 The digraph G modeling the interconnection structure of the networked agents
contains a spanning (d+ 1)-tree.

Remark 8.1 (Affine formation versus similar formation in 2D) Consider the special case
d = 2, i.e. a 2D plane (with two axes labeled x, y). In this case, both affine formations and
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similar formations may be defined, but there is a notable difference. Let ξ ∈ Cn or R2n. A similar
formation ξ′ ∈ Cn can be obtained from ξ via a translation, a rotation, and a scaling which is the
same for both x and y axes. On the other hand, an affine formation ξ′ ∈ R2n can be obtained from
ξ via a translation, a rotation, a scaling for x axis and a possibly different scaling for y axis. Hence
an affine formation allows different scalings along different axes, and this is the reason why the
necessary graphical condition for achieving affine formations requires a spanning 3-tree, in contrast
with a spanning 2-tree required for similar formations.

Even if Assumption 8.1 holds, not every configuration ξ ∈ Rnd (linearly independent from 1nd)
whose affine configurations may be achieved by a distributed control ui in (8.3). An illustrative
example is provided below.

2

1 4

5

7

6

8

3

Figure 8.3: Eight-node digraph containing a spanning 3-tree
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Example 8.2 Consider a network of eight agents in a 2D space (i.e. d = 2). Their
interconnection is modeled by the digraph displayed in Fig. 8.3. This digraph G contains
a spanning 3-tree, with the 3-root subset R = {1, 2, 3}. Now consider the following target
configuration ξ = [ξ⊤1 · · · ξ⊤8 ]⊤ where

ξ1 =

[
0

0

]
, ξ2 =

[
1

1

]
, ξ3 =

[
−1

−1

]
, ξ4 =

[
1

1

]
, ξ5 =

[
−1

−1

]
, ξ6 =

[
2

2

]
, ξ7 =

[
2

2

]
, ξ8 =

[
0

−6

]
.

This target configuration ξ has its first seven two-dimensional points on the same line. Thus
ξ is not generic, though it is linearly independent from 116. For this non-generic ξ, for every
signed Laplacian matrix L of G with (L ⊗ I2)ξ = 0, it is verified that rank(L) ≤ 4. To see
this, write (L⊗ I2)ξ explicitly as



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

l41 0 0 l44 l45 0 l47 0

0 l52 0 l54 l55 l56 0 0

0 0 l63 0 l65 l66 l67 0

0 0 0 l74 0 l76 l77 l78

l81 l82 l83 0 0 0 0 l88


⊗

[
1 0

0 1

]




ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8


.

For the fourth row of L (other rows are similar), it follows from L18 = 0 and (L⊗ I2)ξ = 0

that

l41 + l44 + l45 + l47 = 0

(l41 ⊗ I2)ξ1 + (l44 ⊗ I2)ξ4 + (l45 ⊗ I2)ξ5 + (l47 ⊗ I2)ξ7 = 0.

To satisfy these equations, the entries l31, l32, l33, l35 are such that
l41

l44

l45

l47

⊗ 12 = c4


ξ7 − ξ4

ξ1 − ξ5

ξ4 − ξ7

ξ5 − ξ1

 = c4


1

1

−1

−1

⊗ 12

for some nonzero real number c4. Similarly, the (four) entries of rows 5,6,7,8 may be
determined up to nonzero real multiples c5, c6, c7, c8 (respectively). For simplicity, letting



216 Chapter 8. Affine Formation in Arbitrary Dimensional Space

c4 = c5 = c6 = c7 = c8 = 1 we have one instance of L as follows:

L =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 −1 0 −1 0

0 1 0 2 −1 −2 0 0

0 0 3 0 −3 −3 3 0

0 0 0 0 0 −1 1 0

−2 1 1 0 0 0 0 0


.

This L has rank 4, meaning that the last five rows are linearly dependent. Then for arbi-
trary values of c4, c5, c6, c7, c8, these five rows cannot become linearly independent. Hence
rank(L) ≤ 4 for every L with (L⊗ I2)ξ = 0. This means that ker(L⊗ I2) ⫌ S(ξ), and con-
sequently there does not exist a distributed control in (8.3) that solves the affine formation
control problem with the chosen target configuration ξ.

In virtue of Example 8.2, we henceforth require that the target formation ξ be generic. The
requirement is mild, nevertheless, inasmuch as the set of all non-generic configurations has Lebesgue
measure zero. This means that for a given non-generic configuration ξ, randomly perturbing its
entries generates a generic configuration. It is also noted that every generic configuration ξ is
linearly independent from 1.

Assumption 8.2 The target configuration ξ = [ξ⊤1 · · · ξ⊤n ]⊤ ∈ Rnd is generic.

8.2 Distributed Algorithm

Example 8.3 Consider again Example 8.1, where the target configuration ξ consists of eight
(three-dimensional) points on a unit sphere (see Fig. 8.1). This ξ is generic.
To achieve an affine formation of ξ, we consider using the simplest form of the distributed
control (8.3) by setting all ϵi = 1:

ẋi =
∑
j∈Ni

aij(xj(k)− xi(k)), i ∈ [1, 8] (8.8)
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where aij ∈ R are real weights of edges (j, i) to be designed to satisfy (8.6):∑
j∈Ni

aij(ξj − ξi) = 0, i ∈ [1, 8].

Now we illustrate how such real weights may be designed. Take agent 6 for example: it has
four neighbors 3, 4, 7, 8. Thus we must find weights a63, a64, a67, a68 such that

a63(ξ3 − ξ6) + a64(ξ4 − ξ6) + a67(ξ7 − ξ6) + a68(ξ8 − ξ6) = 0.

Substituting vectors ξ3, ξ4, ξ6, ξ7, ξ8 into the above equation yields

a63

 − cos π
3

sin π
3 − cos π

4

− sin π
4

+ a64

 − cos π
3

sin π
3 + cos π

4

− sin π
4

+ a67

−2 cos π
3

2 sin π
3

0

+ a68

1− cos π
3

sin π
3

0

 = 0.

This is a system of linear equations, with four unknowns (the weights) and three equations.
Thus there are infinitely many solutions (indeed the solution space is one-dimensional). One
solution is the following:

a63 = − sin
π

3
, a64 = sin

π

3
, a67 = cos

π

4
(cos

π

3
− 1), a68 = −2 cos

π

3
cos

π

4
.

Note that this weight design can be done locally by individual agents if relative information
ξj − ξi (j ∈ Ni) is available.
Similarly we design other weights to satisfy (8.6), and write (8.8) in vector form:
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ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8


= ( [

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

cos π
3 − sin π

3 − cos π
3 − sin π

3 0 0

0 0 − sin π
3 sin π

3

− sin π
3 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2 sin π
3 − cos π

4 cos π
4 0

0 cos π
4 (cos

π
3 + 1) cos π

4 (cos
π
3 − 1) −2 cos π

3 cos π
4

sin π
3 − 1

2 cos
π
4 (1 + sin π

3 + cos π
3 )

1
2 cos

π
4 (1− sin π

3 − cos π
3 ) cos π

4 (sin
π
3 + cos π

3 )

1 −1 −1 0

]
⊗

1 0 0

0 1 0

0 0 1

 )


x1

x2

x3

x4

x5

x6

x7

x8


.

Inspect that the matrix above has zero row sums, and is indeed the minus of the signed
Laplacian matrix L of the (real-)weighted digraph. It is also checked that (L ⊗ I3)ξ = 0,
namely the target configuration lies in the kernel of L ⊗ I3. Moreover, there are exactly
four eigenvalues 0 of L, and hence ker(L ⊗ I3) = A(ξ) (the first requirement of the affine
formation control problem is satisfied).
However, the nonzero eigenvalues of matrix −L are

−1.0578,−2.371, 0.3828 + 0.8926j, 0.3828− 0.8926j

and hence −L is not stable (the last two eigenvalue have positive real parts). Therefore to
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stabilize x(t) to the kernel of L⊗I3 (to satisfy the second requirement of the affine formation
control problem), the unstable eigenvalues of −L must be moved to the open left-half plane.
This shows that simply setting all ϵi = 1 in (8.3) does not work in general. In fact, ϵi need
to be properly chosen in order to stabilize −L.

In the following we redescribe the distributed control (8.3) in vector form, and will analyze its
stability in relation to the values of ϵi in the next section.

Affine Formation Control Algorithm (AFCA):
Every agent i has a state variable xi(t) ∈ Rd (d ≥ 1) representing its position in a d-dimensional

space at time t; the initial state xi(0) is an arbitrary d-dimensional real vector. Offline, each agent
i computes weights aij by solving (8.6):∑

j∈Ni

aij(ξj − ξi) = 0.

Then online, at each time t ≥ 0, every agent i updates its state xi(t) using the following distributed
control:

ui = ϵi
∑
j∈Ni

aij(xj − xi) (8.9)

where ϵi ∈ R \ {0} is a (nonzero) real control gain.
Let x := [x⊤

1 · · ·x⊤
n ]

⊤ ∈ Rnd be the aggregated state vector of the networked agents, and E =

diag(ϵ1, . . . , ϵn) ∈ Rn×n the (diagonal and invertible) control gain matrix. Then the n equations
(8.9) become

ẋ = ((−EL)⊗ Id)x. (8.10)

Remark 8.2 The above AFCA requires that the following information be available for each indi-
vidual agent i:

• ξj − ξi for all j ∈ Ni (offline computation of weights)

• xj − xi for all j ∈ Ni (online computation of control inputs).

8.3 Convergence Result

The following is the main result of this section.
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Theorem 8.1 Suppose that Assumptions 8.1 and 8.2 hold. There exists a (diagonal and in-
vertible) control gain matrix E = diag(ϵ1, . . . , ϵn) such that AFCA solves the affine formation
control problem.

To prove Theorem 8.1, we analyze the eigenvalues of the matrix (−EL)⊗ Id in (8.10). For this,
the following fact is useful (which is the real counterpart of Lemma 6.1).

Lemma 8.1 Consider an arbitrary square real matrix M ∈ Rn×n. If all the principal minors
of M are nonzero, then there exists an invertible diagonal matrix E = diag(ϵ1, . . . , ϵn) ∈
Rn×n such that all the eigenvalues of EM have positive real parts.

Proof: The proof is based on induction on n. For the base case n = 1, M = m11 is a nonzero scalar
(as the principal minor of M is nonzero). Let ϵ1 := 1

m11
. Then EM = ϵ1m11 = 1(= det(E)det(M)).

For the induction step, suppose that the conclusion holds for M ∈ R(n−1)×(n−1). Since the n−1

eigenvalues are either positive real or conjugate pairs with positive real parts and det(E)det(M) =

λ1 · · ·λn−1, we have det(E)det(M) > 0. Now consider M ∈ Rn×n, with all of its principal minors
nonzero. Let M1 be the submatrix of M with the last row and last column removed. Then all
the principal minors of M1 are nonzero, and by the hypothesis there exists an invertible diagonal
matrix E1 = diag(ϵ1, . . . , ϵn−1) such that all the eigenvalues λ1, . . . , λn−1 of E1M1 have positive
real parts. Now write

M =

[
M1 M2

M3 mnn

]

where mnn is a nonzero scalar (since all the principal minors of M is nonzero). Also let

E =

[
E1 0

0 ϵn

]

for some real ϵn. Thus

EM =

[
E1 0

0 ϵn

][
M1 M2

M3 mnn

]
=

[
E1M1 E1M2

ϵnM3 ϵnmnn

]
.

If ϵn = 0, then

EM =

[
E1M1 E1M2

0 0

]
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which means that EM has a (simple) eigenvalue λn = 0 and all the rest n − 1 eigenvalues
λ1, . . . , λn−1 have positive real parts. Since eigenvalues are continuous functions of matrix en-
tries, for sufficiently small |ϵn| > 0, EM still has n− 1 eigenvalues λ′

1, . . . , λ
′
n−1 with positive real

parts.
Now we consider the last eigenvalue λ′

n. Since

det(E) ̸= 0, det(M) ̸= 0, det(EM) = λ′
1 · · ·λ′

n

we have λ′
n ̸= 0. If λ′

n is complex, then it must be a conjugate to an existing eigenvalue whose real
part is positive. Hence λ′

n also has positive real part. If λ′
n is real, then λ′

1, . . . , λ
′
n−1 are symmetric

with respect to the real axis. As a result, the product of the first n− 1 eigenvalues is positive, i.e.
λ′
1 · · ·λ′

n−1 > 0. Also note that

det(EM) = ϵndet(E1)det(M) = λ′
1 · · ·λ′

n−1λ
′
n.

Thus choosing (sufficiently small) ϵn such that ϵndet(E1)det(M) > 0, we derive λ′
n > 0. This proves

the induction step, and thereby completes the proof. □
The above proof suggests an algorithm (Algorithm 8.1 below) to compute an invertible diagonal

matrix E = diag(ϵ1, . . . , ϵn) such that all the eigenvalues of EM have positive real parts. This
algorithm is simpler than Algorithm 6.1 in Chapter 6, since computing ϵi on line 5 does not involve
the product of eigenvalues. By the proof of Lemma 8.1, one can always choose appropriate (small)
δ1, . . . , δn in line 1 so that Algorithm 8.1 outputs an invertible diagonal matrix E that renders all
the eigenvalues of EM with positive real parts.

Algorithm 8.1 Diagonal Stabilization Algorithm (case of real matrix, right-half plane)
Input: square real matrix M ∈ Rn×n with nonzero principal minors
Output: invertible diagonal matrix E ∈ Rn×n

1: set δ1, . . . , δn to be small positive real numbers
2: ϵ1 = δ1

M(1,1)

3: E1 = diag(ϵ1)
4: for i = 2, . . . , n do
5: ϵi =

δi
det(Ei−1)det(M(1:i,1:i))

6: Ei = diag(ϵ1, . . . , ϵi)
7: end for
8: E = diag(ϵ1, . . . , ϵn)

Lemma 8.1 provides a sufficient condition under which the eigenvalues of a real matrix may
be moved to the open right-half plane using an invertible diagonal real matrix. The following
proposition asserts that this condition holds for the submatrix of the signed Laplacian matrix L of
a digraph containing a spanning (d+1)-tree, with the d+1 rows and d+1 columns corresponding
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to the roots removed. More formally, consider a digraph G = (V, E) and let L be a signed Laplacian
matrix of G (corresponding to a specific choice of edge weights). Let R ⊆ V, and denote by LR the
submatrix of L by removing the rows and columns corresponding to R.

Proposition 8.2 Consider a digraph G = (V, E) and a configuration ξ. Suppose that As-
sumptions 8.1 and 8.2 hold. Let R be a (d + 1)-root subset. Then for almost all signed
Laplacian L of G satisfying (L⊗ Id)ξ = 0, all principal minors of LR are nonzero.

To prove Proposition 8.2, we first establish two lemmas.

Lemma 8.2 Consider a digraph G = (V, E) and suppose that G contains a spanning (d+1)-
tree (Assumption 8.1). Let v1, . . . , vd+1 ∈ V be d + 1 roots (renumbering if necessary) and
R := {v1, . . . , vd+1}. Then for almost all signed Laplacian L, all principal minors of LR

are nonzero.

Proof: The proof is based on induction on k, where k is such that the digraph G contains a spanning
k-tree. First consider the base case, namely k = 1 and G contains a spanning tree. Without loss of
generality let v1 ∈ V be a root and R := {v1}. For this case, in Lemma 6.2(i) we have shown that
the conclusion holds for almost all complex Laplacian, which include signed Laplacian as a special
case. Hence for almost all signed Laplacian L, all principal minors of LR are nonzero.

Next consider the induction step, namely k = d and G contains a spanning d-tree with a d-root
subset R = {v1, . . . , vd}. Suppose that for almost all real Laplacian L of G, all principal minors of
LR are nonzero. It will be shown that the same conclusion holds for k = d+1 , in which G contains
a spanning (d+ 1)-tree with a (d+ 1)-root subset R = {v1, . . . , vd, vd+1}.

Remove an arbitrary node in R (say v1) and all its incoming and outgoing edges, and denote
the resulting subgraph G′. Then G′ contains a spanning d-tree (R′ := {v2, . . . , vd+1} being a d-root
subset), and it follows from the induction hypothesis that for almost all signed Laplacian L′ of G′,
all the principal minors of L′

R′ are nonzero. Since the principal minors of L′
R′ are identical with

those of LR, where L is a signed Laplacian matrix of G, the conclusion is established. □
For the second lemma, we introduce the following notation. Consider a digraph G = (V, E)

and let L be a signed Laplacian matrix of G. Let R ⊆ V, and denote by LR a submatrix of L by
removing the rows corresponding to R and arbitrary |R| columns.

Lemma 8.3 Consider a digraph G = (V, E) and suppose that G contains a spanning (d+1)-
tree (Assumption 8.1). Let v1, . . . , vd+1 ∈ V be d + 1 roots (renumbering if necessary) and
R := {v1, . . . , vd+1}. Then for almost all signed Laplacian L, det(LR) ̸= 0.

Proof: The proof is based on induction on k, where k is such that the digraph G contains a spanning
k-tree. First consider the base case: namely k = 1 and G contains a spanning tree. Let v1 be a root
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of G (without loss of generality), R := {v1}, and L a signed Laplacian matrix of G. For this case,
in Lemma 6.3(i) we have shown that the conclusion holds for almost all complex Laplacian of G,
which include signed Laplacian of G as a special case. Hence for almost all signed Laplacian L of
G, det(LR) ̸= 0.

Next consider the induction step: namely k = d and G contains a spanning d-tree with a d-root
subset R := {v1, . . . , vd} (without loss of generality). Suppose that for almost all signed Laplacian
L of G, det(LR) ̸= 0. It will be shown that the same conclusion holds for k = d + 1, where G
contains a spanning (d+ 1)-tree with a (d+ 1)-root subset R := {v1, . . . , vd, vd+1} (without loss of
generality).

Consider k = d + 1. Let LR be a submatrix of L with d + 1 rows corresponding to R =

{v1, . . . , vd, vd+1} and arbitrary d + 1 columns removed. Also let V̄ be the set of d + 1 nodes that
correspond to the removed columns. If V̄ ∩ R ̸= ∅; then let vi ∈ V̄ ∩ R. Remove vi and all its
incoming and outgoing edges, and denote the resulting subgraph G′. Then G′ contains a spanning
d-tree (R\{vi} being a d-root subset), and it follows from the induction hypothesis that for almost
all signed Laplacian L′ of G′, det((L′)R\{vi}) ̸= 0. This implies det(LR) ̸= 0 for almost all signed
Laplacian L of G.

It remains to consider the case V̄ ∩ R = ∅; namely the nodes corresponding to the removed
columns are not in the (d+1)-root subset R. For this, let vi ∈ V \R, and denote by pj (j ∈ [1, n])
the jth row of L. Consider the following elementary row transformations:

L =



p1
...

pd+1

...
pi
...


=⇒ L̃ :=



k1p1 + · · ·+ knpn
...

pd+1

...
pi
...


where k1, . . . , kn are proper coefficients such that the d+2 entries L̃(1, 1), . . . , L̃(1, d+1), L̃(1, i) on
the first row of L̃ are nonzero. Such coefficients always exist because each of the d+ 1 roots has at
least one outgoing edge. Denote by G̃ the digraph corresponding to L̃. We claim that G̃ contains
a spanning (d + 1)-tree with a (d + 1)-root subset R̃ := {v2, . . . , vd+1, vi}. To see this, first note
that v1 is (d + 1)-reachable from R̃ because L̃(1, 2), . . . , L̃(1, d + 1), L̃(1, i) are nonzero and there
are d + 1 edges (v2, v1), . . . , (vd+1, v1), (vi, v1). Now consider a node vj (j ̸= 1, . . . , d + 1, i); there
are two cases:

• All d+1 disjoint paths from R to vj do not go through vi. Then vj is (d+1)-reachable from
R̃: v2 → vj , . . . , vd+1 → vj , and vi → v1 → vj .



224 Chapter 8. Affine Formation in Arbitrary Dimensional Space

• Among d+ 1 disjoint paths from R to vj , there exists one path from vm ∈ R (m ∈ [1, d+ 1])
such that vm → vi → vj . Then vj is also (d + 1)-reachable from R̃: vm → v1 → vj ,
v1 → vj , . . . , vm−1 → vj , vm+1 → vj , . . . , vd+1 → vj , and vi → vj .

Note that it is not possible that more than one path from R to vj goes through vi in virtual of the
definition of spanning d-tree. Hence our claim is established.

Now remove node vi and all its incoming and outgoing edges, and denote the resulting subgraph
G̃′. Then G̃′ contains a spanning d-tree (R̃ \ {vi} being a d-root subset), and it follows from the
induction hypothesis that for almost all signed Laplacian L̃′ of G̃′, det((L̃′)R̃\{vi}) ̸= 0. Since LR

may be obtained from (L̃′)R̃\{vi} via elementary row transformations (reordering the first row to
the ith position and recovering pi), we conclude that det(LR) ̸= 0 for almost all signed Laplacian
L of G. The proof is now complete. □

With the above two lemmas, we now provide the proof of Proposition 8.2.

Proof of Proposition 8.2: By Assumption 8.1, G = (V, E) contains a spanning (d + 1)-tree
T = (V, ET ), where ET ⊆ E and the (d + 1)-root subset R = {v1, . . . , vd+1} (renumbering if
necessary). Consider a signed Laplacian T of T such that all principal minors of TR are nonzero.
Such T always exists by Lemma 8.2. For the rank of T , on one hand rank(T ) ≥ n − d − 1 since
det(TR) ̸= 0; on the other hand rank(T ) ≤ n − d − 1 since the first d + 1 rows of T are zero
row vectors. Hence rank(T ) = n − d − 1, and the kernel of T is (d + 1)-dimensional. One basis
of this kernel is 1n since T is a signed Laplacian. Denote the other d bases by η1, . . . , ηd. Then
1n, η1, . . . , ηd are linearly independent.

Writing H := [1n η1 · · · ηd] ∈ Rn×(d+1), we claim that by removing any n − d − 1 rows of H,
the remaining square matrix H ′ ∈ R(d+1)×(d+1) has full rank, i.e. rank(H ′) = d + 1. To see this,
suppose on the contrary that by removing certain n− d− 1 rows of H, the remaining matrix H ′ is
such that rank(H ′) < d+1. Renumbering the indices of the removed rows to be I := {d+2, . . . , n}
and accordingly reordering the rows of the matrix H transform H to

H̃ =

[
M

N

]
, where M ∈ R(d+1)×(d+1), N ∈ R(n−d−1)×(d+1).

The above (contrapositive) assumption means rank(M) < d + 1. Namely, there exists a nonzero
vector ζ ∈ Rd+1 such that Mζ = 0. On the other hand, reordering the columns of the signed
Laplacian matrix T according to I and then removing the d + 1 rows corresponding to the d + 1

roots transform T to

T̃ =
[
T1 T2

]
, where T1 ∈ R(n−d−1)×(d+1), T2 ∈ R(n−d−1)×(n−d−1).
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By Lemma 8.3, det(T2) ̸= 0. It follows from TH = 0 that T̃ H̃ = 0. Specifically:

[
T1 T2

] [M
N

]
= 0.

Since Mζ = 0, we derive from above equation that T2Nζ = 0. Further, since det(T2) ̸= 0, we
have Nζ = 0. This implies Hζ = 0, which means that its columns 1n, η1, . . . , ηd are not linearly
independent. This is a contradiction, and hence by removing any n−d−1 rows of H, the remaining
matrix H ′ has full rank after all.

Moreover, since each node vi ∈ V \R has exactly d+1 neighbors (by the definition of spanning
(d+1)-tree), each corresponding row of T has at most d+2 nonzero entries. Thus equation TH = 0

yields: 
1 1 · · · 1

η1i η1i1 · · · η1id+1

...
...

...
...

ηdi ηdi1 · · · ηdid+1




Tii

Tii1

...
Tiid+1

 = 0

where vi1 , . . . , vid+1
are the d+ 1 neighbors of vi. Write

Hi :=


1 1 · · · 1

η1i η1i1 · · · η1id+1

...
...

...
...

ηdi ηdi1 · · · ηdid+1

 , Ti :=
[
Tii Tii1 · · · Tiid+1

]
.

Since by removing any n− d− 1 rows of H, the remaining matrix H ′ ∈ R(d+1)×(d+1) has full rank,
we have rank(Hi) = d + 1. Hence the kernel of Hi is one-dimensional, which means that Ti (the
solution of the above system of linear equations) lies in a one-dimensional subspace.

Now consider a generic configuration ξ = [ξ⊤1 · · · ξ⊤n ]⊤ ∈ Rnd and another signed Laplacian
matrix T ′ of T such that (T ′ ⊗ Id)ξ = 0. This equation leads to


1 1 · · · 1

ξ11 ξ21 · · · ξn1
...

...
...

...
ξ1d ξ2d · · · ξnd



T ′
i1

T ′
i2

...
T ′
in

 = 0

for every ith row of T ′. Similar to T above, each row of T ′ corresponding to a non-root node
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vi ∈ V \ R has at most d+ 2 nonzero entries. It follows from the above equation that


1 1 · · · 1

ξi1 ξi11 · · · ξid+11

...
...

...
...

ξid ξi1d · · · ξid+1d




T ′
ii

T ′
ii1
...

T ′
iid+1

 = 0

where vi1 , . . . , vid+1
are the d+ 1 neighbors of vi. Write

Ξi :=


1 1 · · · 1

ξi1 ξi11 · · · ξid+11

...
...

...
...

ξid ξi1d · · · ξid+1d

 , T ′
i :=

[
T ′
ii T ′

ii1
· · · T ′

iid+1

]
.

Since ξ is generic, rank(Ξi) = d + 1. Hence the kernel of Ξi is one-dimensional, which means that
T ′
i (the solution of the above system of linear equations) lies in a one-dimensional subspace.

We claim that T ′
i and Ti have the same zero/nonzero patterns. To see this, suppose that T ′

ij ̸= 0

(j ∈ {i, i1, . . . , id+1}). Since T ′
i is in a one-dimensional subspace, an arbitrary (nonzero) scaling of

T ′
i generates a new T ′′

i with (still) T ′′
ij ̸= 0. This holds as long as rank(Ξi) = d + 1. In particular,

as rank(Hi) = d+ 1, we have Tij ̸= 0 (indeed Tij is a nonzero real multiple of T ′
ij). The other case

where T ′
ij = 0 implies Tij = 0 is similar. Since all principal minors of TR are nonzero, it follows

from the fact that a polynomial is either constantly zero or nonzero almost everywhere (i.e. nonzero
for almost all indeterminates of the polynomial) that all principal minors of T ′

R are also nonzero.
Finally, return to the digraph G and let L be a signed Laplacian matrix of G satisfying (L⊗Id)ξ =

0. Compared with T ′, L has more nonzero real entries. Again according to the fact that a polynomial
is either constantly zero or nonzero almost everywhere, we conclude that all principal minors of LR

are also nonzero. The proof is now complete. □
Finally we are ready to prove Theorem 8.1.

Proof of Theorem 8.1: Let Assumptions 8.1 and 8.2 hold. On one hand, it follows from Propo-
sition 8.2 that for almost all signed Laplacian L of G satisfying (L⊗ Id)ξ = 0 (where ξ is generic),
rank(L) ≥ n−d−1, i.e. dim(kerL) ≤ d+1. On the other hand, by using the distributed control in
AFCA, we derive ker(L⊗ Id) ⊇ A(ξ) as in (8.7), and thus dim(kerL) ≥ d+1. Therefore for almost
all signed Laplacian L of G satisfying (L⊗ Id)ξ = 0, we have ker(L⊗ Id) = A(ξ), which establishes
the first condition in the affine formation control problem.

For the second condition, let R = {v1, . . . , vd+1} (renumbering if necessary) be a (d + 1)-root
subset and LR the submatrix of L of G with the fist d + 1 rows and columns corresponding to R
removed. Then by Proposition 8.2, for almost all signed Laplacian L satisfying (L ⊗ Id)ξ = 0, all
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principal minors of LR are nonzero. It then follows from Lemma 8.1 that there exists an invertible
diagonal matrix ER = diag(ϵd+2, . . . , ϵn) such that all the eigenvalues of −ERLR have negative
real parts. Let

E′ :=

[
0 0

0 ER

]
, L =

[
L1 L2

L3 LR

]
.

It follows that

−E′L = −

[
0 0

ERL3 ERLR

]
.

Hence the spectrum (i.e. set of eigenvalues) of −E′L is the union of the spectrum of −ERLR and
{0, . . . , 0} (a set of d+ 1 zeros). Let ϵ1, . . . , ϵd+1 be sufficiently small positive real numbers and

E :=


ϵ1 · · · 0 0
... . . . ...

...
0 · · · ϵd+1 0

0 · · · 0 ER

 .

Then all the diagonal entries of E are nonzero, and E is invertible. Thus rank(EL) = rank(L) =
n − d − 1 (i.e. kerEL = kerL), and there are d + 1 zero eigenvalues of −EL. Moreover, since
eigenvalues are continuous functions of matrix entries and ϵ1, . . . , ϵd+1 are sufficiently small, the
rest n− d− 1 eigenvalues of −EL still have negative real parts.

Finally consider the equation (8.10): ẋ = ((−EL)⊗Id)x. By the property of Kronecker product,
the matrix (−EL) ⊗ Id has d(d + 1) zero eigenvalues and d(n − d − 1) eigenvalues with negative
real parts. Hence for an arbitrary initial condition x(0),

x(t) → ker((−EL)⊗ Id) = ker((−L)⊗ Id) = ker(L⊗ Id) = A(ξ)

as t → ∞. Namely the second condition of the affine formation control problem is established. This
completes the proof. □
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8.4 Simulation Examples

Example 8.4 Let us consider again Example 8.3, where the (generic) target configuration
consists of eight 3-dimensional points on the unit sphere (Fig. 8.1). We have designed a
signed Laplacian matrix L of the digraph modeling the interconnection of the eight agents in
Example 8.3. While it is satisfied that ker(L⊗ I3) = A(ξ), two of the nonzero eigenvalues of
−L are unstable (i.e. with positive real parts). Thus we need to design an invertible diagonal
matrix E such that all the nonzero eigenvalues of −EL are stable.
Since the target configuration ξ is generic and the digraph G contains a spanning 4-tree with
the 4-root subset R = {1, 2, 3, 4}, all the principal minors of the submatrix LR (with the
four rows and columns corresponding to R removed) are nonzero. Therefore by Lemma 8.1,
there exists an invertible diagonal matrix ER such that all the eigenvalues of −ERLR are
stable. For computing such ER, we apply Algorithm 8.1 and obtain

ER = diag(0.5774, 2.1213,−1.2879,−4).

Then an invertible diagonal matrix E such that all the nonzero eigenvalues of −EL are
stable is:

E = diag(1, 1, 1, 1, 0.5774, 2.1213,−1.2879,−4).

Indeed, the eigenvalues of −EL are:

0, 0, 0, 0,−0.7916 + 3.1798j,−0.7916− 3.1798j,−0.9167 + 0.7416j,−0.9167− 0.7416j.

With a random initial condition x(0) ∈ R24 (whose entries represent eight random positions
of the agents in a 3D space), a simulation of the AFCA (i.e. ẋ = ((−EL) ⊗ I3)x) yields
the trajectories displayed in Fig. 8.4. It is observed that an affine formation of sphere is
formed. In the figure, × denotes the initial positions of the agents, while ◦ the final positions.
Observe that the four root agents have stayed put as their initial and final positions coincide;
this is because they have no neighbors and thus have never updated their positions.

Example 8.5 Consider a network of 12 agents as displayed in Fig. 8.5. This digraph G
contains a spanning 4-tree, with the 4-root subset R = {1, 2, 3, 4}.
We consider a cuboid to be the target configuration ξ = [ξ⊤1 · · · ξ⊤12]⊤, where ξi (i ∈ [1, 12])
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Figure 8.4: Eight agents converging to an affine formation of unit sphere (×: initial position; ◦:
final position)

are

ξ1 =

00
0

 , ξ2 =

01
0

 , ξ3 =

10
0

 , ξ4 =

11
0

 , ξ5 =

00
1

 , ξ6 =

01
1

 ,

ξ7 =

10
1

 , ξ8 =

11
1

 , ξ9 =

 0

0

−1

 , ξ10 =

 0

1

−1

 , ξ11 =

 1

0

−1

 , ξ12 =

 1

1

−1

 .

This ξ is not generic, because there are multiple cases of four points on the same plane.
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3
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5

910

1112

Figure 8.5: Twelve networked agents

Hence we add a random perturbation [p1 p2 p3]
⊤ to each ξi (where p1, p2, p3 ∈ (0, 0.1)).

Denote the perturbed configuration by ξ′, which is verified to be generic.
We then design a signed Laplacian matrix L of the digraph G in Fig. 8.5 such that rank(L) =
8, and apply Algorithm 8.1 to compute an invertible diagonal matrix E such that all the
nonzero eigenvalues of −EL are stable. With a random initial condition x(0) ∈ R36 (whose
entries represent twelve random positions of the agents in a 3D space), a simulation of the
AFCA (i.e. ẋ = ((−EL) ⊗ I3)x) yields the trajectories displayed in Fig. 8.6. Observe that
an (approximate) cuboid affine to the perturbed configuration ξ′ is formed.

Example 8.6 Consider a network of 27 agents as displayed in Fig. 8.7. This digraph G
contains a spanning 3-tree, with the 3-root subset R = {1, 2, 3}. Note that every node has
three neighbors, except for node 2 which has four neighbors.
We consider a two-dimensional unit circle to be the target configuration ξ = [ξ⊤1 · · · ξ⊤27]⊤,
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Figure 8.6: Twelve agents converging to an affine formation of approximate cuboid (×: initial
position; ◦: final position)

where ξi are

ξi =

[
cos( 2πj(i−1)

27 )

sin( 2πj(i−1)
27 )

]
, i ∈ [1, 27].

This ξ is generic. We then design a signed Laplacian matrix L of the digraph G in Fig. 8.7
such that rank(L) = 24, and apply Algorithm 8.1 to compute an invertible diagonal matrix
E such that all the nonzero eigenvalues of −EL are stable. With a random initial condition
x(0) ∈ R54 (whose entries represent twenty-seven random positions of the agents in a 2D
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2

3

4

27

i

1

i− 1

Figure 8.7: Twenty-seven networked agents (neighbor sets N1 = {2, 3, 27}, N2 = {1, 3, 4, 27},
N3 = {1, 2, 4}, Ni = {1, 2, i− 1}, i ∈ [4, 27])

space), a simulation of the AFCA (i.e. ẋ = ((−EL)⊗ I2)x) yields the trajectories displayed
in Fig. 8.8. Observe that an ellipsoid affine to the target circle ξ is formed. This is in contrast
with the 2D similar formations studied in Chapter 6, because here generally different scalings
are allowed along the two dimensions. Also observe that no agent stays put, as everyone has
neighbors and thus updates its state correspondingly.

8.5 Notes and References

The concept of signed Laplacian matrices and affine formation control algorithm are first studied
in:

• Z. Lin, L. Wang, Z. Chen, M. Fu, Z. Han, Necessary and sufficient graphical conditions for
affine formation control, IEEE Transactions on Automatic Control, vol.61, pp.2877–2891,
2016

Extension to affine formation maneuver control is reported in:
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Figure 8.8: Twenty-seven agents converging to an affine formation of unit circle (×: initial position;
◦: final position)

• S. Zhao, Affine formation maneuver control of multiagent systems, IEEE Transactions on
Automatic Control, vol.63, pp.4140–4155, 2018
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Chapter 9

Localization in Arbitrary
Dimensional Space

In this chapter, we extend the distributed localization problem of multi-agent systems in Chapter 7
from two-dimensional space to arbitrary dimensional space. This extension is practically useful
because many applications of localization using (wireless) sensor networks are not limited to 2D
space. For example, air quality monitoring and underwater information collection are instances in
3D space.

To solve localization in arbitrary dimensions, we develop an approach based on signed Lapla-
cian matrices (as in Chapter 8 for arbitrary dimensional affine formation control). Note that the
approach for solving localization in Chapter 7 based on complex Laplacian matrices was limited to
2D space, and cannot be used for higher dimensional localization.

We nevertheless adopt the same distributed localization scheme introduced in Chapter 7. Namely
we consider a sensor network composed of a minority of anchor nodes that know their positions
in the global coordinate frame (e.g. using a GPS), and the rest majority of free nodes that need
to determine their global positions based on their local frames and locally sensed information (e.g.
distances and bearing angles with respect to neighboring nodes).

Modeling the interacting sensor nodes by digraphs, we show that a necessary graphical condition
to achieve d-dimensional localization (d ≥ 2) is that the digraph contains a spanning (d + 1)-tree
whose d+1 roots are anchor nodes. This condition is the same as the one for achieving d-dimensional
affine formation in Chapter 8. However, in the special case of d = 2, this condition differs from
the one (i.e. spanning 2-tree) for achieving 2D localization in Chapter 7. This difference is due
to distinct graphical requirements on designing appropriate entries for signed Laplacian matrices
and for complex Laplacian matrices. Under the above graphical condition, we present a distributed
algorithm to achieve localization in arbitrary dimensions.

9.1 Problem Formulation
Consider a network of n (> 1) agents that are stationary in d-dimensional space (d ≥ 2), and a global
coordinate frame Σ which is unknown to the agents. The agents labeled 1, . . . , d+ 1 (renumbering

235
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if necessary) are the anchor agents, whose positions ξ1, . . . , ξd+1 ∈ Rd in Σ are known. The rest
agents labeled d+2, . . . , n are the free agents, whose positions ξd+2, . . . , ξn ∈ Rd in Σ are unknown
and need to be determined by these individual free agents. Let

ξa :=


ξ1
...

ξd+1

 ∈ R(d+1)d, ξf :=


ξd+2

...
ξn

 ∈ R(n−d−1)d

be the aggregated position vectors of the anchor and free agents, respectively. Write ξ in terms of
ξa and ξf as follows:

ξ =

[
ξa

ξf

]
∈ Rnd

and call ξ the configuration of the agents.

To determine its own position, each free agent i (∈ [d+ 2, n]) is equipped with a state variable
xi(k) ∈ Rd, which is a d-dimensional real vector and denotes the estimate of agent i’s position ξi

under the global frame Σ. The time k ≥ 0 is a nonnegative integer and denotes the discrete time.
Let

xf (k) :=


xd+2(k)

...
xn(k)

 ∈ R(n−d−1)d

be the aggregated state vector of the free agents at time k. It is desired that

xf (k) → ξf as k → ∞.

For convenience, also let

xa(k) :=


x1(k)

...
xd+1(k)

 ∈ R(d+1)d

be the aggregated state vector of the anchor agents, such that xa(k) = ξa for all k ≥ 0 (i.e. the
anchor agents know their positions in the global frame Σ from the initial time k = 0 and never
update their estimates). Write x(k) := [xa(k)

⊤ xf (k)
⊤]⊤ ∈ Rnd. Hence the aim of d-dimensional
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localization is to achieve

lim
k→∞

x(k) = ξ.

We model the interconnection structure of the networked agents by a digraph G = (V, E): Each
node in V = {1, ..., n} stands for an agent, and each directed edge (j, i) in E ⊆ V × V denotes
that agent i can obtain the relative state information from agent j. The neighbor set of agent i

is Ni := {j ∈ V | (j, i) ∈ E}. For the d + 1 anchor nodes (numbered 1, . . . , d + 1 without loss of
generality), since they do not update their states, even if they had neighbors, the corresponding
incoming edges would be associated with weight 0. This is equivalent to considering that the anchor
nodes do not have neighbors. For this reason, henceforth in this chapter we consider that Ni = ∅
for all i ∈ [1, d+ 1].

Moreover, consider that digraph G is weighted: each edge (j, i) ∈ V is associated with a real-
valued weight aij ∈ R. Hence the adjacency matrix A = (aij), degree matrix D = diag(A1), and
Laplacian matrix L = D − A are all real matrices. Note that the adjacency matrix A is not a
nonnegative matrix in general; thus L is a signed Laplacian matrix. Since Ni = ∅ for the anchor
nodes i ∈ [1, d+ 1], the signed Laplacian matrix L has the following structure:

L =

[
Laa Laf

Lfa Lff

]
=

[
0 0

Lfa Lff

]
. (9.1)

Here Lfa ∈ R(n−d−1)×(d+1) and Lff ∈ R(n−d−1)×(n−d−1).

To achieve localization in d dimensions, consider the distributed control

ui(k) =
∑
j∈Ni

wij(xj(k)− xi(k)), i ∈ [1, n]. (9.2)

Here the control gain wij satisfies

(i)
∑
j∈Ni

wij(ξj − ξi) = 0 (9.3)

(ii) wij = ϵiaij , ϵi ∈ R \ {0}. (9.4)

This control ui in (9.2) is in the same form as that for the 2D localization in Chapter 7: the gains
wij are not simply the edge weights aij ∈ R, but are real (nonzero) multiples of aij (9.4) and satisfy
linear constraints with respect to the configuration ξ (9.3). In contrast with Chapter 7, here the
gains wij are real numbers rather than complex ones.
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Moreover, substituting (9.4) into (9.3) and removing the common multiple ϵi yield∑
j∈Ni

aij(ξj − ξi) = 0. (9.5)

This in vector form is (L⊗ Id)ξ = 0. In view of (9.1) we have[
0 0

Lfa ⊗ Id Lff ⊗ Id

][
ξa

ξf

]
= 0

and thereby the following holds:

(Lff ⊗ Id)ξf = −(Lfa ⊗ Id)ξa. (9.6)

The above equation relates the configuration of the free agents to that of the anchor agents through
appropriate multiplications of submatrices of the signed Laplacian matrix.

Arbitrary Dimensional Localization Problem:
Consider a network of agents (stationary in a d-dimensional space) interconnected through a

digraph and a configuration ξ := [ξ⊤a ξ⊤f ]⊤ ∈ Rnd, which represents the fixed positions of the agents
under the global coordinate frame Σ. Here ξa ∈ R(d+1)d is known but ξf ∈ R(n−d−1)d is unknown.
Design a distributed algorithm using the control ui in (9.2) such that

(i) rank(L) = n− d− 1

(ii) (∀xf (0) ∈ R(n−d−1)d) lim
k→∞

xf (k) = ξf .

The first requirement (i) implies rank(Lff ) = n− d− 1; namely Lff is invertible. This means
that (Lff ⊗ Id) is also invertible. Thus it follows from (9.6) that ξf = −(Lff ⊗ Id)

−1(Lfa ⊗ Id)ξa.
Therefore the second requirement (ii) becomes:

(∀xf (0) ∈ R(n−d−1)d) lim
k→∞

xf (k) = −(Lff ⊗ Id)
−1(Lfa ⊗ Id)ξa.

Example 9.1 We provide an example to illustrate the localization problem in d(= 3) dimen-
sions. As displayed in Fig. 9.1, eight agents are interconnected through a digraph; agents
1,2,3,4 are anchor agents while the rest five are free nodes. The neighbor sets of the agents
are N1 = N2 = N3 = N4 = ∅, N5 = {1, 2, 6, 7}, N6 = {3, 4, 7, 8}, N7 = {1, 5, 6, 8}, and
N8 = {4, 5, 6, 7}.
Let the configuration ξ = [ξ⊤1 · · · ξ⊤8 ] of the agents be the vector of eight (three-dimensional)
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Figure 9.1: Illustrating example of eight agents

ξ6

ξ7

ξ1ξ2

ξ3

ξ4

ξ5

ξ8

Figure 9.2: Illustrating example of a configuration of eight 3D points on unit sphere
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points on the unit sphere (see Fig. 9.2), where

ξ1 =

cos
π
4

0

sin π
4

 , ξ2 =

− cos π
4

0

sin π
4

 , ξ3 =

 0

− cos π
4

− sin π
4

 , ξ4 =

 0

cos π
4

− sin π
4

 ,

ξ5 =

 0

− cos π
4

sin π
4

 , ξ6 =

 cos π
3

− sin π
3

0

 , ξ7 =

− cos π
3

sin π
3

0

 , ξ8 =

10
0

 .

The position vector of the anchor agents ξa = [ξ⊤1 ξ⊤2 ξ⊤3 ξ⊤4 ]⊤ is known, while that of the
free agents ξf = [ξ⊤5 ξ⊤6 ξ⊤7 ξ⊤8 ]⊤ is unknown and needs to determined.
The localization problem in 3D is to design a distributed algorithm using the control ui in
(9.2) such that the rank of the signed Laplacian matrix L is n − 4, and moreover the free
agents’ state vector asymptotically converges to ξf .

A necessary graphical condition for solving the d-dimensional localization problem is given below.

Proposition 9.1 Suppose that there exists a distributed control ui in (9.2) that solves the
d-dimensional localization problem. Then the digraph contains a spanning (d+1)-tree whose
d+ 1 roots are the d+ 1 anchor agents.

Proof. Suppose that there exists a distributed control in (9.2) that solves the d-dimensional
localization problem, but that the digraph G = (V, E) does not contain a spanning (d+1)-tree whose
d + 1 roots are the d + 1 anchor agents. We will derive a contradiction that rank(L) < n − d − 1,
thereby proving that after all G must contain a spanning (d+1)-tree whose d+1 roots are the d+1

anchor agents.
There are two cases that need to be considered separately. First, the digraph contains a spanning

(d+1)-tree but at least one of the d+1 roots is a free agent. In this case, the subdigraph of free agents
contains at least a spanning tree (and at most a spanning (d+1)-tree). Hence rank(Lff ) < n−d−1.
Since the anchor agents do not have neighbors, rank(L) < n− d− 1.

The second case is that the digraph does not contain a spanning (d + 1)-tree. Then it follows
similarly to the proof of Proposition 8.1 that rank(L) < n− d− 1.

Therefore in both cases above, a contradiction is derived to the solvability of the d-dimensional
localization problem. The proof is now complete. □

Owing to Proposition 9.1, we shall henceforth assume the following graphical condition.

Assumption 9.1 The digraph G modeling the interconnection structure of the networked agents
contains a spanning (d+ 1)-tree whose d+ 1 roots are the d+ 1 anchor agents.
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Even if Assumption 9.1 holds, not every configuration ξ ∈ Rnd may be determined by a
distributed control ui in (9.2). Similar to Example 8.2, if ξ is not generic, it is possible that
rank(L) < n− d− 1 for all signed Laplacian matrices satisfying (L⊗ Id)ξ = 0. This means that the
d-dimensional localization problem is not solvable. For this reason, and also the fact that the set of
all non-generic configurations has Lebesgue measure zero after all, we assume that the configuration
ξ is generic.

Assumption 9.2 The configuration ξ = [ξ⊤a ξ⊤f ]⊤ ∈ Rnd is generic.

9.2 Distributed Algorithm

Σ

ξ6

ξ7

ξ1ξ2

ξ3

ξ4

ξ5

ξ8

Σ6

y68
y67

y63

y64

Figure 9.3: Illustration of design of real weights

Example 9.2 Consider again Example 9.1, where the configuration ξ = [ξ⊤1 · · · ξ⊤8 ]⊤ of
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the agents consists of eight (three-dimensional) points on the unit sphere:

ξ1 =

cos
π
4

0

sin π
4

 , ξ2 =

− cos π
4

0

sin π
4

 , ξ3 =

 0

− cos π
4

− sin π
4

 , ξ4 =

 0

cos π
4

− sin π
4

 ,

ξ5 =

 0

− cos π
4

sin π
4

 , ξ6 =

 cos π
3

− sin π
3

0

 , ξ7 =

− cos π
3

sin π
3

0

 , ξ8 =

10
0

 .

This configuration ξ is generic.
The anchor agents’ configuration ξa = [ξ⊤1 ξ⊤2 ξ⊤3 ξ⊤4 ]⊤ is known, and the free agents’
configuration ξf = [ξ⊤5 ξ⊤6 ξ⊤7 ξ⊤8 ]⊤ is to be determined. To this end, we consider using the
simplest form of distributed control (9.2) by setting all ϵi = 1:

xi(k + 1) = xi(k) +
∑
j∈Ni

aij(xj(k)− xi(k)), i ∈ [1, 8] (9.7)

where aij ∈ R are real weights of edges (j, i) to be designed to satisfy (9.5):∑
j∈Ni

aij(ξj − ξi) = 0, i ∈ [1, 8].

In the following we illustrate how the real weights may be designed locally to satisfy the
above linear constraints. Each free agent i ∈ [5, 8] has a local coordinate frame Σi, whose
origin is the (stationary) position of agent i. The orientation of Σi is fixed, but the three
offset angles αi, βi, γi (counterclockwise) with respect to the global coordinate frame Σ are
unknown. These offset angles give rise to a (fixed) rotation matrix Ri relating the local frame
Σi to the global Σ. For each neighbor (free or anchor) j ∈ Ni, we assume that agent i can
measure the relative position yij in Σi as

yij := Ri(ξj − ξi). (9.8)

Since Ri is unknown, even though the relative position yij in Σi is known, ξj − ξi in Σ is
unknown. Substituting ξj − ξi = R−1

i yij into (9.5) and multiplying Ri from the left, we
derive ∑

j∈Ni

aijyij = 0. (9.9)
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Hence the weights aij may be designed based on the relative position yij under the local
coordinate frame Σi.
For example, Fig. 9.3 provides an illustrative example. For agent 6, it has four neighbors
3, 4, 7, 8. Thus we must find weights a63, a64, a67, a68 such that

a63y63 + a64y64 + a67y67 + a68y68 = 0.

The relative positions measured by agent 6 in its local frame Σ6 are

y63 =

 0

− cos π
4

sin π
4

 , y64 =

 cos π
3

− sin π
3

0

 , y67 =

− cos π
3

sin π
3

0

 , y68 =

10
0

 .

The local frame Σ6 has (fixed) offset angles from the global Σ: α6 = π
4 , β6 = π

6 , and γ6 = π
3

(all counterclockwise with respect to Σ). Then the corresponding rotation matrix is

R6 =

cos(
π
3 ) − sin(π3 ) 0

sin(π3 ) cos(π3 ) 0

0 0 1


 cos(π6 ) 0 sin(π6 ) 0

0 1 0

− sin(π6 ) 0 cos(π6 )


1 0 0

0 cos(π4 ) − sin(π4 )

0 sin(π4 ) cos(π4 )

 .

It is verified that

y6j = R6(ξj − ξ6), j = 3, 4, 6, 7.

Substituting the relative positions y63, y64, y67, y68 into the equation a63y63+a64y64+a67y67+

a68y68 = 0 yields

a63

−0.8437

−0.2367

−0.0857

+ a64

−1.4598

0.6964

0.7803

+ a67

−1.1875

0.3927

1.5607

+ a68

−0.1607

0.9464

0.2803

 = 0.

The above is a system of linear equations, with four unknowns (the weights) and three equa-
tions. Thus there are infinitely many solutions (indeed the solution space is one-dimensional).
One solution is a63 = −1, a64 = 1, a67 = −0.4082, a68 = −0.8165.

Similarly we design other real weights to satisfy (9.9), and write (9.7) in vector form:
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x(k + 1) = ((I − L)⊗ I3)x(k) where

L =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 −3.7321 0 0 4.7321 −1.9319 1.9319 0

0 0 −1 1 0 1.2247 −0.4082 −0.8165

−1 0 0 0 1 −0.9659 −0.1494 1.1154

0 0 0 −1 −1 1 1 0


.

It is verified that the signed Laplacian matrix L has zero row sums and satisfies (L⊗I3)ξ = 0.
Moreover, partition the matrix L according to anchor agents and free agents:

L =

[
Laa Laf

Lfa Lff

]
.

Thus Laa = Laf = 0; Lfa ∈ R4×4 and Lff ∈ R4×4. It is checked that rank(Lff ) = 4; thus
Lff and (Lff ⊗ I3) are invertible. Therefore the first condition in the arbitrary dimensional
localization problem is satisfied.
It is left to verify the second condition that the state vector of the free agents xf (k) converges
to −(Lff ⊗ I3)

−1(Lfa ⊗ I3)ξa (when xa(k) = ξa for all k ≥ 0). Fix ξa ∈ R12. First note
that

x̄ =

[
x̄a

x̄f

]
=

[
ξa

−(Lff ⊗ I3)
−1(Lfa ⊗ I3)ξa

]

is the unique fixed point of (9.7). To see this, substituting x̄ into (9.7) yields x̄, which means
that x̄ is a fixed point of (9.7). Moreover, let

x̄′ =

[
ξa

x̄′
f

]



9.2. Distributed Algorithm 245

be another fixed point of (9.7), namely[
ξa

x̄′
f

]
=

(([
I4 0

0 I4

]
−

[
0 0

Lfa Lff

])
⊗ I3

)[
ξa

x̄′
f

]

=

(([
I4 0

−Lfa I4 − Lff

])
⊗ I3

)[
ξa

x̄′
f

]
.

From the above we derive

x̄′
f = −(Lff ⊗ I3)

−1(Lfa ⊗ I3)ξa = x̄f .

This shows that x̄ is the unique fixed point of (9.7), which in turn implies that starting
from an arbitrary initial condition x(0) = [ξ⊤a x⊤

f (0)]
⊤ ∈ R24, xf (k) converges to −(Lff ⊗

I3)
−1(Lfa ⊗ I3)ξa if and only if all the eigenvalues of I4 − Lff lie inside the unit circle.

Unfortunately, the eigenvalues of matrix I4 − Lff are

−0.0967 + 0.2167j,−0.0967− 0.2167j, 2.3807,−3.9946.

The last two eigenvalues lie outside the unit circle. Hence (9.7) is unstable and xf (k) di-
verges. To stabilize xf (k) to the desired fixed point −(Lff ⊗ I3)

−1(Lfa⊗ I3)ξa (to satisfy the
second requirement in the arbitrary dimensional localization problem), the unstable eigen-
values of I4 − Lff must be moved inside the unit circle. This shows that simply setting all
ϵi = 1 in (9.2) does not work in general. In fact, ϵi need to be properly chosen in order to
stabilize I4 − Lff .

Remark 9.1 As illustrated in Example 9.2 for 3D localization, it is important for each free agent
to have at least four neighbors to guarantee existence of (infinitely many) appropriate weights aij

such that the signed Laplacian matrix L satisfies (L ⊗ I3)ξ = 0. If a free agent had only three or
fewer neighbors, appropriate weights aij need not exist in general. This is why for solving general
d-dimensional localization based on signed Laplacian matrices, the digraph must contain a spanning
(d + 1)-tree. Specializing to the case of d = 2, we need a digraph containing a spanning 3-tree for
solving 2D localization based on signed Laplacian matrices. This graphical condition is stronger
than the result of Chapter 7: there based on complex Laplacian matrices, 2D localization is solvable
over a digraph containing a spanning 2-tree. Nevertheless, the signed Laplacian based approach can
solve higher dimensional (d ≥ 3) localization problem that cannot be dealt with by complex Laplacian
matrices.

In the following we describe a distributed algorithm using (9.2) in vector form, and will analyze
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its stability in relation to the values of ϵi in the next section.

Arbitrary Dimensional Localization Algorithm (ADLA):
Each anchor agent i ∈ [1, . . . , d + 1] has a state variable xi(k) ∈ Rd whose initial value is set

to be xi(0) = ξi (which is known). Every free agent i ∈ [d + 2, . . . , n] also has a state variable
xi(k) ∈ Rd whose initial value is an arbitrary d dimensional real vector (which is an estimate of the
unknown ξi). Offline, each free agent i computes weights aij ∈ R based on the measured relative
positions yij = Ri(ξj − ξi) in (9.8) by solving∑

j∈Ni

aijyij = 0.

Then online, at each time k ≥ 0, while each anchor agent stays put, i.e.

xi(k + 1) = xi(k), i ∈ [1, d+ 1]

each free agent i updates its xi(k) using the following local update protocol:

xi(k + 1) = xi(k) + ϵi
∑
j∈Ni

aij(xj(k)− xi(k)), i ∈ [d+ 2, n] (9.10)

where ϵi ∈ R \ {0} is a (nonzero) real control gain.
Let x := [x⊤

1 · · · x⊤
n ]

⊤ ∈ Rnd be the aggregated state vector of the networked agents, and

E = diag(ϵ1, . . . , ϵn) ∈ Rn×n

the (diagonal and invertible) control gain matrix. Then the n equations (9.10) become

x(k + 1) = ((I − EL)⊗ Id)x(k). (9.11)

Remark 9.2 The above ADLA requires that the following information be available for each free
agent i ∈ [d+ 2, n]:

• yij for all j ∈ Ni (offline computation of weights)

• xj − xi for all j ∈ Ni (online state update).

9.3 Convergence Result

The following is the main result of this section.
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Theorem 9.1 Suppose that Assumptions 9.1 and 9.2 hold. There exists a (diagonal and
invertible) control gain matrix E = diag(ϵ1, . . . , ϵn) such that ADLA solves the arbitrary
dimensional localization problem.

To prove Theorem 9.1, we analyze the eigenvalues of the matrix (I−EL)⊗Id in (9.11). For this,
the following fact is useful (which is the real counterpart of Lemma 7.1 and the discrete counterpart
of Lemma 8.1).

Lemma 9.1 Consider an arbitrary square real matrix M ∈ Rn×n. If all the principal minors
of M are nonzero, then there exists an invertible diagonal matrix E = diag(ϵ1, . . . , ϵn) ∈
Rn×n such that all the eigenvalues of I − EM lie inside the unit circle.

Proof: The proof is based on induction on n. For the base case n = 1, M = m11 is a nonzero
real scalar (as the principal minor of M is nonzero). Let ϵ1 ∈ R be such that ϵ1 ∈ (0, 1

m11
). Then

EM = ϵ1m11 ∈ (0, 1). Hence 1− EM ∈ (0, 1), which lies inside the unit circle.
For the induction step, suppose that the conclusion holds for M ∈ R(n−1)×(n−1). Now consider

M ∈ Rn×n, with all of its principal minors nonzero. Let M1 be the submatrix of M with the last row
and last column removed. Then all the principal minors of M1 are nonzero, and by the hypothesis
there exists an invertible diagonal matrix E1 = diag(ϵ1, . . . , ϵn−1) such that all the eigenvalues
1− λ1, . . . , 1− λn−1 of I − E1M1 lie inside the unit circle. Now write

M =

[
M1 M2

M3 mnn

]

where mnn is a nonzero scalar (since all the principal minors of M are nonzero). Also let

E =

[
E1 0

0 ϵn

]

for some real ϵn. Thus

I − EM =

[
I 0

0 1

]
−

[
E1 0

0 ϵn

][
M1 M2

M3 mnn

]
=

[
I − E1M1 −E1M2

−ϵnM3 1− ϵnmnn

]
.

If ϵn = 0, then

I − EM =

[
I − E1M1 −E1M2

0 1

]
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which means that all the eigenvalues of I−EM lie inside the unit circle except for a simple eigenvalue
1. Since eigenvalues are continuous functions of matrix entries, for sufficiently small |ϵn|, I − EM

still has n− 1 eigenvalues 1− λ′
1, . . . , 1− λ′

n−1 which are inside the unit circle.
Now we consider the last eigenvalue 1−λ′

n. If 1−λ′
n is complex, then it must be a conjugate to

an existing eigenvalue inside the unit circle. Hence 1− λ′
n is also inside the unit circle. If 1− λ′

n is
real, it follows from Lemma 8.1 that ϵn may be chosen such that λ′

n is a sufficiently small positive
number. Hence the last eigenvalue 1−λ′

n lies within the unit circle. This proves the induction step,
and thereby completes the proof. □

The above proof suggests an algorithm (Algorithm 9.1 below) to compute an invertible diagonal
matrix E = diag(ϵ1, . . . , ϵn) such that all the eigenvalues I − EM lie inside the unit circle. This
algorithm is identical to Algorithm 8.1 in Chapter 8, because appropriate δ1, . . . , δn in line 1 can
always be chosen to render the eigenvalues of EM with sufficiently small positive real parts, which
in turn ensures that the eigenvalues of I − EM lie inside the unit circle.

Algorithm 9.1 Diagonal Stabilization Algorithm (case of real matrix, inside unit circle)
Input: square real matrix M ∈ Rn×n with nonzero principal minors
Output: invertible diagonal matrix E ∈ Rn×n

1: set δ1, . . . , δn to be small positive real numbers
2: ϵ1 = δ1

M(1,1)

3: E1 = diag(ϵ1)
4: for i = 2, . . . , n do
5: ϵi =

δi
det(Ei−1)det(M(1:i,1:i))

6: Ei = diag(ϵ1, . . . , ϵi)
7: end for
8: E = diag(ϵ1, . . . , ϵn)

Lemma 9.1 provides a sufficient condition under which the eigenvalues of a real matrix may be
moved inside the unit circle using an invertible diagonal real matrix. It then follows from Propo-
sition 8.2 (recalled below for convenience) that under Assumptions 9.1 and 9.2 (Assumption 9.1
implies Assumption 8.1 and Assumption 9.2 is the same as Assumption 8.2), the sufficient condi-
tion holds for the submatrix Lff of the signed Laplacian matrix L. Hence there exists an invertible
diagonal matrix Ef = diag(ϵd+2, . . . , ϵn) such that all the eigenvalues of I − EfLff lie inside the
unit circle.

Proposition 8.2 Suppose that Assumptions 9.1 and 9.2 hold. Let R be the (d + 1)-root
subset and LR the submatrix of L by removing the d+1 rows and d+1 columns corresponding
to R. Then for almost all signed Laplacian L of G satisfying (L ⊗ Id)ξ = 0, all principal
minors of LR are nonzero.

With this preparation, we are ready to prove Theorem 9.1.
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Proof of Theorem 9.1: Let Assumptions 9.1 and 9.2 hold. On one hand, it follows from Propo-
sition 8.2 that for almost all signed Laplacian L of G satisfying (L⊗ Id)ξ = 0 (where ξ is generic),
rank(L) ≥ n− d− 1. On the other hand, since the first d+ 1 rows of L corresponding to the d+ 1

anchor agents are zero, we have rank(L) ≤ n− d− 1. Therefore for almost all signed Laplacian L

satisfying (L⊗ Id)ξ = 0, we have rank(L) = n− d− 1, which establishes the first condition in the
arbitrary dimensional localization problem.

For the second condition, first note again from Proposition 8.2 that for almost all signed Lapla-
cian L satisfying (L ⊗ Id)ξ = 0, all principal minors of Lff are nonzero. It then follows from
Lemma 9.1 that there exists an invertible diagonal matrix Ef = diag(ϵd+2, . . . , ϵn) such that all the
eigenvalues of I − EfLff lie inside the unit circle. Let

Ea :=


ϵ1 · · · 0
... . . . ...
0 · · · ϵd+1

 , E :=

[
Ea 0

0 Ef

]
, L =

[
0 0

Lfa Lff

]
.

Here ϵ1, . . . , ϵd+1 ̸= 0. Then E is invertible and

I − EL =

[
I 0

0 I

]
−

[
0 0

EfLfa EfLff

]
=

[
I 0

−EfLfa I − EfLff

]
.

Hence the spectrum (i.e. set of eigenvalues) of I − EL is the union of the spectrum of I − EfLff

(all inside the unit circle) and {1, . . . , 1} (set of d+ 1 ones).

It is left to verify that for arbitrary initial states of the free agents xf (0) ∈ R(n−d−1)d, xf (k)

converges to −(Lff ⊗ Id)
−1(Lfa ⊗ Id)ξa(= ξf ) when xa(k) = ξa for all k ≥ 0. Fix ξa ∈ R(d+1)d.

First note that

x̄ =

[
x̄a

x̄f

]
=

[
ξa

−(Lff ⊗ Id)
−1(Lfa ⊗ Id)ξa

]

is the unique fixed point of (9.11). To see this, substituting x̄ into (9.11) yields x̄ (thanks to the
fact that both Ef and Lff are invertible), which means that x̄ is a fixed point of (9.11). Moreover,
let

x̄′ =

[
ξa

x̄′
f

]
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be another fixed point of (9.11), namely[
ξa

x̄′
f

]
=

[
I 0

−EfLfa I − EfLff

][
ξa

x̄′
f

]
.

From the above we derive

x̄′
f = −(Lff ⊗ Id)

−1(Lfa ⊗ Id)ξa = x̄f .

This shows that x̄ is the unique fixed point of (9.11). Moreover, since all the eigenvalues of I−EfLff

lie inside the unit circle, we derive

(∀xf (0) ∈ R(n−d−1)d) lim
k→∞

xf (k) = −(Lff ⊗ Id)
−1(Lfa ⊗ Id)ξa(= ξf )

Namely, the second condition in the arbitrary dimensional localization problem is established. This
completes the proof. □

9.4 Simulation Examples

Example 9.3 Let us consider again Example 9.2, where the (generic) configuration ξ con-
sists of eight (three-dimensional) points on the unit sphere. We have designed a signed
Laplacian matrix L (copied below for convenience)

L =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 −3.7321 0 0 4.7321 −1.9319 1.9319 0

0 0 −1 1 0 1.2247 −0.4082 −0.8165

−1 0 0 0 1 −0.9659 −0.1494 1.1154

0 0 0 −1 −1 1 1 0


.

While it is satisfied that rank(L) = 4, two of the eigenvalues of I − L are unstable (i.e.
outside the unit circle). Thus we need to design an invertible diagonal matrix E such that,
except for the four eigenvalues 1, all the other four eigenvalues of I − EL are stable (i.e.
inside the unit circle).
Since the configuration ξ is generic and the digraph G contains a spanning 4-tree whose
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Figure 9.4: Estimations of four free agents converge to their true positions (×: initial estimation;
◦: final estimation)

four roots are the anchor agents 1, 2, 3, 4, all the principal minors of the submatrix Lff are
nonzero. Therefore by Lemma 9.1, there exists an invertible diagonal matrix Ef such that
all the eigenvalues of I −EfLff lie inside the unit circle. For computing such Ef , we apply
Algorithm 9.1 and obtain

Ef = diag(0.2113, 0.2449,−0.1487, 0.4).

Then an invertible diagonal matrix E such that, except for the four eigenvalues 1, all the
other four eigenvalues of I − EL lying inside the unit circle is:

E = diag(1, 1, 1, 1, 0.2113, 0.2449,−0.1487, 0.4).
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Figure 9.5: Estimation error of eight networked agents asymptotically converges to zero

Indeed, the eigenvalues of I − EL are:

1, 1, 1, 1, 0.903 + 0.3549j, 0.903− 0.3549j, 0.7854, 0.0864.

With the initial condition xa(0) = ξa of the four anchor agents and a random initial condition
xf (0) ∈ R12 of the four free agents, a simulation of the ADLA (i.e. x(k+1) = ((I −EL)⊗
I3)x(k)) yields the trajectories displayed in Fig. 9.4. In the figure, × denotes the initial
estimated positions, while ◦ the final estimated positions. First observe that the four anchor
agents never change their estimations of their positions, because these global positions are
already known and never need to be updated. For the four free agents, they start from some
random estimations of their positions, and it is observed that these estimations converge to
their true positions.
Let e(k) := ∥x(k)− ξ∥2 be the total estimation error of the networked agents. Then Fig. 9.5
shows that e(k) asymptotically converges to zero.
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Figure 9.6: Twelve networked agents

Example 9.4 Consider a network of 12 agents in Example 8.5 (Fig. 8.5 is copied here as
Fig. 9.6 for convenience). Agents 1, 2, 3, 4 are anchor agents, and the rest are free agents.
This digraph contains a spanning 4-tree whose four roots are the four anchor agents.
Let us consider a configuration ξ which is a 3D cuboid with

• an added random perturbation [p1 p2 p3]
⊤, where p1, p2, p3 ∈ (0, 0.1)

• a π
3 rotation along the x-axis

• a 3-time scaling along all three dimensions

• a translation: 1 along the first dimension, −1 along the second dimension, and 2 along
the third dimension.

It is verified that this ξ is generic.
Now let ξa = [ξ⊤1 ξ⊤2 ξ⊤3 ξ⊤4 ]⊤ and ξf = [ξ⊤5 · · · ξ⊤12]

⊤. We design a signed Laplacian matrix
L such that rank(L) = 8, and compute by Algorithm 9.1 an invertible diagonal matrix E
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true positions (×: initial estimation; ◦: final estimation)
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Figure 9.8: Approximate cuboid configuration: estimation error of twelve networked agents asymp-
totically converges to zero

such that all the eigenvalues (except for four eigenvalues 1) of I −EL are stable (i.e. inside
the unit circle). With the initial condition xa(0) = ξa of the four anchor agents and a
random initial condition xf (0) ∈ R24 of the eight free agents, a simulation of the ADLA
(i.e. x(k + 1) = ((I − EL)⊗ I3)x(k)) yields the trajectories displayed in Fig. 9.7. Observe
that the estimations of the free agents converge to their true positions. The estimation error
e(k) := ∥x(k)− ξ∥2 is displayed in Fig. 9.8, which asymptotically converges to zero.

Example 9.5 Consider a network of 27 agents as displayed in Fig. 9.9. Agents 1, 2, 3 are
anchor agents, and the rest are free agents. This digraph contains a spanning 3-tree whose
three roots are the three anchor agents.
Consider a configuration ξ which is a 2D ellipsoid obtained from the unit circle by

• a 1-unit translation along the first dimension

• a 2-time scaling along the second dimension.
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Figure 9.9: Twenty-seven networked agents (neighbor sets N1 = N2 = N3 = ∅, Ni = {1, 2, i−1}, i ∈
[4, 27])

This ξ is generic.
Let ξa = [ξ⊤1 ξ⊤2 ξ⊤3 ]⊤ and ξf = [ξ⊤4 · · · ξ⊤27]

⊤. We then design a signed Laplacian matrix L

such that rank(L) = 24, and compute by Algorithm 9.1 an invertible diagonal matrix E such
that all the eigenvalues (except for three eigenvalues 1) of I −EL are stable (i.e. inside the
unit circle). With the initial condition xa(0) = ξa of the three anchor agents and a random
initial condition xf (0) ∈ R48 of the twenty-four free nodes, a simulation of the ADLA (i.e.
x(k + 1) = ((I − EL)⊗ I2)x(k)) yields the trajectories displayed in Fig. 9.10. Observe that
the estimations of the free agents converge to their true positions. The estimation error
e(k) := ∥x(k)− ξ∥2 is displayed in Fig. 9.11, which asymptotically converges to zero.

9.5 Notes and References
The arbitrary dimensional localization algorithm (ADLA) is originated here, as an extension of 2D
localization in Chapter 7 and arbitrary dimensional affine formation control in Chapter 8.
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Figure 9.10: Ellipsoid configuration: estimations of twenty-four free agents converge to their true
positions (×: initial estimation; ◦: final estimation)
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adjacency matrix, 26
affine formation control algorithm, 219
affine formation control problem, 211
anchor agent, 186, 236
aperiodic, 19
arbitrary dimensional localization algorithm, 246
arbitrary dimensional localization problem, 238
averaging problem, 54

backward reachable, 18
balanced, 17

Cartesian product, 15
closed-loop system, 150, 153
column-stochastic matrix, 34, 56
condition number, 77
configuration, 186, 236
consensus algorithm, 112
consensus problem, 109
consensus value, 110
consensus vector, 117
continuous time, 109
continuously differentiable, 76
control input, 109
control input vector, 127, 148
controllable, 129, 149
convergence factor, 66, 92, 117
convex, 103
coordinate frame, 165

degree, 17
degree matrix, 35

detectable, 128, 152
digraph, 15, 25

simple, 15
subdigraph, 17

discrete time, 53
distributed algorithm, 54, 109
double integrator, 141
doubly-stochastic matrix, 34

economic dispatching problem, 99
edge, 15

edge set, 15
loop, 15
multiple, 15

Erdos-Reyni random digraph, 72

fixed point, 192, 196, 244
formation shape, 158, 208
free agent, 186, 236

generator, 131
generic, 164
Gershgorin disc, 113
gradient, 76
gradient descent, 79

harmonic oscillator, 128
Hessian, 76

inverted pendulum, 142
irreducible matrix, 27

Jordan block, 114
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Jordan canonical form, 65, 114

k-reachable, 23
k-root subset, 23
kernel, 36
Kronecker product, 130, 210

Lagrange function, 93
Lagrange multiplier, 94
Laplacian matrix, 35

complex, 35
out-degree Laplacian matrix, 36
signed, 35
standard, 35

leading principal submatrix, 171
Lebesgue measure, 42, 165
linear time-invariant system, 127, 148
Lipschitz-continuous gradient, 76

matrix exponential, 113, 117, 137, 178
maximal strongly connected, 20
minor, 42

neighbor, 17
neighbor set, 17

nilpotent matrix, 115
node, 15

end-node, 15
head, 15
node set, 15
tail, 15

nonnegative matrix, 26, 27, 30
null space, 36

observable, 129, 152
observation output vector, 127, 148
observer, 131, 152
optimal matching distance, 66
optimal solution, 76

optimal value, 76
optimization problem, 77
orthogonal matrix, 27
out-degree, 17
out-degree matrix, 36
out-neighbor, 17
out-neighbor set, 17
output feedback control, 153

path, 18
cycle, 18
length, 18

periodic, 19
permutation matrix, 27
Perron-Frobenius Theorem, 34
pole assignment, 152
positive matrix, 26
primitive matrix, 30
principal minor, 169, 194, 220, 247

reachable, 18
reducible matrix, 27
relative bearing angle, 191
relative distance, 191
relative position, 158, 191, 208, 242
resource allocation problem, 93
root, 19
rotation matrix, 242
row-stochastic matrix, 34, 56

similar configuration, 158
similar formation control algorithm, 167
similar formation control problem, 160
single integrator, 109
singular value decomposition, 208
smooth, 76, 104
spanning k-tree, 23
spanning tree, 19
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spectral radius, 33
spectrum, 26, 33
stabilizable, 128, 149
state feedback control, 149
state vector, 127, 148
strictly convex, 103
strong component, 20

closed, 21
strong duality, 95
strongly connected, 18
strongly convex, 76, 103
subdigraph, 17

induced subdigraph, 17
spanning subdigraph, 17

surplus, 56
surplus-based averaging algorithm, 57
surplus-based optimization algorithm, 81
surplus-based resource allocation algorithm, 95
synchronization algorithm, 131
synchronization problem, 128

target configuration, 158, 208
two-dimensional localization algorithm, 193
two-dimensional localization problem, 188

undirected graph, 16
unitary matrix, 85, 208

weight, 25
weight-balanced, 35
weighted average, 117
weighted degree, 35
weighted digraph, 26
weighted out-degree, 35
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